(18.206.177.17) 您好!臺灣時間:2021/04/23 05:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳煌獎
研究生(外文):Huang-Chien Chen
論文名稱:台灣彰化地區橋址液化潛能評估
論文名稱(外文):Evaluation of Liquefaction Potential forThe Bridge Sites in Changhua of Taiwan
指導教授:林炳森林炳森引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土木工程學系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:134
中文關鍵詞:液化潛能評估
外文關鍵詞:Evaluation of Liquefaction Potential
相關次數:
  • 被引用被引用:1
  • 點閱點閱:183
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
九二一大地震時台灣中部許多橋樑發生嚴重損害,損害原因多被認為是震度過大,並在提高耐震級數後,迅速進行災區橋樑結構補強、復建或重建工作。對於震度過大伴隨地形之改變甚或土層之液化,導致橋樑破壞則探究不多,而當地震中緊鄰橋址之地層出現液化或斷層時,均會出現前述地形改變;因此橋樑結構補強、復建或重建之前,除應重視鄰近斷層之影響外,更應進行液化潛能評估,作為橋樑抗液化設計之參考資料。基於過去橋樑很少進行抗液化設計,本論文因此採用合理的液化潛能評估程序進行台灣彰化地區重要公路橋樑之液化潛能評估,並提供相關橋址抗液化設計參考資料,以確保橋樑能在未來之地震中免於破壞。
由本研究選用之四種液化潛能評估方法,針對國家科學委員會調查九二一地震彰化縣員林鎮等地區具液化表徵點位及無液化表徵點位並加以比對,若以Iwasaki所建議災害液化潛能指數PL分級,對具液化表徵地點之PL值,在本論文而言,以日本道路協會簡易計算分析法或新日本道路協會簡易計算分析法較為接近,對無液化表徵地點之PL值,則以Tokimatsu和Yoshimi簡易計算分析法較為接近。
對彰化縣濁水溪及大肚溪系重要公路橋樑而言,橋樑耐震設計用之液化潛能評估高低順序為西濱大橋、西螺大橋、自強大橋、中彰大橋、溪州大橋、大度橋。
Abstract

After the 921 Chi-Chi Earthquake, the reason for causing so many failures of bridges in the disaster area of Taiwan was mostly concluded as over strong an earthquake. Only by increasing the seismic resistant intensity, all the damaged bridges were quickly mended, repaired or rebuilt. However, there are few studies to consider that a strong earthquake will accompany with the change of topographic condition for the strata of a bridge site. It is generally found that the existing of liquefaction potential or a fault near a bridge site can always induce the change of the above-mentioned topographic condition. Thus, besides taking influences of a nearby fault into consideration, evaluation of liquefaction potential has to be performed for seismic resistant design of a bridge. Since liquefaction prevention design is seldom included in the design of a bridge, this paper follows a reasonable sequence and performs liquefaction potential evaluations for bridge sites connecting important highways in central Taiwan. Results of this study provide valuable information of future design of liquefaction prevention of a bridge such that its damage by strong earthquake can be avoided.

This paper is using four methods of evaluation of liquefaction potential to contrast with including symptoms of liquefaction and non-liquefaction to research into the investigation of the 921 Earthquake disaster area in central Taiwan by National Science Council. By using liquefaction potential Index PL which was proposed by Iwasaki , the PL value of some areas with symptoms of liquefaction is close to the simple evaluation method by J.R.A or N.J.R.A. As for the PL value of other areas with symptoms of non-liquefaction, it approximates to the simple evaluation method by Tokimatsu and Yoshimi.

For bridges located between Jhuoshuei River and Dadu River in Changhua County, liquefaction potential evaluations for seismic resistant design of a bridge should be prioritized the following: West Coast Bridge, HsiLo Bridge, Zihciang Bridge, Chungchang Bridge, Sijhou Bridge, Tatu Stream Bridge.
