(44.192.10.166) 您好!臺灣時間:2021/03/06 03:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:彭裕賢
研究生(外文):Yu-Hsien Peng
論文名稱:蟻群最佳化演算法應用於高速工具機最佳化設計
論文名稱(外文):Optimization for High-Speed Machining Design Using Ant Colony Optimization
指導教授:王妙伶王妙伶引用關係
指導教授(外文):Miao-Lin Wang
學位類別:碩士
校院名稱:明新科技大學
系所名稱:工程管理研究所
學門:工程學門
學類:工業工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:71
中文關鍵詞:蟻群最佳化演算法組合最佳化問題高速主軸系統第一自然頻率
外文關鍵詞:Ant Colony Optimization AlgorithmCombinatorial Optimization ProblemsHigh-Speed Spindle SystemFirst Mode Nature Frequency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:222
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
現今企業為了在全球的激烈競爭下求生存,對於每一項作業或任務都必須追求最佳效率,並且在最短的時間生產滿足顧客所需要的產品或服務。高速切削工具機產業為了保持競爭力,也須縮短產品設計階段在找尋最佳設計變數的時間,本研究以蟻群最佳化(Ant Colony Optimization)演算法作為加速搜尋最佳解的方法。
蟻群最佳化演算法在解決一些困難的組合最佳化問題(Combinatorial Optimization Problems)已有相當的成效。在1991年被Dorigo等學者將ACO演算法成功的應用在旅行者問題之後,陸續有更多的學者引用此方法應用在不同的困難組合最佳化問題上,並得到相當不錯的績效。
本研究主要藉由蟻群最佳化演算法為設計架構,在分析高速主軸系統之軸承位置對於第一自然頻率的影響,並以隨機區域搜尋的方式搜尋第一自然頻率,依據每一次的遞迴所產生的最佳解來當作下一次遞迴的初始值來達到加速最佳化設計變數的產生進而縮短產品開發時間。
在本研究數值分析結果發現,本研究之MACO演算法在搜尋四個設計變數的組合最佳化問題,探討五個模式所搜尋的第一次自然頻率以及總時間,所得最佳的設計數據依序為162.93、286.16、552.21與568.21mm,最佳解為1009.860 Hz,且軸承位置對於FMNF幾乎沒有交互作用的產生。並根據敏感度分析結果顯示,增加初始預負荷將可提高FMNF的值。
Nowadays the enterprise in order to strives for the survival under the global steep competition, they must pursue the best efficiency regarding each work or the duty, and the production satisfies the product or the service which the customer needs in the shortest time. The high-speed cutting machine industry in order to maintain the competitive ability must shorten time of products design phase look for optimum design parameter, This research develops the algorithm by the ant colony optimization to take the acceleration search best solution.
The Ant Colony Optimization algorithm solves some difficult combinatorial optimization problems having a suitable effect already. After being applied ACO algorithm successfully to traveling salesperson problem by such scholars as Dorigo,etc. on the 1991 year, more scholars quote and use this method getting the pretty good performance on different difficulty combinatorial optimization problems.
Research perform by ant colony optimization algorithm as project construction, and analyse bearing position of high-speed motorized spindle systems influence in first mode natural frequency, and search the first mode natural frequency by the way of searching in the random area, the starting value which hands over has the best solution treats as which based on each next time, achieved the acceleration optimization design variable the production then reduces the product development time.
This research numerical analysis result discovery, MACO algorithms of this research performs in the combinatorial optimization problem of searching four design parameters, and discusses five patterns searches for first mode nature frequency and total time, and obtained the best design data in order is 162.93, 286.16, 552.21 and 568.21 mm, and the best solution is 1009.860 Hz. And the bearing position nearly does not have the correlation regarding FMNF the production. Demonstrated according to the sensitivity analysis result that increase initial preload might enhance FMNF’s value.
