(3.236.222.124) 您好!臺灣時間:2021/05/11 08:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊廉毅
研究生(外文):Lian-Yi Yang
論文名稱:奈米銀的製備和抗菌活性之探討
論文名稱(外文):Study on Biosynthesis of silver nanoparticles and their antibacterial activities
指導教授:姚國山姚國山引用關係
指導教授(外文):Kuo-Shan Yao
學位類別:碩士
校院名稱:明道大學
系所名稱:材料暨系統工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:82
中文關鍵詞:含羞草植物萃取液苦楝植物萃取液奈米銀粒子生物合成法抑菌率
外文關鍵詞:Extract of Mimosa pudica L.Extract of Azadirachta indicasilver nanoparticlesbiosynthesisrate of antibacterial
相關次數:
  • 被引用被引用:1
  • 點閱點閱:712
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的,利用生物合成法(biosynthesis)將含羞草(Mimosa pudica L.)和苦楝(Azadirachta indica)植物萃取液混合硝酸銀離子使其還原奈米銀粒子,比較不同奈米銀粒子對大腸桿菌(Escherichia coli BCRC 10450、K2)、金黃色葡萄球菌(Staphylococcus aureus 10451)、綠膿桿菌(Pseudomonas aeruginosa WFPII 0422)、茄科植物細菌性斑點病菌(Xanthomonas axonopodis pv. vesicatoria XVT40)、海芋軟腐病(Erwinia carotovora subsp. carotovora ECC7)及十字花科蔬菜黑腐病菌(Xanthomonas campestris pv. campestris XCC78)等菌株之抑菌試驗。此外,將其製備成含生合成奈米銀粒子紗布,再利用綠膿桿菌(P. aeruginos WFPII 0422)、茄科植物細菌性斑點病菌(X. axonopodis pv. vesicatoria XVT40)及大腸桿菌(E. coli BCRC K2)等菌株作為抑菌試驗分析之用。利用紫外線/可見光光譜儀(UV/VIS Spectrophotometer)、場發射電子顯微鏡(Scanning electron microscopy, SEM)、能量分散光譜儀(Energy dispersive spectroscopy, EDS)觀察生合成奈米銀粒子大小及粒子特性。實驗結果顯示,利用含羞草植物萃取液進行生合成之奈米銀粒子,於反應第1小時之光譜吸收值達到最高峰;經SEM觀察生合成之奈米銀粒子之粒徑大小平均為48 nm ± 10 nm;而在抗菌試驗中,以TTC(2, 3, 5-triphenyl tetrazolium chloride)作為活菌生長指示劑,試驗結果顯示在含羞草植物萃取液生合成奈米銀粒子濃度為1mg/ml時,且大腸桿菌(E. coli BCRC 10450)和金黃色葡萄球菌(S. aureus 10451)菌液濃度在104 c.f.u/ml時,抑菌率皆達到99%以上。
The study essentially uses two plant extract, including Mimosa pudica L. and Azadirachta indica to mix AgNO3 solution to get biosynthesis silver nanoparticles. Then estimate the performance of antibacterial activities on Escherichia coli BCRC 10450 and K2, Staphylococcus aureus 10451, Pseudomonas aeruginosa WFPII 0422, Xanthomonas axonopodis pv. vesicatoria XVT40, Erwinia carotovora subsp. carotovora ECC7, and Xanthomonas campestris pv. campestris XCC78 by different silver nanoparticles source. Further, we prepare silver nanoparticles biosynthetic swab for antibacterial test on P. aeruginos WFPII 0422, X. axonopodis pv. vesicatoria XVT40, and E. coli BCRC K2. We analyze the size and character of biosynthesis silver nanoparticles by using ultraviolet lamp/ Spectrophotometer (UV/VIS), Scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS). The results showed that the values of absorbs attain to highest peak at first hour by using extract of Mimosa pudica in this experiment. We can find the diameter of biosynthesis silver nanoparticles around 48 nm ± 10nm measured by SEM. In antibacterial test, when concentration of Escherichia coli 10450 and S. aureus 10451 is 104 c.f.u/ml, TTC(2, 3, 5-triphenyl- tetrazolium chloride) as growth indicator, it shows the rate of antibacterial of silver nanoparticles (conc.1mg/ml) made from Mimosa pudica will over 99%.
