(18.210.12.229) 您好!臺灣時間:2021/03/05 12:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊俊庭
論文名稱:以電透析醱酵整合程序改善乳酸生產
論文名稱(外文):Enhancemene of Lactic Acid Production by Electrodialysis Fermentation Integration process
指導教授:王 峻 賢
學位類別:碩士
校院名稱:明新科技大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2007
畢業學年度:96
語文別:中文
論文頁數:165
中文關鍵詞:電透析醱酵掃流式薄膜微過濾兩極性膜電透析酵素水解玉米澱粉
外文關鍵詞:electrodialysis fermentationcreeping-flow membrane microfiltrationelectrodialysis stack with bipolar membrane (EDBM)enzymatic hydrolysis of corn starch
相關次數:
  • 被引用被引用:0
  • 點閱點閱:401
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:41
  • 收藏至我的研究室書目清單書目收藏:2
乳酸醱酵產品對於乳酸菌生長具有嚴重的抑制作用,本研究以並聯掃流式微過濾膜組連續地自醱酵液中移除乳酸鹽,同步串聯結合三室型兩極性膜電透析槽再生與濃縮乳酸,探討乳酸產品產量的提高效率。先以酵素水解玉米澱粉生產葡萄糖;取525g 玉米澱粉與0.06g氯化鈣,加入四頸燒瓶反應器中(pH 6.5),經由糊化、糖化、液化;得到葡萄糖批次產量為280.39 g/L。其次,以葡萄糖作為純菌株Lactobacillus fermentum的碳源,在桌上型醱酵槽中進行乳酸醱酵,醱酵條件以動力學探討乳酸菌比生長速率所獲得的最佳菌株生長條件下操作,操作條件為200rpm, 溫度30℃, pH 6.8, DO 50%。樣品分析條件如下:採用正相層析管柱分析葡萄糖濃度,採用逆相層析管柱分析乳酸鈉、乳酸、醋酸鈉與醋酸濃度,菌株濃度以60℃下12 hr 烘乾稱重測定。醱酵後得到乳酸鹽批次產量為263g/L。醱酵中同步連續地將醱酵液經過掃流式過濾系統移除醱酵液中的乳酸產品,菌種與未反應基質回流至醱酵槽中繼續乳酸醱酵;掃流式薄膜過濾液進行批次兩極性膜電透析,再生並濃縮乳酸,同時產生副產品—氫氧化鈉。得到產鹼室電流效率為87.65%,產酸室(基於乳酸)電流效率為62.8%。總而言之,乳酸醱酵配合薄膜過濾,可以將乳酸產量提高32.7%。
Abstract — The bioproduct has a serious inhibition effect on the specific growth rate of the species in a lactate fermentation. The creeping-flow microfiltration system was employed in parallel in this investigation to remove the lactate from the broth, and accompanied with a three-compartment four-pair of electrodialysis stack with bipolar membrane (EDBM) in series to regenerate and concentrate the lactic acid simultaneously. The objective of this study is to enhance the lactic acid production. The corn starch was hydrolyzed enzymatically for glucose production at first. The raw material,525g of corn starch and 0.06g of sodium chloride, were added into a four-neck flask at pH 6.5, through pasteurization, saccharification, and liquefaction, 280.39 g L-1 of glucose yield was obtained. The glucose was used as the carbon source of the pure species, Lactobacillus fermentum in a bench-scale of chemostat for lactate fermentation, operated under the optimal condition, obtained by the kinetic study, as follows: 200rpm, 30℃, pH 6.8, DO 50%. The normal phase chromatography (NPC) column was used for the measurement of the glucose concentration, and the reverse phase chromatography (RPC) column for the measurement of sodium lactate, lactic acid, sodium acetate, and acetic acid concentrations. The dry cell weight of the microorganism concentration was measured by drying-out of a sample at 60 °C in the oven for 12 hrs. A batch yield of 263g L-1 of lactate was obtained in the fermentation. The lactate was removed away from the broth by a creeping-flow microfiltration system simultaneously, and concentrated and regenerated by a batch operation in an EDBM. The species and the unreacted medium were recycled back to the fermentor. The current efficiencies in both of the base (based on sodium hydroxide) and acid (based on lactic acid) compartments are 87.65% and 62.8%, respectively. Generally speaking, the lactate fermentation accompanied with the membrane microfiltration will enhance 32.7% of the yield..