中文摘要 ..................................................i
英文摘要 .................................................ii
誌謝 ....................................................iii
目錄 .....................................................iv
表目錄 ..................................................vii
圖目錄 .................................................viii
符號彙編 .................................................ix
第一章 緒論 ..............................................1
1.1 研究背景 .............................................1
1.2 研究動機 .............................................2
1.3 研究目的 .............................................2
1.4 研究流程架構 .........................................3
第二章 文獻探討 ..........................................5
2.1 工具機設計相關文獻 ...................................5
2.2 主軸系統動態模型 .....................................6
2.3 最佳化設計 ...........................................7
2.4 螞蟻族群最佳化演算法 .................................9
第三章 高速主軸系統 .....................................14
3.1 高速主軸系統 ........................................14
3.1.1 FEM整合模型 ......................................14
3.2 設計變數對動態特性的影響 ............................17
第四章 研究方法 .........................................20
4.1 ACO通用啟發式演算法 .................................20
4.2 MACO演算法架構說明 ..................................21
4.2.1 費洛蒙更新規則 ...................................23
第五章 最佳化模型建立 ...................................24
5.1 最佳化問題定義 ......................................24
5.1.1 目標函數 .........................................25
5.1.2 設計變數 .........................................25
5.1.3 限制條件 .........................................26
5.2 建構最佳化模式 ......................................27
第六章 數值分析與驗證 ...................................29
6.1 設計變數對FMNF的影響 ................................29
6.2 MACO演算法搜尋最佳FMNF ..............................32
6.2.1 模式一:MACO演算法搜尋Max FMNF ...................32
6.2.2 模式二:MACO演算法之每次迴圈降低最大跳躍距離 .....34
6.2.3 模式三:MACO演算法之迴圈次數增加至20次 ...........36
6.2.4 模式四:MACO演算法之螞蟻數量增加至625隻 ..........38
6.2.5 模式五:MACO演算法之變更初始值位置 ...............40
6.2.6 結論 .............................................41
6.3 敏感度分析 ..........................................42
第七章 結論與未來研究方向 ...............................44
7.1 結論 ................................................44
7.2 未來研究方向 ........................................44
參考文獻 .................................................46
附錄ㄧ ...................................................51
附錄二 ...................................................56
作者簡介 .................................................58
[1]. Inc. Gardner Publication, 2007, "The 2007 world machine-tool output and consumption survey".
[2]. 張錫晴與蔡垂錫, 2000, "主軸特性對高速切削加工之影響", 機械工業雜誌, 三月.
[3]. 張燦輝、許日榮、古有杉與陳冠文, 2000, "並聯式機構工具機之發展", 機械工業雜誌, PP.104-116.
[4]. http://www.mmsonline.com/.
[5]. 陳炘鏞、黃榮華與楊錫凱, 2006, "熱配馬達轉子對轉軸動態特性之影響與其有限元素建模之探討", Journal of Technology, Vol.21, No.1, PP.61-67.
[6]. 洪瑞斌與何祖璇 編著, 1997, "工具機", 高立圖書有限公司.
[7]. 廖天志、黃韋倫、陳金璋與黃敬洲, 2004, "工具機主軸技術探討與未來展望" ,工具機專刊, PP. 73-89.
[8]. 張恩生, 2000, "高速主軸之技術發展與應用", 機械工業雜誌, PP.144-148.
[9]. Salomom, C., 1931, "Verfahren zur Bearbeitung von Metallen oder bei einer Bearbeitung durch Schneidende Werkzeuge sich ahnlich Verhaltenden Werkstoffen", Deutschpatente Nr.523594.
[10]. 黃鴻傑, 2000, "高速加工之發展與趨勢", 機械工業雜誌, PP.209-212.
[11]. Komanduri, R., McGee, J., Thompson, R.A., Covy, J.P., Truncale, F.J., Tipnis, V.A., Stach, R.M. and King, R.I., 1985, "On a methodology for establishing the machine tool system requirements for high-speed/high-throughput machining", Journal of Engineering for Industry, Transactions of the ASME 107, PP.316-324.
[12]. Kaufeld, M., 1990, "High-Speed Milling From a User's and Machine Builder's Viewpoint", Werkstatt and Betrieb, Vol.123, No.10, PP.797-801.
[13]. 左培倫, 2006, "工具機產業的過去、現在及未來", 機械工業雜誌, PP.44-50.
[14]. Teresko, J., 2002, "Technologies of the year".
[15]. 陳政雄與林呈彰, 1998, "工具機高速主軸之發展與技術問題" ,機械月刊, PP. 244-256.
[16]. 陳正宗, 1992, "邊界元素法", 新世界台北市.
[17]. Nelson, H.D. and McVaugh, J.M., 1976, "The dynamics of rotor-bearing systems using finite elements", Journal of Engineering for Industry, Transactions of the ASME, Vol.93, PP.593–600.
[18]. Zorzi, E.S. and Nelson, H.D., 1977, "Finite element simulation of rotor-bearing systems with internal damping", Journal of Engineering for Power, Transactions of the ASME, Vol.7, PP.1–76.
[19]. Nelson, H.D., 1980, "A finite rotating shaft element using Timoshenko Beam Theory", Journal of Mechanical Design, Transactions of the ASME, Vol.102, PP.793–803.
[20]. Wang, W.R. and Chang, C.N., 1994, "Dynamic analysis and design of a machine tool spindle-bearing system", Journal of Vibration and Acoustics, Transactions of the ASME, Vol.116, PP.280–285.
