跳到主要內容

臺灣博碩士論文加值系統

(98.82.120.188) 您好!臺灣時間:2024/09/16 09:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳嘉振
研究生(外文):Chen-Chia Chen
論文名稱:具有分離驅動特性的三平移自由度並聯機器之設計
論文名稱(外文):Design of a class of Translational Parallel Manipulators Featuring Decoupling Actuation
指導教授:謝文賓
指導教授(外文):Win-Bin Shieh
學位類別:碩士
校院名稱:明志科技大學
系所名稱:機電工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2009
畢業學年度:97
語文別:中文
論文頁數:46
中文關鍵詞:分離驅動平移平台並聯式機器螺旋理論Jacobian矩陣
外文關鍵詞:decoupling actuationtranslational platformparallel manipulatorsscrew theoryJacobian matrix
相關次數:
  • 被引用被引用:0
  • 點閱點閱:258
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本文研究具有分離驅動之三平移自由度並聯式機器,分成三部分,第一部分為選擇肢體構造之限制條件。其限制條件分別為相同肢體構造、平移平台自由度等於肢體數與基底驅動之限制條件,目的在於排除不必要之肢體構造與縮小肢體構造之範圍。第二部分為將運用螺旋理論導出三平移自由度並聯式機器之可行肢體構造,並得到可行肢體構造之接頭軸向關係,依照四個連桿數、三個連桿數與二個連桿數做分類與整理,並只採用二個連桿數的8種肢體構造之結果。第三部分為尋找分離驅動之肢體分佈形態。將此8種肢體構造排除目前為止已經被探討過之肢體構造,縮減為4種肢體構造,分別為CPR肢體構造、CUR肢體構造、RU肢體構造與PUU肢體構造。並運用Jacobian矩陣求得肢體之位移量與致動器之輸入值,得到一種分離驅動之肢體形態。運用此肢體分佈形態來套用於CPR肢體構造、CUR肢體構造、CRU肢體構造與PUU肢體構造。最後,本文選擇CPR肢體構造並建立實體並透過實際操作證實具有分離驅動之特性。
This paper is study for a class of translational parallel manipulators featuring decoupling actuation. For three parts, the first part for the limb structure constraints are the same limbs structure, translational platform of degree of freedom equivalent to number of limbs and based actuation. The second part gets feasible limbs structure on screw theory and in accordance with the number of four-link, three-link and two-link to classification. The last part gets one of the distribute position of limbs for decoupling actuation. For the CPR limbs structure, CRU limb structure, CRU limb structure and PUU limb structure and used of the Jacobian matrix prove to have featuring decoupling actuation.
明志科技大學碩士學位論文指導教授推薦書 i
明志科技大學碩士學位論文口試委員審定書 ii
明志科技大學學位論文授權書 iii
誌謝 iv
摘要 v
英文摘要 vi
目 錄 vii
表目錄 ix
圖目錄 x
符號索引 xi
第一章 緒論 1
1.1 研究背景與動機 1
1.2 文獻回顧 1
1.3 研究目的 3
1.4 本文架構 3
第二章 螺旋理論 4
2.1 螺旋的定義 4
2.2 扳鉗螺旋與扭轉螺旋 6
2.3 運動接頭與螺旋表示法 10
第三章 三平移自由度並聯式機器之可行肢體 12
3.1 三平移自由度並聯式機器之限制條件 12
3.2 抵抗一力矩之肢體 14
3.3 抵抗二力矩之肢體 16
3.4 抵抗三力矩之肢體 19
3.5 可行肢體之旋轉接頭軸向 20
第四章 分離驅動之三平移並聯式機器建立與模擬 27
4.1 分離驅動之特性 27
4.2 CPR肢體構造之建立 28
4.3 致動器之選擇 29
4.4 CPR並聯式機器之肢體分佈形態與建立 32
第五章 結論與未來展望 42
參考文獻 43

表目錄
表 3-1 三自由度並聯式機器之肢體構造 22
表 3-2 抵抗一力矩肢體 25
表 3-3 抵抗二力矩肢體 25
表 4-1 可行之分離驅動肢體構造 27

