(3.236.214.19) 您好!臺灣時間:2021/05/07 12:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張啟邦
研究生(外文):Chi-Pang Chang
論文名稱:陰極電弧沉積AlTiN/CrN與CrAlSiN薄膜之微結構、機械性質與高溫氧化行為研究
論文名稱(外文):Structure, mechanical properties and high temperature oxidation behaviors of AlTiN/CrN and CrAlSiN thin films synthesized by a cathodic arc deposition process
指導教授:張銀祐
指導教授(外文):Yin-Yu Chang
學位類別:碩士
校院名稱:明道大學
系所名稱:材料暨系統工程研究所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:110
中文關鍵詞:陰極電弧沉積多層膜奈米複合薄膜硬質薄膜
外文關鍵詞:cathodic arc depositionmultilayernanocompositehard coating
相關次數:
  • 被引用被引用:20
  • 點閱點閱:1128
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗使用陰極電弧沉積系統製備AlTiN/CrN奈米多層膜及Cr50Al44Si6N奈米複合薄膜,以單晶矽晶片為基材,探討其微結構、機械性質和高溫氧化行為,在高溫氧化試驗中,將薄膜於空氣的氣氛下,實施700oC ~1000oC,持溫2小時之高溫熱處理。分析儀器使用場發射電子顯微鏡、高解析穿透式電子顯微鏡及低掠角X光繞射做微結構分析及結晶相鑑定,薄膜元素成份、化學組態及縱深分析則使用能量分散光譜儀及X光光電子能譜儀。
AlTiN/CrN薄膜的製備使用鋁鈦合金靶材(Al67Ti33)和鉻靶,為了改善薄膜的附著性,選用附著力較佳的CrN做為介層,漸進式的CrN/AlTiN多層膜為中介層。製程中使用三種靶電流比例(Al67Ti33/Cr) 60/80、70/70、80/60,分別得到不同成份比例及不同週期厚度的AlTiN/CrN薄膜。在AlTiN薄膜中加入奈米尺度的CrN膜層,形成AlTiN/CrN多層薄膜,週期厚度分別為12 nm、16 nm及17 nm,展現出之硬度及破裂韌性皆優於Al63Ti37N與CrN薄膜,其硬度的提升是因為多層膜結構抑制了晶粒的成長,有晶粒細化的效果,及其契合形式的界面。在高溫氧化試驗中,AlTiN/CrN薄膜展現出較Al63Ti37N薄膜低的氧化速率,因AlTiN/CrN薄膜在高溫下,表面會形成一層氧化鋁與氧化鉻的混合層,可有效抑制氧原子向薄膜內擴散。
Cr50Al44Si6N薄膜的製備使用陰極電弧沉積系統,搭配側面旋轉式柱狀靶材,使用鋁矽(Al88Si12)合金靶及鉻靶。Cr50Al44Si6N薄膜的硬度(41.5 GPa)遠高於CrN(23.8 GPa)薄膜,此因鋁、矽元素的加入後,形成奈米複合薄膜,強化了材料。而在高溫的環境下,Cr50Al44Si6N薄膜表面會形成一層薄且緻密的富鋁氧化層,其中包含非晶質相與奈米晶粒的氧化鋁與氧化鉻,呈現出絕佳的抗氧化能力。
Multilayered AlTiN/CrN and nanocomposite Cr50Al44Si6N thin films were deposited on silicon wafer substrates by using a cathodic arc deposition system, and the structural, mechanical properties and high temperature oxidation behaviors was studied. For the high temperature oxidation test, the films were annealed between 700oC to 1000oC in air for 2 hours. In this study, field emission scanning electron microscope, high resolution transmission electron microscope and glancing angle X-ray diffraction were used to characterize the microstructure and phase identification of the as-deposited and annealed films. The composition, chemical bonding and depth profile were evaluated by X-ray photoelectron spectroscopy and energy dispersive spectrometer.