目錄

誌謝 Ⅰ
摘要 Ⅱ
中文摘要 Ⅱ
英文摘要 Ⅲ
目錄 IV
圖目錄 Ⅵ
表目錄 ⅥI
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究步驟 2
第二章 文獻回顧 4
2.1 液化定義 4
2.2 液化機制 5
2.3 液化相關法規之規定 6
2.4 影響液化之因素 12
2.4.1主要原因 12
2.4.2次要原因 12
2.5 液化類型 12
2.6 土壤液化破壞類型 13
2.7 液化潛能評估方法 17
2.8 最大地表加速度Amax之決定方法 40
第三章 研究方法與內容 49
3.1 本論文液化潛能評估程序 49
3.2 各橋址鑽探及試驗相關資料之決定 51
3.3 各橋址位置座標之決定 51
3.4 地震相關資料之決定 55
3.4.1 設計斷層 55
3.4.2 設計地震規模 55
3.4.3 各橋址距設計斷層破裂面最小距離 56
3.4.4 水平最大地表加速度 57
第四章 結果之比較與討論 60
4.1 員林地區液化潛能評估結果 60
4.2 大度橋之液化潛能評估結果 61
4.3 西螺大橋之液化潛能評估結果 63
4.4 中彰大橋之液化潛能評估結果 66
4.5 西濱大橋之液化潛能評估結果 69
4.6 自強大橋之液化潛能評估結果 72
4.7 溪州大橋之液化潛能評估結果 75
4.8 綜合結果彙整 118
第五章 結論與建議 127
5.1 結論 127
5.2 建議 128
參考文獻 129
參考文獻
1.林呈、孫洪福,「見證921集集大地震」--震害成因與因應對策,(2002)。
2.亞新工程顧問股份有限公司,「土壤液化評估與處理對策研擬」第一期計晝(南投、霧峰、員林),行政院國家科學委員會(2000)。
3.賴宏源,「921集集地震中部地區土壤液化案例之研析」,碩士論文,國立成功大學土木工程研究所(2000)。
4.內政部,「建築技術規則建築物耐震設計規範及解說」,(1997)。
5.內政部,「建築物耐震設計規範及解說修訂草案」,(2002)。
6.內政部營建署,「建築物耐震設計規範」,(2000)。
7.日本道路協會,日本道路橋示方書同解說-V耐震設計篇,(2002)。
8.日本道路協會,日本道路橋示方書同解說-V耐震設計篇, (1996)。
9.台灣高速鐵路Taiwan High Speed Rail Corporation, “ Tender Document for Civil Works, ” Vol. 9 Design Specification. (1999).
10.交通部,「公路橋樑耐震設計規範」,(2000)。
11.交通部,「鐵路橋樑耐震設計規範」,(1999)。
12.吳偉特,「不同程度前期微震與過壓密對台灣現場沉積性砂土液化特性之研究」,中國土木水利工程學會73年年會論文集,第111-134頁(1984)。
13.吳偉特,「台灣地區砂性土壤液化潛能之初步分析」,土木水利,第六卷,第二期,第39-70頁,(1979)。
14.吳偉特,楊騰芳,「細料含量在不同程度影響因素中對台灣地區沉積性砂土液化特性之研究」,土木水利,第十四卷,第三期(1987)。
15.李煜皊,「飽和砂土液化特性與孔隙水壓預估之研究」,碩士論文,國立交通大學土木工程研究所,(1988)。
16.林主潔,「跨越活動斷層橋樑規劃設計方式之研究」行政院公共工程委員會委託財團法人台灣營建研究院,(2002)。
17.侯義順,「以SPT-N為基礎之液化潛能評估程序及其驗證」,碩士論文,逢甲大學,(2005)。
18.林朝綮,台灣地形,台灣省文獻委員會,(1957)。
19.楊貴三,台灣活斷層的地形學研究-特論活斷層與地形面的關係,中國文化大學碩士論文,(1986)。
20.夏啟明,「細料塑性程度對台北盆地粉泥質砂液化潛能之影響」,碩士論文,國立台灣大學土木工程研究所,(1992)。
21.鄭文隆,淺談地震作用下基礎土壤液化及液化潛能評估法,現代營建,第二卷,第一期(1981)。
22.鄭文隆、吳偉康,土壤液化之災害型態與現地研判,地工技術,第90期,PP.90-103,(1985)。
23.張益銘,「霧峰地區土壤液化特性研究」,碩士論文,國立中興大學土木工程系,(2001)。
24.逢甲大學,「台61線中彰大橋橋址液化潛能評估委託研究計畫」,逢甲大學,(2004)。
25.陳正興,黃俊鴻,林三賢,李維峰,蘇鼎鈞,陳銘鴻,王淳讙,楊鶴雄,「土壤液化對交通結構物之影響及液化潛能評估方法與災害分析模式之研究」,財團法人國家實驗研究院,國家地震工程研究中心,(2004)。
26.陳卓然,「過壓密與前期微震對台灣地區砂性土壤液化潛能之影響」,碩士論文,國立台灣大學土木工程研究所,(1983)。
27.葉永田,「台灣西部地區地震斷層與地變動分析的研究〈Ⅰ〉」,清雲科技大學通識教育中心,(2003)。
28.鄭世楠,「台灣及其鄰近地區大地應力分析之研究」,博士論文,國立中央大學地球物理研究所,(1996)。