圖目錄
圖 2-1 螺旋座標 5
圖 2-2 零節距扭轉螺旋 8
圖 2-3 無限大節距扭轉螺旋 8
圖 2-4 零節距扳鉗螺旋 9
圖 2-5 無限大節距扳鉗螺旋 9
圖 3-1 傳統三平移自由度並聯式機器 13
圖 3-2 抵抗一力矩肢體 14
圖 3-3 一力矩軸向垂直於平行平面 16
圖 3-4 抵抗二力矩肢體 16
圖 3-5 二力矩之旋轉接頭的扭轉螺旋皆平行 18
圖 3-6 抵抗三力矩肢體 19
圖 3-7 三力矩無旋轉運動 20
圖 3-8 平台之角速度為零 21
圖 4-1 CPR肢體之形態 28
圖 4-2 CPR並聯式機器肢體分佈形態 33
圖 4-3 CPR並聯式機器 36
圖 4-4 第一肢體之驅動時間與平台之位移量 37
圖 4-5 第二肢體之驅動時間與平台之位移量 38
圖 4-6 第三肢體之驅動時間與平台之位移量 39
圖 4-7 CPR並聯機器(1) 40
圖 4-8 CPR並聯機器(2) 40
圖 4-9 CPR並聯機器(3) 41
[1] Gough, V. E., and Whitehall, S. G., 1962, ‘‘Universal Tyre Test Machine,’’ Proceeding of the 9th International Congress of F.I.S.I.T.A., Vol. 117, pp. 117–135.
[2] Stewart, D., 1965, “A platform with six degree of freedom, Institution of Mechanism Engineers,” London, Vol. 180, No. 15, pp. 371-386.
[3] Clavel, R. 1988, “Delta, a fast robot with parallel geometry,” Proceedings of the 18th International Symposium on Industrial Robots, Lausanne, pp. 91-100.
[4] Clavel, R., 1991, "Conception robot parallele rapide a 4 degres deliberte," EPFL, Lausanne, Switzerland.
[5] I. Bonev., 2001, “ Delta parallel robot-the story of success,” Available online from http://www.propack.on.ca/images/delta-robot.pdf.
[6] Rey, L., and Clavel, R., 1999, ‘‘The Delta Parallel Robot,’’ Parallel Kinematic Machine, Boer, C. R., Molinari-Tosatti, L., Smith, K. S., eds., Springer, New York.
[7] Tsai, L.-W., Walsh, G.C., and Stamper, R.E., 1996, “Kinematics of a novel three-DOF translational platform,” in Proceedings of the 1996 IEEE International Conference on Robotics and Automation, Minneapolis, MN, USA, pp. 3446–3451.
[8] Fang, Y., and Tsai, L.-W., 2004, “Analytical identification of limb structures for translational parallel manipulators,” Journal of Robotic Systems, Vol. 21, No. 5, pp. 209-218.
[9] Tsai, L.-W., and Joshi, S., 2001, ‘‘Comparison Study of Architectures of Four 3 Degree-of-Freedom Translational Parallel Manipulators,’’ Proceedings of the 2001 IEEE International Conference on Robotics and Automation, Seoul, Korea, pp. 1283–1288.
[10] Kim, H. S, and Tsai, L. W., 2002, “Evaluation of a Cartesian parallel manipulator,” 8th Symposium on Advances in Robot Kinematics, Caldes de Malavella, Spain., pp. 24-28.
[11] Kong, X., and Gosselin, C. M., 2004, “Type Synthesis of 3-DOF Translational Parallel Manipulators Based on Screw Theory,” Journal of Mechanical Design, Vol. 126, No. 1, pp. 83–92.
[12] Zhang, D., and Gosselin, C. M., 2001, “Kinetostatic Modeling of N-DoF Parallel Mechanisms with a Passive Constraining Leg and Prismatic Actuators,” Journal of Mechanical Design, Vol. 123, No. 3, pp. 375–381.
[13] Zhang, D., and Gosselin, C. M., 2002, “Kinetostatic Modeling of Parallel Mechanisms with a Passive Constraining Leg and Revolute Actuators,” Mechanism and Machine Theory, Vol. 37, No. 6, pp. 599-617.
[14] Kong, X.-W. and Gosselin, C. M., 2002, “Kinematics and singularity analysis of a novel type of 3-CRR 3-DOF translational parallel manipulator,” International Journal of Robotics Research, Vol. 21, No. 9, pp. 791–798.
[15] Tsai, L. W.,2003,機械設計(Mechanism design : enumeration of kinematic structures according to function,許正和編譯),高立圖書,台北。
[16] 洪偉恒,2001,並聯式機械臂新保守剛度轉換之研究,國立成功大學機械工程研究所碩士論文。
[17] Carricato, M., and Parenti-Castelli, V., 2001, “A family of 3-DOF translational parallel manipulators,” Journal of Mechanical Design., Vol. 125, No.2, pp. 302-307.
[18] Gao, F., Li, W., Zhao, X., Jin, Z., and Zhao, H., 2002, “New Kinematic Structures for 2-, 3-, 4-, and 5-dof Parallel Manipulator Designs,” Mechanism and Machine Theory, Vol. 37, No. 11, pp. 1395–1411.
[19] Chablat, D., and Wenger, P., 2003, ‘Architecture Optimization of a 3-DOF Translational Parallel Mechanism for Machining Applications, the Orthoglide,” IEEE Transactions on Robotics and Automation, Vol. 19, No. 3, pp. 403-410.
[20] Li, Y. and Xu, Q. M., 2002, “Design, Analysis and Applications of a Class of New 3-DOF Translational Parallel Manipulators,” University of Macau, Parallel Manipulators, New Developments, pp. 457–482.
[21] Pierrot, F., Reynaud, C., and Fournier, A., 1990, “Delta: a simple and efficient parallel robot,” Robotica. Vol.8, No.2, pp. 105-109.
[22] Staicu, ST., and Carp-Ciocardia, D. C., 2003, “Dynamic analysis of Clavel's delta parallel robot,” Proceedings of the 2003 IEEE International Conference on Robotics and Automation, Vol. 3, pp. 4116-4121
[23] Fang, Y., and Tsai, L.-W., 2004, “Structure Synthesis of a Class of 3-DOF Rotational Parallel Manipulators,” IEEE Transactions on Robotics and Automation, Vol. 20, No.1, pp. 117–121.
[24] Tsai, L.-W., 1999, Robot Analysis: The Mechanics of Serial and Parallel Manipulators, John Wiley and Sons, New York.
[25] Lee, K. and Shah, D. K., 1987, “Kinematic Analysis of a Three Degrees of Freedom In-Parallel Actuated Manipulator, in Proceedings of the IEEE International Conference on Robotics and Automation, No.1, pp. 345-350.
[26] Tsai, L. W. and Tahmasebi, F., 1993, “Synthesis and analysis of a new class of six-degree-of-freedom parallel mini-manipulators,” Journal of Robotic Systems, Vol. 10, No. 5, pp. 561-580.
[27] Gosselin, C. M. and Angeles, J., 1988, "The Optimum Kinematic Design of a Planar Three-Degree-of-Freedom Parallel Manipulator", ASME Journal of Mechanisms, Transmissions, and Automation in Design, Vol. 110, No. 1, pp. 35-41.
[28] 翁振瀛,2005,以線性代數法求解過指定位移之研究,國立成功大學機械工程研究所碩士論文。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top