(54.236.58.220) 您好!臺灣時間:2021/02/28 08:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:江以帆
研究生(外文):Yi-Fan Jiang
論文名稱:降-昇壓型轉換器之參考模式適應控制:藉由將輸出誤差和控制輸入最小化之觀點
論文名稱(外文):Model Reference Adaptive Control Design for the Buck-Boost Converter via the Minimisation of Output Error and Weighting Control Input
指導教授:曾仲熙曾仲熙引用關係
指導教授(外文):Chung-Shi Tseng
學位類別:碩士
校院名稱:明新科技大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:92
中文關鍵詞:適應性數位控制降-昇壓型轉換器遞迴式最小二乘方系統丟番圖方程式非極小相位系統
外文關鍵詞:adaptive digital controlbuck-boost converterrecursive least-squares algorithmDiophantine equationnon-minimum phase system
相關次數:
  • 被引用被引用:0
  • 點閱點閱:229
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究降-昇壓型轉換器(Buck-Boost Converter)之參考模式適應性控制設計(model reference adaptive control design),主要是以降-昇壓型轉換器為基礎,推導出其驅動電路之小訊號模型(Small Signal Model),利用降-昇壓型轉換器之轉移函數與參考模式,來進行控制器設計,由於本文所設計之降-昇壓型轉換器為非極小相位系統(Non-Minimum Phase System),這類系統的控制器設計是很具挑戰性的。在已知降-昇壓型轉換器之受控體參數的情形下,利用穩定的參考模式設計出控制器,將閉迴路控制系統之控制輸入與輸出誤差最小化,可藉由解丟番圖方程式(Diophantine equation)求得所需之數位控制器,如果是在降-昇壓型轉換器受控體參數未知(不確定)的情況下,再依照參考模式設計出相對應的
適應性數位控制器,設計過程中加入了遞迴式最小二乘方判別系統recursive least-squares(RLS) algorithm),也同時將其閉迴路控制系統之控制輸入與輸出誤差最小化,再藉由解丟番圖方程式(Diophantine equation)求得相對應之適應性數位控制器,進而達到系統穩定與輸出電壓控制的目的。最後,利用數位訊號處理器TMS320-F28335 來實現在已知受控體參數與未知受控體參數的情況下,所設計之數位控制器及數位適應性控制器,透過MATLAB 模擬以及數位訊號處理器實驗結果可得知,本篇論文所提出之參考模式適應性控制可以有效的達到預先所設計之輸出響應。
In this thesis, a model reference adaptive digital control scheme is proposed for the buck-boost converter. The controller design is based on the small signal model of the buck-boost converter and a reference model. The control design of the buck-boost converter is a challenging work because the system, which is a non-minimum phase (NMP) system, has a right half-plane zero. A cost function of the output error (i.e. the difference between the reference model output and the plant output) and weighting control input is minimized for the buck-boost converter using the model reference adaptive control scheme, without the assumption that the unstable plant zero must be
the zero of the reference model. In the case that the plant parameters are well known,a digital controller is obtained for the buck-boost converter by solving a Diophantine equation. In the case that the plant parameters are uncertain (or unknown), a digital controller with model reference adaptive control scheme is proposed for the buck-boost converter using the recursive least-squares (RLS) algorithm where the cost
function of the output error and weighting control input is also minimized. To verify the validity of the proposed digital controller for the buck-boost converter, numerical
simulations are performed using MATLAB. Form these simulations, the estimated parameters can approach their actual values of the plant parameters using the recursive least-squares algorithm and the output voltage can be regulated by the
proposed adaptive digital controller. Finally, experimental set-up is built for the buck-boost converter and the fully digital adaptive controller is implemented by a digital signal processor TMS320-F28335. The proposed method is simple and is
suitable for practical control design for the buck-boost converter.