誌謝 --------------------------------------------
中文摘要 --------------------------------------------
英文摘要 --------------------------------------------
目錄 --------------------------------------------
表目錄 --------------------------------------------
圖目錄 --------------------------------------------
第一章 緒論----------------------------------------
第二章 文獻回顧------------------------------------
2.1 奈米的起源---------------------------------------
2.2 奈米材料的應用-----------------------------------
2.3 奈米銀簡介---------------------------------------
2.3.1 奈米銀抗菌原理及殺菌機制---------------------
2.3.2 人體可攝入奈米銀含量-------------------------
2.4 抗菌劑的種類-------------------------------------
2.5 生長指示劑之應用---------------------------------
2.6 奈米銀的應用-------------------------------------
2.6.1 奈米銀與二氧化鈦光觸媒抗菌比較---------------
2.6.2 奈米銀與二氧化鈦之應用-----------------------
2.6.3 奈米銀與活性碳之應用-------------------------
2.7 奈米粒子的製備-----------------------------------
2.7.1 氣相凝結法(gas condensation based) --------------
2.7.2 機械合金法(mechanical alloying based) ------------
2.7.3 化學溶液合成法(solution chemistry based) ---------
2.7.4 生物合成法(biosynthesis) -----------------------
2.7.4.1 利用苦楝(Azadirachta indica)植物生合成奈米銀和奈米金粒子---------
2.7.4.2 利用真菌生合成奈米銀粒子------------------
第三章 材料與方法----------------------------------
3.1 實驗設備-----------------------------------------
3.2 實驗流程-----------------------------------------
3.2.1 實驗流程圖-----------------------------------
3.2.2 含羞草(Mimosa pudica L.)植物生合成奈米粒子流程圖---------------------
3.2.3 苦楝(Azadirachta indica)植物生合成奈米粒子流程圖---------------------
3.3 實驗方法-----------------------------------------
3.3.1 奈米銀粒子生合成製備-------------------------
3.3.2 紫外線/可見光光譜測定------------------------
3.3.3 SEM觀察及EDS分析---------------------------
3.4 抗菌試驗----------------------------------------
3.3.4.1 TTC活菌生長指示劑對大腸桿菌(E. coli BCRC 10450)及金黃色葡萄球菌(S. aureus 10451)生長指示試驗-----------------------------------------
3.3.4.2 含羞草(Mimosa pudica L.)植物萃取液生合成奈米銀粒子對菌株生長之抑菌試驗-------------------
3.3.4.3 製備含羞草(Mimosa pudica L.)植物萃取液生合成奈米銀粒子紗布對菌株生長抑制效果試驗---------
第四章 結果與討論----------------------------------
4.1 奈米銀粒子生合成製備-----------------------------
4.2 紫外光/可見光光譜測定----------------------------
4.3 SEM觀察及EDS分析------------------------------
4.4 抗菌測試-----------------------------------------
4.4.1 TTC活菌生長指示劑試驗-----------------------
4.4.2 生合成奈米銀粒子對細菌生長之試驗-------------
4.4.3 不同濃度生合成奈米銀粒子之抑菌試驗-----------
4.4.4 奈米銀紗布試驗-------------------------------
4.4.4.1 TTC活菌生長指示劑對綠膿桿菌(P. aeruginosa WFPII 0422)生長指示試驗----------------------
4.4.4.2 TTC活菌生長指示劑對茄科植物細菌性斑點病菌
(X. axonopodis pv. vesicatoria XVT40)生長指示試驗----------------------------------------
4.4.4.3 TTC活菌生長指示劑對大腸桿菌(E. coli BCRC K2)生長指示試驗---------------------------
第五章 結論----------------------------------------
參考文獻 --------------------------------------------
呂宗昕,吳偉宏,2004,奈米科技與二氧化鈦光觸媒,科學發展,4,376:73
呂晃志,2007,奈米銀(Nano Silver),奈米科學網,4
http://nano.nchc.org.tw
林念芝,2005,聚酯織物經奈米Ag-TiO2複合光觸媒加工其抗菌性及耐用性研究,華岡紡織期刊,12:118-119
周更生,2006,功能性粉末奈米銀,科學發展清華大學化學工程學系, 12,408:32-39
吳大誠,杜仲良,高緒珊,2004,奈米纖維,五南圖書出版,176-214。
姚國山,汪大永,林曉呈,2006,利用溶膠凝膠法製備光觸媒二氧化鈦薄膜與其抑菌效果之評估,明道學術論壇,65-72
姚國山,楊廉毅,2006,利用植物萃取液生合成奈米銀粒子與抑菌效果之探討,中國材料科學學會,24-25
牟中原,郭清癸,黃俊傑,2001,金屬奈米粒子的製造,物理雙月刊,614-618
程定超,楊浩,趙艷麗,2004,奈米銀抗菌材料在醫療器具與生活用品中的應用,醫療衛生裝備,11
張文鉦,王廣文,2002,載銀無機抗菌劑變色抑制劑研發現狀,化工新型材料,30:23-25
蔡錢應,2003,奈米銀抗菌粒子報告書,祥大科技出版,
http://www.sdnano.com/paper/paper.htm
楊福助,丁自豪,許綜升,洪登南,2007,載銀竹碳製備及抗菌效用評估,黃埔學報,52:133-141
賴岳生,2003,奈米銀/鈀微粒之化學生合成與其特性分析之研究,
http://www.sdnano.com/paper/silverpaper.htm
Abe, I., T. Fukuhara, J. Maruyama, H. Tatsumoto, S. Iwasaki. 2001. Preparation of carbonaceous adsorbents for removal of chloroform from drinking water. Carbon. 39: 1069-1073.
