(3.236.214.19) 您好!臺灣時間:2021/05/10 08:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳品宏
研究生(外文):PIN-Hung Chen
論文名稱:以Nafion高分子為黏著劑的SPE水電解膜電極組之研究
指導教授:萬傑豪
指導教授(外文):Chien-Hao Wan
學位類別:碩士
校院名稱:明道大學
系所名稱:材料暨系統工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:71
中文關鍵詞:水電解電極SPE
外文關鍵詞:water electrolysisSPE
相關次數:
  • 被引用被引用:0
  • 點閱點閱:326
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
水電解製氫是一種綠色製程,同時可結合再生能源如太陽能或風能提供電解所需電力,形成一永續式再生氫能系統,然而,目前這種製氫方式成本仍然偏高且耐用性較差,主要原因是操作電位偏高且氧電極穩定性不佳,許多研究致力於找尋更佳之水電解觸媒,以有效降低操作電解電位,目前,以IrO2或RuO2為最好的氧電極觸媒,而氫電極則以鉑(Pt)為主;黏著劑種類與電極結構設計也嚴重影響電極的操作電位及穩定性,水電解常用之黏著劑為PTFE,並調成漿料以塗佈方式塗於鈦網上做成電極,另一種方式是將Ir或Ru前驅物漿料以含浸法黏附於鈦網上進行燒結來獲得IrO2或RuO2電解氧電極。
本研究以Nafion高分子(Nafion-1035、Nafion-212、Nafion-115)為水電解電極黏著劑,選用RuO2或IrO2為氧電極觸媒,並以Pt/C為氫電極觸媒,電解質為Nafion-115,如此形成的MEA以自製水電解槽(壓克力及不銹鋼材質)進行電解性能及穩定性測試,探討導電網基材、製程方式、黏著劑種類與含量、熱處理溫度、電解溫度(20、25、40、60、80℃)與操作電位(1.50~2.20V)對電解性能、法拉第效率及穩定性的影響,進而評估以Nafion高分子作為電極黏著劑的可行性。
實驗結果顯示,黏著劑含量為25%Nafion高分子搭配15%Nafion溶液可得最佳電解性能及法拉第效率,而此氧電極經160℃熱處理5小時,可獲得高穩定性的電解性能及效率(穩定性70小時);若經180℃熱處理8小時,則必需於高電位如1.80V~2.20V方可表現出高性能及穩定性的電解效率,顯示熱處理溫度愈高及時間愈長,則須於較高電位方可激發電解活性,這是由於長時間高溫熱處理使Nafion高分子軟化流動性變好,提升黏著劑的分散性,使可黏著的觸媒量增加,因而加強電極結構的穩定性,但由於180℃、熱處理8小時覆蓋觸媒表面積量較160℃、熱處理5小時多,使長時間高溫熱處理的電極,需較高電位來驅動電解。
利用不鏽鋼材質,特殊流道設計及內阻改善,所有測試電極均可在電位1.50V就可產氫,如黏著劑含量為25%搭配15%Nafion溶液之樣品於1.50V可得約0.06A/cm2的電流密度及53.2%法拉第效率。目前,可知此方式電極最低驅動電位可達1.40V。
電解操作溫度為60℃可得最佳電解性能及法拉第效率,理論上,應是溫度愈高電解性能及效率愈高,而此結果與理論預測有出入,這是因為於80℃電解溫度下,水燃料已有部份蒸發產生氣泡,致使單位時間內水燃料與觸媒接觸表面積減少,雖然溫度升高降低反應活化能,增加反應速率,但由於產生之氣泡降低水與觸媒接觸面積程度較大,故整體電解性能及法拉第效率仍是下降,使得60℃有最佳的性能表現。
關鍵詞:SPE水電解、Nafion高分子黏著劑、電解性能、法拉第效率、氫能源。
Hydrogen production by water electrolysis is a green process. Combining of water electrolysis with renewable energy such as solar energy and wind energy, forms a sustainable energy system. However, the cost of such a production system is high and the durability is also not so good mainly because of the high operating potential and the instability of the oxygen electrode. At present, many researches are dedicated to the search for better catalysts in this process in an attempt to effectively reduce the operating potential. The best catalysts for the oxygen electrode are now IrO2 and RuO2 whereas platinum is primarily used for the hydrogen electrode. The type of binder as well as the structural design of the electrode also plays an important role in determining the operating potential and stability. A common binder for water electrolysis is PTFE, which is made into a slurry and spread onto titanium to make the electrode. Another method is to mount the precursor slurry, Ir or Ru, through impregnation to the titanium to obtain the IrO2 or RuO2 electrode.