Chromium and Al67Ti33 alloy targets used for the deposition multilayered AlTiN/CrN thin films. CrN and graded CrN/AlTiN multilayer as the interlayer to enhance better adhesion. With the different cathode current ratios (Al67Ti33/Cr) of 60/80, 70/70 and 80/60 which produced different composition and different periodic thickness of multilayered AlTiN/CrN thin films. The nano layered CrN incorporated into AlTiN thin film to form multilayered AlTiN/CrN with the periods of 12 nm, 16 nm and 17 nm, exhibited higher hardness and fracture toughness than CrN and Al63Ti37N thin films. The hardness was enhanced due to the grain refinement and the coherent interfaces between AlTiN and CrN. In the high temperature oxidation test, the multilayered AlTiN/CrN thin films showed lower oxidation rate than Al63Ti37N film due to a dense mixed oxide layer with Al2O3 and Cr2O3 on top which can retarded the diffusion of oxygen.
Cr50Al44Si6N thin film was deposited by using a cathodic arc deposition system with lateral rotating arc cathodes. Chromium and Al88Si12 cathodes were used for the deposition. The hardness value of Cr50Al44Si6N (41.5 GPa) was significantly increased compared with CrN (23.8 GPa) film due to the introduction of Al and Si to form a nanocomposite structure. Under the high temperature environment, a thin aluminum rich oxide layer formed on Cr50Al44Si6N thin film consisted of Al2O3 and Cr2O3 nano crystallites with amorphous phase. It possessed the superior oxidation resistance.
摘要 I
Abstract II
總目錄 III
圖目錄 V
表目錄 VIII
第一章 前言 1
第二章 文獻回顧 3
2.1 陰極電弧蒸鍍技術 ( Cathod Arc Evaporation, CAE ) 3
2.1.1 陰極電弧沉積技術與弧點運動 4
2.1.2 陰極電弧微粒的形成 6
2.1.3 陰極電弧沉積技術的優點 9
2.1.4 離子轟擊 9
2.2 影響鍍膜品質的因素 11
2.3 硬質薄膜強化機制 13
2.3.1 固溶強化 ( Solid solution hardening ) 13
2.3.2 晶粒細化 ( Hall-Petch relationship ) 13
2.3.3 多層膜結構 15
2.3.4 超晶格結構 15
2.4 奈米複合材料 ( Nanocomposite ) 17
2.5 硬質薄膜簡介 18
2.5.1 氮化鉻 ( CrN ) 18
2.5.2 氮化鋁鉻及氮化鋁鈦 ( CrAlN & TiAlN ) 19
2.5.3 氮化鉻矽 ( CrSiN ) 22
第三章 實驗方法 25
3.1 實驗流程 25
3.2 薄膜製備與鍍膜系統 26
3.2.1 製備AlTiN/CrN薄膜 26
3.2.2 製備CrAlSiN薄膜 28
3.3 分析儀器 30
3.3.1 場發射掃描式電子顯微鏡 ( Field Emission Scanning Electron 30
Microscope, FE-SEM ) 30
3.3.2 穿透式電子顯微鏡 ( Transmission Electron Microscope, TEM ) 33
3.3.3 X光繞射分析儀 ( X-Ray Diffractometer, XRD ) 36
3.3.3.1 殘留應力量測 37
3.3.3.2 晶粒大小計算 38
3.3.4 X光光電子能譜儀 ( X-ray Photoelectron Spectroscopy, XPS ) 39
3.3.5 歐傑電子能譜儀 ( Auger Electron Spectrum, AES ) 40
3.3.6 奈米壓痕測試 ( Nano-Indentation ) 41
3.3.7 維克氏壓痕 ( Vickers Indentation ) 43
第四章 結果與討論 45
4.1 AlTiN/CrN多層膜之微結構、機械性質與高溫氧化行為研究 45
4.1.1 X光繞射結構分析 45
4.1.2 EDS成份分析 48
4.1.3 SEM截面形貌觀察 50
4.1.4 TEM微結構與結晶相分析 55
4.1.5 高溫氧化行為及熱穩定性分析 61