Ahmad, A., P. Mukherjee, S. Senapati, D. Mandal, M.I. Khan, R. Kumar, M. Sastry. 2003. Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf. Biointerf. 28: 313-318.
Alt, V., T. Bechert, P. Steinrcuke, M. Wagener, P. Seidel, E. Dingeldein, E. Domann, R. Schnettler. 2004. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials. 25: 4383-4391.
Alzoreky, N.S., K. Nakahara. 2003. Antibacterial activity of extracts from some edible plants commonly consumed in Asia. J. Enthnopharmacology 80:223-230.
Bauer, A.W., W.M.M. Kirby, J.C. Sherris, M. Turck. 1966. Antibiotic susceptibility testing by standardized single disc method. Am. J. Clin. Pathol. 36:493-496.
Bhainsa, K.C., S.F. D’Souza. 2006. Extracellular biosynthesis of silver nanoparticles using the fungus Aspergillus fumigatus. Colloids Surf. Biointerf. 47: 160-164.
Bruchez, M., M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos. 1998. Semiconductor nanocrystals as fluorescent biological labels. Science 281: 2013-2016.
Botsford, J.L., Rivera, J., Navarez, J., Riley, R., Wright, T., Baker, R., 1997. Assay for toxic chemicals using bacteria. Bull. Environ. Contam. Toxicol. 59:1000-1009.
Chan, W.C.W., S.M. Nie. 1998. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 281: 2016-2018.
Chen, S., J. Liu, H. Zeng. 2005. Structure and antibacterial activity of silver-supporting activated carbon fibers, J. Mat. Science 40: 6223-6231.
de la Isla, A., W. Brostow, B. Bujard, M. Estevez, J.R. Rodriguez, S. Vargas, V.M. Castano. 2003. Nanohybrid scratch resistant coating for teeth and bone viscoelasticity manifested in tribology. Mat. Res. Innovat. 7: 110-114.
Edelstein, R.L., C.R. Tamanaha, P.E. Sheehan, M.M. Miller, D.R. Baselt, L.J. Whitman, R.J. Colton. 2000. The BARC biosensor applied to the detection of biological warfare agents. Biosensors Bioelectron. 14: 805-813.
Egorova, E.M., A.A. Revina, B.V. Rumyantsev, O.K. Smirnov, Z.G. Toidze, D.I. Shishkov. 2002. Stable Silver Nanoparticles in Aqueous Dispersions Obtained from Micellar Solutions. Russian J. Appl. Chem. 75. 1585-1590.
Feng, Q.L., J. Wu, G.Q. Chen, F.Z. Cui, T.N. Kim, J.O. Kim. 2000. A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, J. Biome. Mat. Res. 52: 662-668.
Gabrielson, J., M. Hart, J A. arelöv, I. Kühn, D. Mckenzie, R. Möllby. 2002. Evaluation of redox indicators and the use of digital scanners and spectrophotometer for quantification of microbial growth in microplates. J. Microbio. 50: 63-73.
Gaonkar, T.A., L.A. Sampath, S.M. Modak. 2003. Evaluation of the antimicrobial efficacy of urinary catheters impregnated with antiseptics in an in vitro urinary tract model. Infect. Control Hosp. Epidemiol. 24: 506-513.