In this research, Nafion (Nafion-1035、Nafion-212、Nafion-115) is used as the binder of water electrolysis, RuO2 or IrO2 as the oxygen electrode catalyst, Pt/C as the hydrogen electrode catalyst, and Nafion-115 as electrolyte. The performance and stability of the MEA is tested in the self-made water electrolyzer made of acrylic and stand stainless steel. The influences that the materials of electrified wire fence, the process of production, the types and amounts of binders, the temperature of the thermal treatment, the temperature of electrolysis (20、25、40、60、80℃), and the electric potential impose on Faraday efficiency and stability are discussed. The data is used to evaluate the feasibility of Nafion polymer serres as binders.
According to the experiment data, the binder composed of 25 % Nafion polymer and 15% Nafion solution can reach the best performance and the optimal Faraday efficiency. If the oxygen electrode is under the thermal treatment of 160℃ for 5 hours, the optimal performance and efficiency (stability of 70 hours) can be attained. However, if it is under the thermal treatment of 180℃ for 8 hours, the high electric potential, for example 1.80V~2.20V, is necessary for high performance and stability of electrolysis efficiency. This result shows that the higher temperature and the longer period of time of thermal treatment needs higher electric potential to stimulate electrolysis. The reason is that staying under high thermal treatment for a long period of time improves the fluidity of Nafion polymer and raises the dispersity of the binder. Then the increase of coverage catalyst surface Area by this binder enhances the stability of electrode structure. The surface area of catalyst is more under 160℃ for 5 hours than under 180℃for 8 hours. Therefore, the electrode under high temperature and long period of time needs higher electric potential to motivate electrolysis.
With the help of the materials of stainless steel, the special design of flow pattern, and the improvement of internal resistance, in all the experiments electrode can produce hydrogen under the electric potential of 1.50V. If the binder is composed of 25 % Nafion polymer and 15% Nafion solution, the samples can reach around 0.06A/cm2 current density and 53.2% Faraday efficiency under 1.50V. The lowest motivating electric potential of this method is around 1.40 V.
The optimal performance and the best Faraday efficiency can be achieved at an operating temperature of 60 degrees Celsius. Theoretically, the higher the temperature, the better the performance and efficiency should become. However, the result of this experiment does not support this prediction. The reason behind this is that at 80 degrees Celsius the water fuel has partially evaporated, with the resulting bubbles reducing the contact area with electro catalyst. The overall performance of the electrolysis is thus worse than expected. This leads to my conclusion that 60 degrees Celsius is the ideal temperature.
KeyWords:SPE water electrolysis、Nafion polymer binder、electrolysis performance 、Faraday efficiency、Hydrogen energy