目錄

中文摘要 i
英文摘要 ii
致謝 iii
目錄 iv~viii
表目錄 ix~xii
圖目錄 xiii~xvi
第一章 緒論 1
1.1緣起與研究目的 2
1.1.1緣起 ..2
1.1.2研究目的 2~3
第二章 理論 4
2.1原理 4
2.2理論部分 5
2.2.1基質濃度效應(Substrate effect)—Andrews model 5
2.2.2溫度效應(Temperature effect)—Arrhenius equation 5
2.2.3 酸鹼度(pH)效應(pH effect)—Michaelis pH Function 5
2.3電流效率之估算 6
第三章 材料與方法 7
3.1 實驗方法 7
3.1.1菌培養實驗步驟 7
3.1.2 動力實驗步驟 8
3.1.3 批次醱酵實驗步驟 8~9
3.1.4過濾實驗步驟 9~10
3.1.5過濾清洗步驟 10~11
3.1.6電透析實驗步驟 11~12
3.2 材料 13
3.2.1實驗菌種 13
3.2.2實驗藥品 13~15
3.2.3玻璃器材 15
3.2.4.實驗儀器 16~19
3.2.5.實驗設備 20~24
3.2.6.實驗器材 25~26
第四章 結果 27
4.1玉米澱粉水解 27
4.1.1玉米澱粉水解葡萄糖流程 27
4.1.2玉水澱粉水解數據 28~29
4.2 乳酸鈉與乳酸之擴散實驗 30
4.2.1乳酸鈉與乳酸於陰、陽離子膜之擴散實驗 30~33
4.3兩極性膜電透析 34
4.3.1兩極性膜電透析正接與逆接測定 34~35
4.3.2兩極性膜電透析-電流效率與電流密度 36
4.3.3兩極性膜電透析-電流效率與濃度 37~38
4.3.4兩極性膜電透析-電流效率與溫度 39~40
4.3.5兩極性膜電透析-電流效率與流速 41~42
4.4醱酵槽批次醱酵 43
4.4.1葡萄糖濃度對乳酸鹽產量之影響 43
4.4.2酵母抽出物濃度對乳酸鹽產量之影響 44
4.5醱酵與電透析 45
4.5.1批次醱酵乳酸鹽產量 (葡萄糖模擬液) 45~46
4.5.2批次醱酵對乳酸鹽產量 (玉米澱粉水解液) 47~48
4.5.3批次醱酵連接掃流式過濾系統乳酸鹽產量 49~50
4.5.4批次醱酵連接掃流式過濾系統與電透析乳酸鹽產量
(葡萄糖模擬液) 51~52
4.5.5批次醱酵連接掃流式過濾系統與電透析乳酸鹽產量
(玉米澱粉水解液) 53~54
4.6.6醱酵-兩極性膜電透析之電流效率(二室型二對膜) 56
4.6.7醱酵-兩極性膜電透析之電流效率(二室型六對膜) 57
4.6.8醱酵-兩極性膜電透析之電流效率(三室型四對膜) 58
第五章 討論 59
5.1乳酸菌之比生長動力模式 59
5.2酵素水解玉米澱粉生成葡萄糖之影響 60~61
5.3葡萄糖濃度對乳酸鹽產量之影響 62~63
5.4酵母抽出物對乳酸鹽產量之影響 64
5.5三種不同醱酵製程,估算其當量乳酸產量 65
5.6有、無過濾乳酸醱酵對乳酸菌產率係數之影響 66~68
5.7電透析 68
5.7.1陰、陽離子膜之擴散係數 68
5.7.2不同膜室與膜對之電流效率影響 69~70
第六章 結論 71
第七章 參考文獻 72~75
附錄A 校正曲線 77
A.1 Glucose校正曲線(1) 77
A.2 Glucose校正曲線(2) 78
A.3乳酸校正曲線 79
A.4乳酸鈉校正曲線 80
附錄B 動力實驗數據 81
B.1 pH=7.0,20℃下,不同乳酸菌基質濃度效應動力實驗數據 81~86
B.1.1 Glucose 10g/L實驗數據 81
B.1.2 Glucose 30g/L實驗數據 82
B.1.3 Glucose 60g/L實驗數據 83
B.1.4 Glucose 100g/L實驗數據 84
B.1.5 Glucose 140g/L實驗數據 85
B.1.6 20℃下基質濃度效應動力學模式圖 86