目 錄
摘 要..............................................................................................................................i
Abstract.........................................................................................................................ii
致 謝............................................................................................................................ iii
目 錄.............................................................................................................................iv
圖目錄...........................................................................................................................vi
表目錄...........................................................................................................................ix
第1 章 緒論..................................................................................................................1
1.1 研究背景.........................................................................................................1
1.2 研究動機與目的.............................................................................................2
1.3 論文組織結構.................................................................................................5
第2 章 降-昇壓型轉換器原理分析與架構................................................................6
2.1 降-昇壓型轉換器基本架構及動作原理.......................................................6
2.1.1 降-昇壓型轉換器連續導通模式之穩態分析....................................7
2.2 降-昇壓型轉換器CCM/DCM 之邊界條件...............................................11
2.2.1 輸出電壓漣波與零件參數之選擇....................................................13
2.3 降-昇壓型轉換器小訊號之推導.................................................................14
2.4 降-昇壓型轉換器轉移函數之Z 轉換........................................................19
第3 章 降-昇壓型轉換器參考模式適應性數位控制器設計.................................24
3.1 參考模式之數位控制器設計-已知受控體參數.........................................24
3.2 參考模式之適應性數位控制器設計...........................................................31
3.2.1 未知受控體參數估測-遞迴式最小二乘方判別系統......................31
3.2.2 適應性控制演算法............................................................................33
3.3 參考模式之降-昇壓型轉換器數位控制器模擬.........................................35
3.3.1 已知受控體參數之數位控制器模擬................................................35
v
3.3.2 未知受控體參數之適應數位控制器模擬........................................39
第4 章 硬體電路與數位控制器設計.......................................................................49
4.1 整體硬體電路架構介紹...............................................................................49
4.2 硬體電路製作...............................................................................................51
4.2.1 功率開關閘驅動電路........................................................................51
4.2.2 電壓(隔離)回授電路設計................................................................52
4.3 已知受控體參數之數位控制器與PWM 軟體實現...................................54
4.4 未知受控體參數之數位適應控制器實現...................................................64
第5 章 結論................................................................................................................73
參考文獻......................................................................................................................75
參考文獻
[1] K. Zhou, J. Doyle, and K. Glover, Robust and optimal control, Prentice Hall,
1996.
[2] Y. B. Shtessel, A. S. I.. Zinober, and I. A. Shkolnikov, “Boost and Buck-Boost
Power Converters Control Via Sliding Modes Using Method Of Stable System
Centre,” Proceedings of the 41st IEEE Conference on Decision and Control,
vol. 1, pp. 340 – 345, Dec. 2002.
[3] Jean-Jacques E.Slotine, and Weiping Li, APPLIED NONLINEAR CONTROL,
Prentice-Hall, Inc., 1991.
[4] Mingzhi He, and Jianping Xu, “Nonlinear PID in Digital Controlled Buck
Converters,” APEC 2007 - Twenty Second Annual IEEE Applied Power
Electronics Conference, pp. 1461 – 1465, March 2007.
[5] Xinping. Ding, Zhaoming. Qian, Shuitao. Yang, Bin. Cui, and Fangzheng. Peng,
“A PID Control Strategy for DC-link Boost Voltage in Z-source Inverter”
APEC 2007 - Twenty Second Annual IEEE Applied Power Electronics
Conference, pp. 1145 – 1148, March 2007.
[6] Liping Guo, J. Y. Hing, and R. M. Nelms, “PID controller modifications to
improve steady-state performance of digital controllers for buck and boost
converters” APEC 2002 - Seventeenth Annual IEEE Applied Power Electronics
Conference and Exposition, vol. 1, pp. 381 – 388, March 2002.
[7] S. Arulselvi, G. Uma, and M. Chidambaram, “Design of PID controller for
boost converter with RHS zero” IPEMC 2004. The 4th International Power
Electronics and Motion Control Conference, vol. 2, pp. 532 – 537, Aug. 2004.
[8] J. Alvarez-Ramirez, L. Cervantes, G. Espinosa-Perez, P. Maya, and A. Morales,
“A stable design of PI control for DC-DC converters with an RHS zero,” IEEE
76
Transactions on Circuits and Systems I: Fundamental Theory and Applications,
vol. 48, no. 1, pp. 103 – 106, Jan. 2001.