Gardea-Torresdey, J.L., K.J. Tiemann, V. Armendariz, L. Bess-Oberto, R.R. Chianelli, J. Rios, J.G. Parsons, G. Gamez. 2000. Characterization of Cr(VI) binding and reduction to Cr(III) by the agricultural byproducts of avena monida (Oat) biomass. J. Hazard. Mat. 80: 175-188.
Gardea-Torresdey, J.L., E. Gomez, J.R. Peralta-Videa, J.G. Parsons, H. Troiani, M. Jose-Yacaman. 2003. Alfalfa sprouts: A natural source for the synthesis of silver nanoparticles. Langmuir. 19: 1357-1361.
Hamilton-Miller, J. M., S. Shah, C. Smith. 1993. Silver sulphadiazine: a comprehensive in vitro reassessment. Chemotherapy 39: 405-409.
Ibanez, J. A., Marta I. Litter, Ramon A. Pizarro. 2003. Photocatalytic bactericidal effect of TiO2 on Enterobacter cloacae Compa-rative study with other Gram (-) bacteria, J. Photochem. Photobiol. A.Chem. 157: 81-85.
Ignatova M., D. Labaye, S. Lenoir. 2003. Immobilization of silver in polypyrrole/polyanion composite coatings: preparation, characterization, and antibacterial activity. Langmuir. 19. 8971-8979.
Joerger, R., T. Klaus, C.G. Granqvist. 2000. Biologically produced silver–carbon composite materials for optically fun ctional thin-film coatings. Adv. Mat. 12: 407-409.
Kikuchi, Y., K. Sunada , T. Iyoda, K. Hashimoto, A. Fujishima. 1997. Photocatalytic bactericidal effect of TiO2 thin films: dynamic view of the active oxygen species responsible for the effect. J. Photochem. Photobiol. A. Chem. 106: 51-56.
Kim, T. N., Q. L. Feng, J. O. Kim, J. Wu, H. Wang, G. C Chen., F. Z. Cui. 1998. Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. J. Mat. Sci. 9: 129-134.
Klaus, T., R. Joerger, E. Olsson, C.G. Granqvist. 2001. Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Trends Biotechnol. 19: 15-20.
Kvitek, L., R. Prucek. 2005. The preparation and application of silver nanoparticles. J. Mat. Sci. 08 Jul.
Keleher, J., J. Bashant, N. Heldt, L. Johnson, Y. Li. 2002. Photo-catalytic preparation of silver-coated TiO2 particles for antibacterial applications. J. Microbio. Biotechnol. 18: 133-139.
Lloyd, J. R. 2003. Microbial reduction of metals and radionuclides. FEMS Microbiol. Rev. 27: 411-425.
Li, Y., P. Leung, L. Yao, Q. W. Song, E. Newton. 2006. Antimicrobial effect of surgical masks coated with nanoparticles. J. Hosp. Infect. 62: 58-63.
Liu, D., 1981. A rapid biochemical test for measuring chemical toxicity. Bull. Environ. Contam. Toxicol. 26, 145–149.
Ma, J., H. Wong, L.B. Kong, K.W. Peng. 2003. Biomimetic processing of nanocrystallite bioactive apatite coating on titanium. Nanotechnology 14:619-623.
Mah, C., I. Zolotukhin, T.J. Fraites, J. Dobson, C. Batich, B.J. Byrne. 2000. Microsphere-mediated delivery of recombinant AAV vectors in vitro and in vivo. Mol. Therapy. 1. S239.
Mahtab, R., J.P. Rogers, C.J. Murphy. 1995. Protein-sized quantum dot luminescence can distinguish between "straight", "bent", and "kinked" oligonucleotides. J. Am. Chem. Soc. 117: 9099-9100.
Margraf, H., J. Powell. 1978. Our Mightiest Germ Fighter. Sci. Digest. March: 57-60.
Mizuta, K., T. Matsumoto, Y. Hatate. 2004. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresource Technology. 95: 255-257.
Molday, R.S., D. MacKenzie. 1982. Immunospecific ferromagnetic iron dextran reagents for the labeling and magnetic separation of cells. J. Immunol Methods 52: 353-367.
Morones, J. R., J. L. Elechiguerra, A. Camacho, K. Holt, J. B. Kouri, J. T. Ramírez and M. J. Yacaman. 2005. The bactericidal effect of silver nanoparticles. Nanotechnology 16: 2346-2353.