B.2 pH=7.0,25℃下,不同乳酸菌基質濃度效應動力實驗數據 87~92
B.2.1 Glucose 10g/L實驗數據 87
B.2.2 Glucose 30g/L實驗數據 88
B.2.3 Glucose 60g/L實驗數據 89
B.2.4 Glucose 100g/L實驗數據 90
B.2.5 Glucose 140g/L實驗數據 91
B.2.6 25℃下基質濃度效應動力學模式圖 92
B.3 pH=7.0,30℃下,不同乳酸菌基質濃度效應動力實驗數據 93~98
B.3.1 Glucose 10g/L實驗數據 93
B.3.2 Glucose 30g/L實驗數據 94
B.3.3 Glucose 60g/L實驗數據 95
B.3.4 Glucose 100g/L實驗數據 96
B.3.5 Glucose 140g/L實驗數據 97
B.3.6 30℃下基質濃度效應動力學模式圖 98
B.4 pH=7.0,35℃下,不同乳酸菌基質濃度效應動力實驗數據 99~114
B.4.1 Glucose 10g/L實驗數據 99
B.4.2 Glucose 20g/L實驗數據 100
B.4.3 Glucose 30g/L實驗數據 101
B.4.4 Glucose 40g/L實驗數據 102
B.4.5 Glucose 50g/L實驗數據 103
B.4.6 Glucose 60g/L實驗數據 104
B.4.7 Glucose 70g/L實驗數據 105
B.4.8 Glucose 80g/L實驗數據 106
B.4.9 Glucose 90g/L實驗數據 107
B.4.10 Glucose 100g/L實驗數據 108
B.4.11 Glucose 120g/L實驗數據 109
B.4.12 Glucose 140g/L實驗數據 110
B.4.13 Glucose 160g/L實驗數據 111
B.4.14 Glucose 180g/L實驗數據 112
B.4.15 35℃下基質濃度效應動力學模式圖 113~114
B.5 pH=7.0,40℃下,不同乳酸菌基質濃度效應動力實驗數據 115~120
B.5.1 Glucose 10g/L實驗數據 115
B.5.2 Glucose 30g/L實驗數據 116
B.5.3 Glucose 60g/L實驗數據 117
B.5.4 Glucose 90g/L實驗數據 118
B.5.5 Glucose 140g/L實驗數據 119
B.5.6 40℃下基質濃度效應動力學模式圖 120
B.6各溫度下乳酸菌之比生長速率實驗數據 121~122
B.7 30℃,Glucose 60g/L下,乳酸菌pH效應動力實驗 123~125
附錄C 乳酸批次醱酵--葡萄糖濃度效應數據 126~135
C.1 60g/L葡萄糖批次醱酵數據 126
C.2 80g/L葡萄糖批次醱酵數據 128
C.3 100g/L葡萄糖批次醱酵數據 130
C.4 120g/L葡萄糖批次醱酵數據 132
C.5 140g/L葡萄糖批次醱酵數據 134
附錄D 乳酸批次醱酵--酵母抽出物濃度效應數據 136~145
D.1 5g/L酵母抽出物批次醱酵數據 136
D.2 10g/L酵母抽出物批次醱酵數據 138
D.3 20g/L酵母抽出物批次醱酵數據 140
D.4 30g/L酵母抽出物批次醱酵數據 142
D.5 40g/L酵母抽出物批次醱酵數據 144
作者簡介 146
第七章 參考文獻
1. Arasaratnam, V., A. Senthuran and K. Balasubramaniam. 1996. Supplementation of whey with glucose and different nitrogen sources for lactic acid production by Lactobacillus delbrueckii. Enzyme Microb. Technol. 19 : 482-486.