[21]. Lantto, E., 1997, "Finite element model for elastic rotating shaft", ACTA Polytechnica Scandinavica, Electrical Engineering Series, Vol.88, PP.1–73.
[22]. Jorgensen, B.R. and Shin, Y.C., 1998, "Dynamics of spindles-bearing systems at high speeds including cutting load effects", Journal of Manufacturing Science and Engineering, Vol.120, PP.387–394.
[23]. Lin, C.W., Tu, J.F. and Kamman, J., 2003, "An integrated thermo-mechanical -dynamic model to characterize motorized machine tool spindles during very high speed rotation", International Journal of Machine Tools and Manufacture, Vol.43, Issue 10, PP.1035–1050.
[24]. Bossmanns, B. and Tu, J.F., 1999, "Thermal model for high speed motorized spindles", International Journal of Machine Tools and Manufacture, Vol.39, PP.1345-1366.
[25]. Bossmanns, B. and Tu, J.F., 2001, "A power flow model for high speed motorized spindles—heat generation characterization", ASME Journal of Manufacturing Science and Engineering, Vol.123, PP.494–505.
[26]. Lin, C.W. and Tu, J.F., 2002, "Experimental studies of high speed thermo- mechanical-dynamic behaviors of motorized machine tool spindles", in: D. Dudzinski, A. Molinari, H. Schulz (Eds.), Metal Cutting and High Speed Machining, Kluwer Academic/Plenum Publishers.
[27]. Lin, C.W. and Tu, J.F., "Analytical Machining Stability Prediction of High-Speed Milling Cosidering High-Speed Effects", Submitted to Journal of Manufacturing Processes.
[28]. Papalambros, P.Y. and Wilde, D.J., 2004, "Principles of Optimal Design-second edition", Cambridge University Press.
[29]. 徐業良, 2005, "Optimal Design Laboratory", 元智大學機械所.
[30]. 劉惟信 編著, 1996, "機械最佳化設計", 全華科技圖書股份有限公司.
[31]. 王榆銜、王登彥與施明璋, 2007, "汽車液壓避震器最佳阻泥之設計", 機械月刊 , PP.34-45.
[32]. 王政斌與陳定宇, 1999, "工具機補強肋之尺寸和形勢最佳化設計", 機械月刊, PP.456-465.
[33]. 陳坤男與蔡智昇, 2005, "新型原子力顯微鏡探針懸臂之最佳化設計", 東南學報, PP.201-210.
[34]. Dorigo, M., Maniezzo, V. and Colomi, A., 1991a, "Positive feedback as a search strategy", Technical Report No.91-016, Politecnico di Milano, Italy.
[35]. Dorigo, M. and Stutzle, T., 2004, "Ant colony optimization", Cambridge, Mass MIT Press.
[36]. Blum, C., 2005, "Ant colony optimization: Introduction and recent trends", Physics of Life Reviews, Vol.2, PP.353-373.
[37]. Dorigo, M., Maniezzo, V. and Colorni, A., 1991b, "The Ant System: An autocatalytic optimizing process", Technical report 91-016 revised, Dipartimento di Elettronica, Politecnico di Milano, Milan.
[38]. Maniezzo V., Colorni A. and Dorigo M., 1994, "The Ant System applied to the quadratic assignment problem", Technical Report IRIDIA/94-28, IRIDIA, Université Libre de Bruxelles, Belgium.
[39]. Gambardella, L.M. and Dorigo, M., 2000, "Ant Colony System hybridized with a new local search for the sequential ordering problem", INFORMS Journal on Computing, Vol.12, PP.237–255.
[40]. Gambardella, L.M. and Dorigo, M., 1997, "HAS-SOP: An hybrid Ant System for the sequential ordering problem", Technical report IDSIA-11-97, IDSIA, Lugano, Switzerland.
[41]. Lourenco, H.R., Martin, O. and Stützle, T., 2002. "Iterated local search. In F. Glover & G. Kochenberger (Eds.)", Handbook of Metaheuristics, Vol.57 of International Series in Operations Research & Management Science, Norwell, MA, Kluwer Academic Publishers, PP.321–353.
[42]. Stützle, T., 2006, "Iterated local search for the quadratic assignment problem", European Journal of Operational Research, Vol.174, PP.1519–1539.
[43]. Toksari, M.D., 2006, "Ant colony optimization for finding the global minimum", Applied Mathematics and Computation, Vol.176, PP.308-316.
[44]. Toksari, M.D., 2007, "A heuristic approach to find the global optimum of function", Computational and Applied Mathematics, Vol.209, PP.160-166.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
系統版面圖檔 系統版面圖檔