Mukherjee, P., A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Ramani, R. Parischa, P.V. Ajaykumar, M. Alam, M. Sastry, R. Kumar. 2001a. Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew. Chem. Int. Ed. 40: 3585-3588.
Mukherjee, P., A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Parischa, P.V. Ajayakumar, M. Alam, R. Kumar, M. Sastry. 2001b. Fungus mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett. 1: 515-519.
Mukherjee, P., S. Senapati, D. Mandal, A. Ahmad, M.I. Khan, R. Kumar, M. Sastry. 2002. Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. ChemBioChem. 3: 461-463.
Nair, B., T. Pradeep, 2002. Coalescence of nanoclusters and formation of submicron crystallites assisted by Lactobacillus strains. Cryst. Growth Des. 2: 293-298.
Nam, J.M., C.C. Thaxton, C.A. Mirkin. 2003. Nanoparticles-based bio-bar codes for the ultrasensitive detection of proteins. Science 301: 1884-1886.
Park, S. J.,Y. S. Jang. 2003. Preparation and characterization of activated carbon fibers supported with silver metal for antibacterial behavior, J. Colloid Interface Sci. 261: 238-243.
Parak, W.J., R. Boudreau, M.L. Gros, D. Gerion, D. Zanchet, C.M. Micheel, S.C. Williams, A.P. Alivisatos, C.A. Larabell. 2002. Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv. Mat. 14: 882-885.
Panatarotto, D., C.D. Prtidos, J. Hoebeke, F. Brown, E. Kramer, J.P. Briand, S. Muller, M. Prato, A. Bianco. 2003. Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chemistry Biology. 10: 961-966.
Percival, S.L., P.G. Bowler,D. Russell. 2005. Bacterial resistance to silver in wound care. J. Hospital Infection. 60: 1-7.
Rivera-Utrilla, J., I. Bautista-Toledo, M. A. Ferro-García, C. Moreno-Castilla. 2001. Activated carbon surface modifications by adsorption of bacteria and their effect on aqueous lead adsorption, J. Chem. Technol. Biotechnol. 76: 1209-1215.
Salata, O.V. 2004. Applications of nanoparticles in biology and medicine. BioMed Central. 2: 1-6.
Shankar, S. S., A. Rai, A. Ahmad, M. Sastry. 2004. Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth, J. Colloid Interface Sci. 275: 496-502.
Sondi, I., B. Salopek-Sondi. 2004. Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria, J. Colloid Interface Sci. 275: 177-182.
Sondi, I., D. V. Goia, E. Matijević. 2003. Preparation of highly concentrated stable dispersions of uniform silver nanoparticles. J. Colloid Interface Sci. 260: 75-81.
Vigneshwaran, N., A.A. Kathe, P.V. Varadarajan, R.P. Nachane, R.H. Balasubramanya. 2006. Biomimetics of silver nanoparticles by white rot fungus, Phaenerochaete chrysosporium. Colloids Surf. Biointerf. 53: 55-59.
Wang, S., N. Mamedova, N.A. Kotov, W. Chen, J. Studer. 2002. Antigen/antibody immunocomplex from CdTe nanoparticle bioconjugates. Nano Lett. 2: 817-822.
Wang, J.X., L.X. Wen, Z.H. Wang. 2006. Sol-gel approach to the novel organic-inorganic hybrid composite films with ternary europium complex covalently bonded with silica matrix. Mat. Chem. Phys. 95: 89-93.
Weissleder, R., G. Elizondo, J. Wittenburg, C.A. Rabito, H.H. Bengele, L. Josephson. 1990. Ultrasmall superparamagnetic iron oxide: characterization of a new class of contrast agents for MR imaging. Radiology 175: 489-493.
Xu, X., Q. Yang, Y. Wang, H. Yu, X. Chen, X. Jing. 2006. Biodegradable electrospun poly(L-lactide) fibers containing antibacterial silver nanoparticles. J. Eur. Polym. 42: 2081-2087.
Yeo, S.Y., S.H. Jeong. 2003. Preparation and characterization of polypropylene/silver nanocomposite fibers. Polymer International. 52: 1053-1057.
Yoshida, J., T. Kobayashi. 1999a. Intracellular hyperthermia for cancer using magnetite cationic liposomes. J. Magn. Mat. 194: 176-184.
Yoshida, K., M. Tanagawa, M. Atsuta. 1999b. Characterization and inhibitory effect of antibacterial dental resin composites incorporating silver-supported materials. J. Biome. Mat. Res. 47: 516-522.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