2. Boyaval,P.,Corre,C.,and Terre,S.,“Continuous Lactic Acid Fermentation Wish Concentrated Product Recovery by Ultrafiltration and Electrodialysis.” Biotechnol.Letter, 9(3),207-212(1987)
3. Brown, W. V. and E. B. Collins. 1977. End products and fermentation balances for lactic streptococci grown aerobically on low concentrations of glucose. Appl. Environ. Microbiol. 33: 38-42.
4. Bury D., P. Jelen and K.Kimura. 1998. Whey protein concentrate as a nutrient supplement for lactic acid bacteria. Int. Dairy Journal. 8 :149-151.
5. Chen,D.-H.,Wang,S.-S.,and Huang,T.-C.,“Separation of Phenylacetic Acid, 6-Aminopenicillanic Acid and Penicillin G wish Electrodialysis under Constant Current.” J.Chem.Tech. Biotechnol., 64, 284-292(1995)
6. Chiarini, L., L. Mara and S. Tabacchioni. 1992. Influence of growth supplements on lactic acid production in whey ultrafiltrate by Lactobacillus helveticus. Appl. Microbiol. Biotechnol. 36:461-464.
7. Chukwu,U.N ,and Cheryan,M.,“Electrodialysis of Acetate Fermentation Broths.” Appl. Biochem. Biotechnol.,77-79, 485-499 (1999)
8. Collins, E. B. 1972. Biosynthesis of flavor compounds by microorganisms. J. Dairy Sci. 55: 1022-1028
9. Daniel, B., and Gwenael, G., “Modification of ion-exchange membrane used forseparation of protons and metallic cations and characterization of the membrane by current-voltage curves,” Journal of Colloid and Interface Science, Canada, Vol. 281, pp.179-187(2005)
10. Danner,H..,Madzigaidzo,L.,and Braun,R..,“Process Development and Optimization of Lactic Acid Purification Using Electrodialysis.” J. Biotechnol., 96, 223-239(2002)
11. Dixon,M.,and Webb,E.C.,Enzymes. 3rd Edition,Academic Press, New York, New York(1979)
12. Fitzpatrick, J. J., C. Murphy, F. M. Mota and T. Pauli. 2003. Impurity and cost considerations for nutrient supplementation of whey permeate fermentations to produce lactic acid for biodegradable plastics. Int. Dairy Journal. 13:575~580
13. Hell,F., Lahnsteiner,J., Frischherz,H.,and Baumgartner,G., “Experience with Full-Scale Electrodialysis for Nitrate and Hardness Removal.” Desalination, 117,173-180(1998)
14. Hofvendahl, K. and B. Hahn-Hagerdal. 2000. Factors affecting the fermentative lactic acid production from renewable resources. Enzyme Microb. Technol. 26 : 87-107.
15. Hongo,M.,Nomura,Y..,and Iwahara,M.,“Novel Method of Lactic Acid Productionby Electrodialysis Fermentation.” Appl. Environ. Microbiology, 52(2), 314-319(1986)
16. Huang,Ting-Chia.,and Wang,Jun-Hsien.,“A Study of Ionic Transfer in ElectrodialysisProcess with Laminar Flow.” Canadian J. Chem.Eng., 67, 385-391 (1989)
17. Indusekhar, V. K., and Krishnaswamy, N., “Polarization studies on interpolymer ion exchange membranes,” Desalination, Vol. 48, pp.267-279(1983)
18. Kedem. O., “Polarization effects at charged membranes,” Desalination, Vol. 46,pp.185-189(1983).
19. Korngold, E., Korosy, F. D., Rahav, R., and Taboch, M. F., “Fouling of Anion-Selective Membrane in Electrodialysis,” Desalination, Vol. 8, pp.195-220(1970)
20. Krischke, W., M. Schroder and W. Trosch. 1991. Continuous production of L-lactic acid from whey permeate by immobilized Lactobacillus casei subsp. casei. Appl. Microbiol. Biotechnol. 34:573-578.