第一章 緒論 5
1-1 前言 5
1-2 氫氣的來源及用途 6
1-3 氫能技術的種類與特性 7
1-3-1 蒸氣重組法製氫技術(steam reforming) 8
1-3-2 部分氧化法製氫技術(partial oxidation) 9
1-3-3 水煤氣法製氫技術(coal gasification) 10
1-3-4 固態高分子水電解法製氫技術(solid polyer water splitting by electrolysis) 11
1-3-5 水光電解法製氫技術(photoelectrochemical water splitting) 12
1-4 固態高分子水電解膜電極組製氫技術 14
1-4-1固態高分子水電解膜電極組 14
1-5 文獻回顧 15
1-6 研究動機 18
第二章 原理 19
2-1 水電解原理 19
2-2 水電解製氫工作原理 19
2-2-1鹼性水電解製氫法製氫工作原理 19
2-2-2 固態高分子水電解製氫法工作原理 20
2-3 微結構分析原理 22
2-3-1 掃描式電子顯微鏡(SEM) 22
2-3-2 X-ray繞射分析(X-ray Differacation,XRD) 23
第三章 實驗方法 24
3-1 實驗藥品及材料 24
3-2 實驗設備及分析儀器 25
3-3 實驗分法 26
3-3-1 固態高分子質子交換膜前處理 26
3-3-2 純鈦導電網前處理 26
3-3-3 氣體擴散層製備 26
3-3-4 漿塗法製作氫、氧電極 26
3-3-5 網印法製作氫、氧電極 27
3-3-6 直印法方式製作氫、氧電極 28
3-3-7 轉印法製作氫、氧電極 29
3-3-8 AC impedance的測量方法與方式 29
第四章 結果與討論 35
4-1 不同導電網基材對電解性能之影響 35
4-2 黏著劑種類對電解性能之影響 36
4-3 不同製程對電解性能、法拉第效率之影響 37
4-4 黏著劑含量對電解性能、法拉第效率及阻抗之影響 38
4-5 熱處理溫度對電解性能、法拉第效率之影響 40
4-6 電解溫度對電解性能、效率及法拉第效率之影響 43
4-7 電解溫度、電位對CO2的影響 47
第五章 結論………………………………………………………………..68
參考文獻……………………………………………………………………69
參考文獻
[1].台灣因應氣候變化綱要公約資訊網 www.tri.org.tw/unfccc
[2].陳軍、袁華堂”新能源材料”,五南出版社,2004出版
[3].雷永泉、萬群、石永康,”新能源材料”,新文京開發出版股份有限公司,2004出版
[4].蕭金河,”獨立可移動式氫氣供給系統研究”,明道管理學院材料暨系統工程研究所碩士論文,p. 5~8(2006)
[5].萬傑豪、林建亨、林孟春、莊慶煌,”PVDF黏著劑含量對SPE電解性能影響之研究”,2005燃料電池國際研討會, p. 337(2005)
[6].吳俊霖,”以新穎方法於PEM表面製作奈米Ir或Pt-Ir觸媒用於URFC電催化水氧化反應之性能”,明道管理學院材料暨系統工程研究所碩士論文,p. 24~25(2008)
[7].“燃料的來源-氫”,台灣燃料電池資訊網www.tfci.org.tw(2003)
[8].Dragica Lj. Stojic, Milica P. Marceta, Sofija P. Sovilj,Scepan S.Miljanic, Journal of Power Sources, 118, 315-319 (2003)
[9].胡興中, “觸媒原理與應用”, 高立, 民91
[10].Tsutomu Oi, Yoshinori Sakaki, Journal of Power Sources
129 , 229-237, (2004)
[11].P. Millet, F. Andolfatto, R. Durand, Internation Journal of Hydrogen Energy , 21. P. 87-93(1996)
[12].Sung-DaeYim, Internationl Journal of Hydrogen Energy,30 1345-1350(2005)
[13].Tsutomu Ioroi,Kazuaki Yasuda,Zyun Siroma,Naoko Fujiwara,Yoshinori Miyazaki, Journal of Power Sources,112,258-587,(2002)
[14].郭景宗、許盈盈、蔡明璋,”固態電解質純水電解器產氫元件之設計與性能分析”,第一屆兩岸能源與環境永續發展科技研討會(2005)
[15].江右君、林建智, “以Pt和Pt-Ru觸媒進行水電解製氫效能研究”,第二屆台灣氫能與燃料電池學術研討會論文集,P283(2007)
[16].P.B.L.Chaurasia,YujiAndo,Tadayoshi Tanaka,Energy Conversion and Management,44,611-628 (2003)
[17].S. Trasatti, Electrochim. Acta ,36,225 (1991)
[18].Yu.E. Roginskaya, B. Sh. Galyamov, I.S. Belova, R.R. Shifrina, V.B. Kozhevnikov, V.I. Bystrov, Sov. Electrochem,18, 1179 (1982)
[19].B. Børresen, G. Hagen, R. Tunold, Electrochim. Acta, 47 1819 (2002)
[20].L. Liu, C. Pu, R. Viswanathan, Electrochimica Acta, 43, 3657 (1998)
[21].M. S. Wilson, S. Gottesfeld, J. Apply Electrochem, 22, 1 (1992)
[22].C. K. Witham, W. Chun, T. I. Valdez, Electrochem. Solid-State Letters, 3 497. (2000)
[23].C.S. Kim, Y.G.. Chun, D.H. Peck, D.R. Shin, Int. J. Internationl Journal of Hydrogen Energy, 23 ,1045 (1998)
[24].泓能科技股份有限公司,www.Energytech-Resources.com
[25].Raymond Liu,Wei-Hwa Her,Peter S.Fedkiw, Journal of Electrochemical Society,139, 15-23(1992)
[26].Deryn Chu Rongzhong Jiang, Jounanl of Power Sources, 80, 226-234(1999)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