4.1.6 機械性質分析 70
4.2 CrAlSiN薄膜微結構、機械性質與高溫氧化行為研究 76
4.2.1 X光繞射結構分析 76
4.2.2 EDS成份分析 79
4.2.3 SEM截面形貌觀察 80
4.2.4 TEM微結構與結晶相分析 82
4.2.5 XPS化學組態分析 85
4.2.6 高溫氧化行為及熱穩定性分析 87
4.2.6.1 Cr50Al44Si6N薄膜中鋁、矽元素對抗氧化及熱穩定性的影響 87
4.2.6.2 Cr50Al44Si6N薄膜抗高溫氧化及熱穩定性測試 96
4.2.7 機械性質分析 107
第五章 結論 109
5.1 AlTiN/CrN奈米多層膜 109
5.1.1 微結構 109
5.1.2 高溫氧化行為與熱穩定性 109
5.1.3 機械性質 109
5.2 Cr50Al44Si6N薄膜中鋁、矽元素的影響 110
5.2.1 微結構 110
5.2.2 高溫氧化行為與熱穩定性 110
5.2.3 機械性質 110
1.H.A. Jehn, Surface & Coatings Technology, 131, (2000), 433
2.Y.M. Zhou, R. Asaki, K. Higashi, W.H. Soe, R. Yamamoto, Surface & Coatings Technology, 130, (2000), 9
3.X. Zeng, S. Zhang, J. Hsieh, Surface & Coatings Technology, 102, (1998), 108
4.M. Nordin, M.Larsson, S. Hogmark, Surface & Coatings Technology, 106, (1998), 234
5.Z. Werner, J. Stanisawski, J. Piekoszewski, E.A. Levashov, W. Szymczyk, Vacuum, 70, (2003), 263
6.M. P. Wojtan, A. Karimi, O. Coddet, T. Cselle, M. Morstein, Surface & Coatings Technology, 188, (2004), 344
7.L. Shizhi, S. Yulong, and P. Hongrui, Plasma Chemistry & Plasma Processing, 12, (1992), 287
8.M. Desirens, J. Patscheider, and F. Levy, Surface & Coatings Technology, 108, (1998), 241
9.J.B. Sundgren, B.O. Johansson, S.E. Karlasson, H.T.G. Hentzell, Thin Solid Films, 105, (1983), 367
10.J. Echigoya, Z.T. Liu, A. Imamura, S. Takatsu, Thin Solid Films, 198, (1991), 293
11.C. Nouveau, M. A. Djouadi, C. Deces-Petit, P. Beer, M. Lambertin, Surface & Coatings Technology, 142, (2001), 94
12.F.H. Lu, H.Y. Chen, Thin Solid Films, 398, (2001), 368
13.M.A. Djouadi, C. Nouveau, P. Beer, M. Lambertin, Surface & Coatings Technology, 133, (2000), 478
14.C. Rebholz, H. Ziegele, A. Leyland and A. Matthews, Surface & Coatings Technology, 115, (1999), 222
15.Y.Y. Chang, S.J. Yang, D.Y. Wang, Surface & Coatings Technology, 201, (2006), 4209
16.M. Zhou, Y. Makino, Thin Solid Films, 339, (1999), 203
17.O. Knotek, M. Bohmer et al., Materials Science & Engineering A, 105, (1988), 481
18.G.S. Fox-Rabinovich, B.D. Beake, J.L. Endrino, S.C. Veldhuis, R. Parkinson, L.S. Shuster, M.S. Migranov, Surface & Coatings Technology, 200, (2006), 5738
19.J. Lin, B. Mishra, J.J. Moore, W.D. Sproul, Surface & Coatings Technology, 201, (2006), 4329
20.I.W. Park, D.S. Kang, J.J. Moore, S.C. Kwon, J.J. Rha, K.H. Kim, Surface & Coatings Technology, 201, (2007), 5223
21.P. Karvankova, A. Karimi, O. Coddet, T. Cselle, M. Morstein, Materials Research Society, 890, (2006)
22.L. Chen, Y. Du, S.Q. Wang, J. Li, International Journal of Refractory Metals &
23.Hard Materials, 25, (2007), 400
24.莊達人,VLSI 製造技術,高立圖書有限公司,(1998),158