29.賴宏源,「九二一集集地震中部地區土壤液化案例之研究」,碩士論文,國立成功大學土木工程研究所,(2000)。
30.鍾永琪,「屏東地區土層液化潛能評估」,碩士論文,國立成功大學土木工程研究所,(2002)。
31. 鍾毓東,謝百錘,「簡易土壤分析方法」,結構工程,第一卷,第三期,(1986)。
32.Chung, K. Y. C. and Wong, I. H., “Liquefaction Potential of Soils with Plastic Fines,” Soil Dynamics and Earthquake Engineering Conference, Southampton, July (1982).
33.Das, B.M., “Principles of Soil Dynamics,’’ PWS-KENT Publis-hing Company, Boston, pp. 397-458 (1993).
34.“EQE Summary Report For Kobe Earthquake,” EQE Internatio-nal. USA.(1995).
35.Geo, T., And Prakash, S. “Liquefaction of Silts and Silt-Clay Mixtures.” Journal of Geometrical Engineering, ASCE, Vol. 125,No.8.(1999).
36.Ishibashi, I. M., Sherlif, M. A., and Cheng, W. L., “The Effect-s of Soil Parameters on Poe-Pressure-Rise And Liquefaction Pr-ediction,” Soils and Foundations, JSSMFE, vol. 22, no. 1, pp 37-48. (1982).
37.Ishihara, K., “Stability of Natural Deposit During Earthquakes, ”Proc., 11th International Conference on Soil Mechanics and Fou-ndation Engineering, Vol. 1. pp. 321-376. (1985).
38.Ishihara, K., “Liquefaction and Flow Failure During Earthquake-s,” Geotechnique, Vol. 43. No3. pp. 351-415. (1993).
39.Ishihara, K. Sodekawa, M., and Tanaka, Y., “Effect of Overcon-solidation on Liquefaction Characteristics of Sand Containing Fi-ne,” Dynamic Geotechincal Test, ASCE, Stp 654,American Soci-ety for Testing and Materials, pp. 246-264. (1978).
40.Iwasaki, T., T. Arakawa, and K. Tokida, “Simplified Procedures for Assessing Soil Liquefaction During Earthquakes,” Soil Dy-namics and Earthquake Engineering Conference, Southampton, pp. 925~939. (1982).
41.Kayen, R. E. and J. K. Mitchell, “Assessment of Liquefaction Potential During Earthquakes by Arias Intensity,” Journal of Geotechnical and Geoenvironmental Engineering, Vol. 123, No. 12, pp. 1162-1174, (1997).
42.Kishida, H., “Characteristics of Liquefied Sands During Mino Owari, Tohnankai and Kikui Earthquake,” Soils and Foundations, JSM-FE, vol. 9, no. 1(1969).
50.Kramer, Steven L., “Geotechnical Earthquake Engineering, ” Pr-entice-Hell, Inc. Upper Saddle River, New Jersey. (1996).