21. Landon, J. 1976. The ecology and taxonomic status of the lactobacilli. Ann. Rev. Microbiol. 30: 279-301
22. Liu,K.-J., Nagasubramanian,K.,and Chlanda,F.P.,“Bipolar Membran Technology: An Engineering and Economic Analysis.” AIChE Symp. Ser., 76(192), 97- (1980)
23. Liu,K.-J., Nagasubramanian,K.,and Chlanda,F.P.,“Membrane Electrodialysis Process for Recovery of Sulfur Dioxide from Power Plant Stack Gases.” J. Membrane Sci., 3, 71-83 (1978)
24. Martin,San.,Pazos,M.,and Coca,J.,“Reactive extraction of lactic acid with alamine 336.” J. Chem. Tech. Biotechnol., 65, 281-285 (1996)
25. Mehaia, M. A. and M. Cheryan. 1986. Lactic acid from acid whey permeate in a membrane recycle bioreactor. Enzyme Microb. Technol. 8 : 289-292.
26. Nomura,Y.,Iwahara,M.,and Hongo,M.,“Lactic Acid Production by Electrodialysis Fermentation Using Immobilized Growing Cells.” Biotechnol. Bioeng., 30, 788-793(1987)
27. Ose, I. M., and Ramon, V. P., “Current-voltage curves for an electrodialysis reversal pilot plant: determination of limiting currents,” Desalination, Spain, Vol.141, pp.23-37(2001)
28. Pauli, T. and J. J. Fitzpatrick. 2002. Malt combing nuts as a nutrient supplement to whey permeate for producing lactic by fermentation with Lactobacillus casei. Process Biochem. 38:1-6.
29. Siebold,M.,Frieling,P.V.,Joppien,R.,Rindfleisch,D.,Schügerl,K.,and Röper,H,﹒“Comparison of the Production of Lactic Acid by Three Different Lactobacilli and Its Recovery by Extraction and Electrodialysis.” Process Biochem., 30(1), 81-95 (1995)
30. Verbeek, H.M., Furst, L., Neumesiter, H., (1998), Digital simulation of an electrodeionization process. Computers Chem Engng, Vol.22, pp. s913-s916
31. Wang, J., Wang, S., Jin, M., (2000), A study of the electrodeionzation process high-purity eater production with a RO/EDI system. Desalination, Vol.132, pp.349-352.
32. Wang,Jun-Hsien.,Biological Denitrification: Fundamental Kinetic Studies, and Process Analysis for Sequencing Batch ReactorOperation. Ph.D. Thesis, NJIT, Newark, NewJersey, U.S.A. (1994)
33. Yen,Y.-H.,and Cheryan,M.,“Separation of Lactic Acid from Whey Permeate Fermentation Broth by Electrodialysis.” Trans. I chem E, 69, Part C, 200-205 (1991)
34. 王峻賢, 游宏偉, 劉文正,“電透析程序應用於生化製程之研究"中華民國輸送現象及其應用研討會, July (2005)
35. 王峻賢等,兩極性薄膜電透析用於煙道氣脫硫之研究專案計畫(中油,一億兩千萬元專案計畫.71/8-74/7)季報與總報告,工研院化工所,新竹,台灣
36. 王峻賢 “兩性膜電透析法自低濃醋酸鈉溶液回收及濃縮醋酸及燒鹼之質傳研究”碩士論文,國立成功大學,台南,臺灣(1982)
37. 王峻賢,游宏偉、劉文正, “電透析程序應用於生化製程之研究” 2005 年(52屆)中國化學工程年會,國立聯合大學(11月19-20日,2005) 國科會計畫編號NSC 92-2626-E-159-002
38. 王峻賢,黃定加, “層流兩極性薄膜電透析程序之離子輸送現象研究” 中華民國第二十三屆輸送現象及其應用研討會暨膜分離論壇第四屆台灣—新加坡環境保護技術研討會論文集,245~248頁,國立臺灣大學,台北 (12月7日, 2001)
39. 王峻賢, 兩性膜電透析法自低濃度醋酸鈉溶液回收、濃縮醋酸及燒鹼之質傳研究,碩士論文,國立成功大學化工研究所,台南,臺灣 (1982)
40. 台灣乳酸菌協會 (http://www.talab.org.tw/)
41. 行政院國家科學委員會 (http://web.nsc.gov.tw/)
42. .鈴木一郎, “有用乳酸菌”乳技協資料, 36(2), 14-28 (1986)
43. 陳國誠, 微生物酵素工程學. 藝軒圖書, 台北,台灣 (1989)
44. 蔡英傑。1998。乳酸菌與益生菌。生物產業。9(2):98-104
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