25.楊順然,明道管理學院碩士論文,陰極電弧沉積Cr-N-C-O薄膜之微結構與機械性質之研究,(2007)
26.楊玉森,物理蒸鍍技術在3C 產業之應用趨勢簡報,金屬工業研究發展中心,(1995)
27.Y. Wang, Surface & coatings Technology, 94, (1997), 60
28.張銀祐,國立中興大學材料工程學系博士論文,陰極電弧活化沉積含金屬類鑽碳膜之製程與特性研究,(2003)
29.J. Koskinen, U. Ehrnst'en, A. Mahiout, R. Lahtinen, J.P. Hirvonen, S.P. Hannula, Surface & Coatings Technology, 62, (1993), 356
30.K. Akari, H, Tamagaki, T. Kumakiri, K. Tsuji, E. S. Koh and C.N. Tai, Surface & Coatings Technology, 43-44, (1990), 312
31.D.M. Sanders, E. A. Pyle, Vacuum Science & Technology,A5, 4, (1987), 2728
32.M. Nishibori, Surface & Coatings Technology, 52, (1992), 229
33.E. Damond, P. Jacquot, E. Denisse, G. Dervieux, Workshop of B.M.I. in Metal Industrial Center, Koashiung, (1992)
34.洪志穎,明道管理學院碩士論文,以陰極電弧沉積TiAlN/CrN多層膜機械性質研究,(2004)
35.賴冠仁,真空技術與應用,國家實驗研究院儀器科技研究中心出版,(2001)
36.H. Goretzki, P.V. Rosenstiel, S. Mandziej, Analytical Chemistry, 333, (1989), 451
37.I.W. Park , D.S. Kang, J.J. Moore, S.C. Kwon, J. J. Rha, K.H. Kim, Surface & Coatings Technology 201, (2007), 5223
38.J.W. Kim, K.H. Kim, D.B. Lee b, J.J. Moore, Surface & Coatings Technology, 200, (2006), 6702
39.H.C. Barshilia, N. Selvakumar, B. Deepthi, K.S. Rajam, Surface & Coatings Technology, 201, (2006), 2193
40.P.E. Gannon, C.T. Tripp, A.K. Knospe, C.V. Ramanaa, M. Deibert, R.J. Smith, V.I. Gorokhovsky, V. Shutthanandan, D. Gelles, Surface & Coatings Technology, 188, (2004), 55
41.Y.Y. Chang, D.Y. Wang, C.Y.Hung, Surface & Coatings Technology, 200, (2005), 1702
42.C. Ducros, F. Sanchette, Surface & Coatings Technology, 201, (2006), 1045
43.P. Yashar, W.D. Sproul, Vacuum 55, (1999), 179
44.X. Chu, S.A. Barnett, Journal of Applied Physics, 77,(1995), 4403
45.郭正次、朝春光,奈米結構材料科學,全華科技圖書股份有限公司,(2004)
46.Y.Y. Chang, D.Y. Wang, W.T. Wu, Diamond & Related Materials, 12, (2003), 2077
47.Y.Y. Chang, D.Y. Wang, Thin Solid Films, 485, (2005), 1
48.Y.Y. Chang, S.J. Yang, D.Y. Wang, Surface & Coatings Technology, 202, (2007), 941
49.L. Castaldi, D. Kurapov, A. Reiter, V. shklover, P. Schwaller, J. Patscheider, Surface & Coatings Technology, 202, (2007), 781
50.Y. Wang, Surface & Coatings Technology, 94, (1997), 60
51.K.H. Habig, Vacuum Science & Technology, A, 4, (1986), 2832
52.P.A. Dearnaley, E.M. Trent, Metals Technology, 9, (1982), 60
53.W.D. Sproul, R. Rothstein, Thin Solid Films, 126, (1985), 257
54.G. Berg, C. Friedrich, E. Broszeit, C. Berger, Surface & Coatings Technology, 97, (1997), 326
55.A. Erdemir, Surface & Coatings Technology, 54, (1992), 482
56.M.A. Nicolet, Thin Solid Films, 52, (1978), 415
57.Å .K. Rudolphi, S. Jacobson, Surface & Coatings Technology, 89, (1997), 270
