1.丁一賢、陳牧言,資料探勘Data mining,滄海書局,民94年。
2.王建華,資料挖掘技術在技職院校『中途離校生』輔導之應用---以醒吾技術學院為例,國防大學國防管理學院國防資訊管理研究所,碩士學位論文,民93年。3.李宏隆,大學申請入學之模糊多準則決策模式,長榮管理學院經營管理研究所,碩士學位論文,民88年。4.吳禮鈞,以資料探勘進行技職院校學生特質分析之研究,明新科技大學資訊管理研究所,碩士學位論文,民97年。5.邱美惠,資料探勘應用於學校行銷之研究,中原大學企業管理學系,碩士學位論文,民93年。6.教育部統計處,取自: http://140.111.34.54/statistics/content.aspx?site_content_sn=8956
7.彭莉櫻,運用料探勘技術於學習成效與招生策略之研究,玄奘大學資訊科學學系,碩士學位論文,民96年。8.曾憲雄、蔡秀滿、蘇東興、曾秋蓉、王慶堯,資料探勘Data mining,旗標出版股份有限公司,民95年。
9.溫侑柯,應用資料探勘之關聯法則探討大學入學成績對在學成績的影響-以資管系為例,南華大學資訊管理研究所,碩士學位論文,民94年。10.楊哲智,以聯招考生選填志願挖掘系所關聯性之研究,元智大學工業工程與管理研究所,碩士學位論文,民93年。11.楊琇媛,利用資料倉儲與資料探勘技術於招生策略與學生特質分析之研究,中原大學資訊管理學系,碩士學位論文,民92年。12.維基百科,取自:http://en.wikipedia.org/wiki/Weka_(machine_learning)
13.劉泓郁,建構一個以模糊關聯法則為基礎之產品開發系統,元智大學工業工程管理研究所,碩士學位論文,民92年。14.顏博文,應用資料探勘技術分析學生選課特性與學業表現,中原大學資訊管理學系,碩士學位論文,民92年。15.羅才輝,應用資訊探勘技術分析人格特質與選課之關係-以新竹地區大學生為例,中華大學資訊工程學系,碩士學位論文,民95年。16.Agrawal, R.; Imielinski, T. and Swami, A., “Mining Association Rules between Sets of Items in Large Databases,” Proc. ACM SIGMOD,1993, pp. 207-216.
17.Agrawal, R. and Srikant, R., “Fast Algorithms for Mining Association Rules in Large Databases,” Proc. 20th Int'l Conf. Very Large Data Bases,1994, pp. 478-499.
18.Berry, M.J.A. and Linoff, G., Data Mining Technique for Marketing, Sale, and Customer Support, Wiley Computer, 1997.
19.Curt, H., “The Devile’s in The Detail: Techniques, Tool, and Applications for Data mining and Knowledge Discovery-Part 1”,Intelligent Software Strategies, Vol.6, No. 9,1995, pp.1-15.
20.Fayyad, U.; Gregory, P.S. and Smyth, P., “The KDD process for extracting useful knowledge from volumes of data” ,Communications of the ACM, Volume 39, Issue 11 ,1996.
21.Fayyad, U. and Smyth, P., From Data Mining to Knowledge Discovery: An Overview, Advances in Knowledge Discovery and Data Mining,1996, pp. 1-36.
22.Frawley, W. J.; Gregory, P.S. and Matheus, C. J., “Knowledge Discovery in Database :An Overview”, Knowledge Discovery in Database, AAAI Press/The MIT Press, Menlo Park, CA, 1991.
23.Ganti, V.; Gehrke, J.; Ramakrishnan, R., “Mining very large databases”, Computer, Volume 32, Issue 8, 1999 , pp.38-45.
24.Garner, S.R. ; Cunningham, S.J.; Holmes, G.; Craig G, N.M. and Witten , I.H., “Applying a machine learning workbench: Experience with agricultural databases”, Proc Machine Learning in Practice Workshop, Machine Learning Conference, Tahoe City, CA, USA 14-21,1995.
25.GNU, from http://www.gnu.org/gnu/manifesto.html
26.Holmes, G.; Donkin, A. and Witten, I.H. “Weka: A machine learning workbench.”, Proc. Second Australia and New Zealand Conference on Intelligent Information Systems, Brisbane, Australia,1994.
27.Liu, Z. and Guo, M.,“A Proposal of Integrating Data Mining and On-Line Analytical Processing in Data Warehouse”, Proceedings of 2001 International Conferences on Info-tech and Info-net, 2001,pp.146-151.
28.Quinlan, J.R., “Induction of Decision Trees”, Machine Learning, Vol.1, No. 1, 1986, pp. 81-106.
29.Quinlan, J. R., C4.5: Programs for Machine Learning, Morgan-Kaufmann, San Francisco,1993.
30.Salzberg, S.L., “On Comparing Classifiers: Pitfalls to Avoid and a Recommended Approach”, Data Mining and Knowledge Discovery, Kluwer Academic Publishers, Boston, Vol. 1, 1997, pp. 317-327.
31.Simoudis, E., “Reality check for data mining”, IEEE Expert, Volume 11, Issue 5, 1996, pp.26-33.
32.Tan, A.C. and Gilbert, D., “An empirical comparison of supervised machine learning techniques in bioinformatics,” Proceedings of the First Asia Pacific Bioinformatics Conference, Adelaide, Australia, 2003, pp. 219-222.
33.Weka, from http://www.cs.waikato.ac.nz/~ml/weka/index.html.
34.Witten, I.H. and Frank, E., Data Mining Practical Machine Learning Tools and Techniques (Second Edition), Amsterdam, Boston, MA : Morgan Kaufman, 2005.