[9] J. Leyva-Ramos and J. A. Morales-Saldana, “Uncertainty models for
switch-mode DC-DC converters,” IEEE Transactions on Circuits and Systems I:
Regular Papers, vol. 47, no. 2, pp. 200 – 203, Feb. 2000.
[10] Y. S. Jung, “Small-signal model-based design of digital current-mode control,”
IEE Proceedings Electric Power Applications, vol. 152, no. 4, pp. 871 – 877,
July 2005.
[11] V. D. Yurkevich, “Design of Controller for Buck-Boost Converter,” KORUS
2005. Proceedings. The 9th Russian-Korean International Symposium on
Science and Technology, pp. 741 – 745, July 2005.
[12] P. E. Wellstead. and S. P. Sanoff, “Extend self-tuning algorithm,” Int. J.
Control., vol. 34, pp. 433-455, 1981.
[13] 張雲生 祝曉紅,自適應控制器設計及應用,國防工業出版社,2005 5 月。
[14] 韓曾晉,適應控制系統,科技圖書股份有限公司,民國81 年6 月。
[15] Chih-Lyang Hwang and Bor-Sen Chen, “Model reference adaptive control via
the minimization of output error and weighting control input”, IEE Proceedings
D Control Theory and Applications, vol. 136, no. 5, pp. 231 – 237, Sep. 1989.
[16] C. L. Hwang and B. S. Chen , “Adaptive control of optimal model matching
inH ∞ -norm space,” IEE Proceedings D Control Theory and Applications, vol.
135, no. 4, pp. 295 – 301, July 1988.
[17] Butler Hans , Model reference adaptive control : from theory to practice ,
London New York : Prentice Hall, 1992.
[18] R. W. Erickson, Fundamentals of Power Electronics, Fifth Edition, U.S.A,
kluwer Academic pub., 1991.
[19] K. J. Astrom. and B. Wittenmark, “Self-tuning controllers based on pole-zero
77
placement,” ibid., pp. 120-130, 1980.
[20] K. J. Astrom, and B. Wittenmark, Computer-controlled system : Theory and
design, Prentice-Hall Inc., 1984.
[21] Rolf Johansson, System Modeling and Identification, U.S.A , Prentice-Hall Inc.,
1993.
[22] G. C. Goodwin and K. S. Sin, Adaptive filtering prediction and control ,
Prentice-Hall Inc., 1984.
[23] 俞克維,控制系統分析與設計:使用MATLAB,新文京開發,民92 年。
[24] Dean K. Frederick, Feedback control problems: using MATLAB and the
Control System Toolbox, Pacific Grove, CA : Brooks/Cole, 2000.
[25] 林容益,TMS320F240X 組合語言及C 與言多工能控制應用,全華科技圖
書股份有限公司,2005 6 月。
[26] 董勝源,DSP TMS320LF2407 與C 與言控制實習,長高科技股份有限公司,
民國93 年6 月。
[27] 梁適安,交換式電源供給器之理論與實務設計,全華科技圖書股份有限公
司,民國90 年12 月。
[28] Charles L. Phillips and H. Troy Nagle, Digital Control System Analysis and
Design, 1998.
[29] Texas Instruments, Code Composer Studio Development Tools v3.3 User’s
Guide, Texas Instruments Incorporated, SPRU509H, October 2006.
[30] Texas Instruments, TMS320x2833x System Control and Interrupts Reference
Guide, Texas Instruments Incorporated, SPRUFB0, September 2007.
[31] Texas Instruments, TMS320F28335, TMS320F28334, TMS320F28332 Digital
Signal Controller (DSCs) Data Manual, Texas Instruments Incorporated,
SPRS439B, October 2007.
[32] Texas Instruments, TMS320x2833x Analog-to-Digital Converter (ADC)
78
Module Reference Guide, Texas Instruments Incorporated, SPRU812A,
October 2007.
[33] Texas Instruments, C2833x C/C++ Header File and Peripheral Examples Quick
Start, Texas Instruments Incorporated, Version 1.03, September 2007.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