58.張銀祐、楊順然、劉昱顯、汪大永,陰極電弧沈積氮化鉻鍍膜之電漿光譜分析,(2006)
59.X. T. Zeng, Journal of Vacuum Science & Technology, A17, (1999), 1991
60.J.J. Nainaparampil, J.S. Zabinski, A. Korenyi-Both, Thin Solid Films, 333, (1998), 88
61.S. Ulrich, S. Sattel, Thin Solid Films, 437, (2003), 164
62.A. García-Luis, M. Brizuela, J.I. Oñate, J.C. Sánchez-López, D. Martínez -Martínez, C. López-Cartes, A. Fernández, Surface & Coatings Technology, 200, (2005), 734
63.J.H. Park, W.S. Chung, Y.-R. Cho, K.H. Kim, Surface & Coatings Technology, 188, (2004), 425
64.E. Martinez, R. Sanjines, A. Karimi, J. Esteve, F. Lévy, Surface & Coatings Technology,180, (2004), 570
65.B. Rother, H. Kappl, Surface & Coatings Technology, 96, (1997), 163
66.J. Almer, M. Oden, G. Hakansson, Thin Solid Films, 385, (2001), 190
67.S.H. Yao, Y.L. Su, Wear, 212, (1997), 85
68.M. Cekada, P. Panjan, B. Navinsek, F. Cvelbar, Vacuum, 52, (1999), 461
69.R. Saha, R.B. Inturi, J.A. Barnard, Surface & Coatings Technology, 82, (1996), 42
70.J.N. Tan, J.H. Hsieh, Surface & Coatings Technology, 167, (2003), 154
71.F. Regent, J. Musil, Surface & Coatings Technology, 142, (2001), 146
72.JEOL, JSM-7000F, Instructions, (2004)
73.張銀祐,掃描式電子顯微鏡能量散佈光譜儀分析技術操作訓練說明會,(2007)
74.林智仁、羅聖全,場發射穿透式電子顯微鏡簡介,工業材料雜誌,201, (2003)
75.羅聖全、江正誠、林智仁、陳淑真、林麗娟、洪健龍,新世代場發射穿透式電子顯微鏡應用在工研院奈米檢測研究之概況,工業材料雜誌,115, (2004)
76.X光繞射原理與材料結構分析,中國材料科學學會,(2004)
77.C. Mendibide, P. Steyer, C. Esnouf, P. Goudeau, D. Thiaudiere, M. Gailhanou, J. Fontaine, Surface & Coatings Technology, 200, (2005), 165
78.P. Villain, P.-O. Renault, P. Goudeau, K.F. Badawi, Thin Solid Films, 406, (2002), 185
79.B.E.Warren, X-Ray Diffraction, (1969)
80.S.P. Murarka, Metallization Theory and Practice for VLSI and ULSI, (1993), 25
81.汪建民,材料分析,中國材料科學學會出版,(2004)
82.C.S. Wang, J. Shiea, Applications of Multiple-Channel Electrospray Ionization Sources for Biological Sample Analysis, (1997)
83.凌永健, 二次離子質譜儀, 科儀新知, (1989)
84.凌永健, 離子束質譜術的原理與應用, 科儀新知, (1990)
85.M. Korsunsky, MR. Mcgurk, S. J. Bull, T. F. Page, Surface & Coatings Technology, 99, (1998), 171
86.丁志華,管正平,黃新言,戴寶通,奈米壓痕量測系統簡介,國家奈米元件實驗室
87.X.Z. Ding, X.T. Zeng, Y.C. Liu, F.Z. Fang, G.C. Lim, Thin Solid Films, 516, (2008), 1710
88.M. Jilek, T. Cselle, P. Holubar, M. Morstein, M. Veprek-Heijman, S. Veprek, Plasma Chemistry & Plasma Processing, 24, (2004), 493
89.M. Panjan, S. Šturm, P. Panjan, M. ekada, Surface & Coatings Technology, 202, (2007), 815
90.S.K. Tien, C.H. Lin, Y.Z. Tsai, J.G. Duh, Surface & Coatings Technology, 202, (2007), 735
91.姚寶順,反應濺鍍奈米結構氮化鋁鈦/氮化矽複合薄膜之研究,國立成功大學材料科學及工程研究所博士論文,(2004)
92.S. Veprek, S. Reiprich, and Li Shizhi, Applied Physics Letters, 66, (1995), 2640