51.Lee and Fitton, “Factors Effecting The Cyclic Loading Strength of Soil,”Vibration Effects of Earthquakes on Soils and Foundations, ASTM, STP 450, pp. 71-96 (1969).
52.Liang, R. W., Bi, X. H., and Wang, J. C. “Effect of Clay Part-icle Content Liquefaction of Soil. ” Proceedings, 12th World Conference on Earthquake Engineering, Auckland, New Zealand. (2000).
53.Mori, K., Seed, H. B., and Chan, C. K., “Influence of Simple Disturbance on Sand Response to Cyclic Loading, ” Report No. EERC 77-03, U. C. Berkeley Earthquake Engineering Research Center. (1975).
54.Mulilis J. P. “The Effect of Method of Sample Preparation On The Stress-Strain Behavior Of Sands, ” Report no EFRC. 75-18.UC. B. Earthquake Engerineering Research Center. (1975).
55.O-Hara, S., Yasunaga, F., and Fujii, N., “Experimental Study on Liquefaction of Saturated Sand Contained a Little Clay, ”Technology Reports of The Yamaguchi University, Tokiwadai, UBE, Japan, Vol. 1, No3, pp. 401-408. (1974).
56.Peacock, W. H., and Seed, H. B., “Sand Liquefaction Under Cyclic Loading Simple Shear Conditions, ” Journal of The Soil Mechanic and Foundations Division, ASCE, Vol.94. No SM3, pp. 689-708. (1968).
57.Ross G. A., Seed H. B., and Migliaccio R. R. “Bridge Founda-tion in Alaska Earthquake.” Journal of The Soil Mechanics and Foundation Division, ASC, Vol.95, No. SM3, Proc. Paper 4223. (1969).
58.Seed, H. B. and I. M. Idriss, “Simplified Procedure for Evalua-ting Soil Liquefaction Potential,” Journal of the Soil Mechanics and Foundations Division, ASCE, Vol. 97, No. SM9, pp. 1249-1273, (1971).
59.Seed H. B., and Idriss I. M. “Ground Motion and Soil Liquefa-ction During Earthquakes.” Earthquake Engineering Research In-stitute Monograph. (1982).
60.Seed, H. B., I.M. Idriss, and I. Arango, “Evaluation of Liquefa-ction Potential Using Field Performance Data,” Journal of Geot-echnical Engineering, ASCE, Vol. 109, No. 3, pp. 458-482, (1983).
61.Seed, H. B., K. Tokimatsu, L. F. Harder, and R. M. Chung, “Influence of SPT procedures in soil liquefaction resistance eva-luation,” Journal of Geotechnical Engineering, ASCE, Vol. 111, No. 12, pp. 1425-1445, (1985).
62.Seed, H. B. and Idriss, I. M., “Analysis of Soil Liquefaction Niigata Earthquake”, Journal of The Soil Mechanic of Foundati-ons Division, ASCE, vol 93, NO, SM3, pp. 83-108. (1967).
63.Shen C. K., Vrymoed J. L., and Uyeno C. K. “The Effect of Fines on Liquefaction of Soils” Proceeding of The 9th Internati-onal Conference on Soil Mechanics and Foundation Engineering, Vol. 2, pp. 381-385, (1971).
64.Tokimatsu, K. and Y. Yoshimi, “Empirical Correlation of Soil Liquefaction Based on SPT-N Value and Fines Content,” Soils and Foundations, Vol. 23, No. 4, pp. 56-74, (1983).
65.Uyeno, C. K., “Liquefaction of Ottawa Sand With Fines”, Mas-ter Thesis, University of California, Davis. (1977).
66.Wong R. T., Seed H. B., and Chan C.K. “Cyclic Loading Liq-uefaction of Ravelly Soils.” Journal of The Soil Mechanics and Foundation Division, ASCE, Vol. 101, N. SM6, pp. 571-583. (1975).
67.Xia H., and Hu T. “Effects of Saturation and Back Pressure on Sand Liquefaction.” Journal of Geotechnical Engineering, ASCE. Vol. 117, No.9, pp. 1362-1374. (1991).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