93.S. Veprek, S. Reiprich, Thin Solid Films, 268, (1995) , 64
94.S. Veprek, Thin Solid Films, 297, (1997), 145
95.S. Veprek, Thin Solid Films, 317, (1998), 449
96.D. Rafaja, M. Dopita, M. Růžička, V. Klemm, D. Heger, G. Schreiber, M. Šíma, Surface & Coatings Technology, 201, (2006), 2835
97.M. Dopita, D. Rafaja, Ch. Wüstefeld, M. Růžička, V. Klemm, D. Heger, G. Schreiber, M. Šíma, Surface & Coatings Technology, 202, (2008), 3199
98.Y. Makino, Surface & Coatings Technology, 193, (2005), 185
99.A. Sugishima,H. Kajioka, Y. Makino, Surface & Coatings Technology, 97, (1997), 590
100.J.A. Thornton, Annual Review of Materials Science, 7, (1977), 239
101.C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Muilenberg, Hand book of X-ray photoelectron spectroscopy, Perkin-Elmer Corporation, Physical Electronics Division, Eden Prairie, Minn. 55344, (1979)
102.G.E. McGuire, G.K. Schweitzer, T.A. Carlson, Inorg. Chem. 12, (1973), 2451
103.T. Goto, T. Hirai, Journal of Materials Science, 7, (1988), 548
104.Y.M. Shulg'a, V.N. Troitskii, M.I. Aivazov, Y.G. Borodk'o, Zh. Neorg. Khimii 21, (1976), 2621
105.J.A. Taylor, J.W. Rabalais, J. Chem. Phys. 75, (1981), 1735
106.G.M. Ingo, N. Zacchetti, High Temperature Science, 28, (1990), 137
107.I. Olefjord, H.J. Mathieu, P. Marcus, Surface & Interface Analysis, 15, (1990), 681
108.G.C. Allen, M.T. Curtis, A.J. Hooper, P.M. Tucker, Journal of the Chemical Society Dalton Transactions, 1677, (1973)
109.Y.L. Yan, M.A. Helfand, C.R. Clayton, Applied Surface Science, 37, (1989), 395
110.A.K. Dua, V.C. George, R.P. Agarwala, Thin Solid Films, 165, (1988), 163
111.C.D. Wagner, D.E. Passoja, H.F. Hillery, T.G. Kinisky, H.A. Six, W.T. Jansen, J.A. Taylor, Journal of Vacuum Science & Technology, 21, (1982), 933
112.I. Montero, L. Galan, E. de la Cal, J.M. Albella, J.C. Pivin, Thin Solid Films, 193, (1990), 325
113.K. Kishi, S. Ikeda, Bulletin of the Chemical Society Japan, 46, (1973), 341
114.D. R. Gaskell, Introduction to the thermodynamics of materials, Taylor & Francis Group
115.O. Nishimura, K. Yabe, M.J. Iwaki, Journal of Electron Spectroscopy & Related Phenomena, 49, (1989), 335
116.M. Zhu, M. Li, Y. Zhou, Surface & Coatings Technology, 201, (2006), 2878
117.Y.Y. Chang, D.Y. Wang, C.Y. Hung, Surface & Coatings Technology, 200, (2005), 1702
118.S.J. Bull, A.M. Jones, Surface & Coatings Technology, 78, (1996), 173
119.C.H. Ma, J.H. Huang, H. Chen, Thin Solid Films, 418, (2002), 73
120.S. Zhang, D. Sun, Y. Fu, H. Du, Surface & coatings Technology, 198, (2005), 74
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