跳到主要內容

臺灣博碩士論文加值系統

(3.236.110.106) 您好!臺灣時間:2021/07/26 01:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃濬彥
研究生(外文):Chun-Yen Huang
論文名稱:重複性專案排程使用進化策略演算法於多資源限制下之最佳化模式
論文名稱(外文):Optimization Model of Repetitive Project Scheduling under Multi-Resources Constraints with Evolution Strategy
指導教授:謝孟勳謝孟勳引用關係
指導教授(外文):Meng-Syun Sie
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土木工程學系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:74
中文關鍵詞:重複性排程遺傳演算法多資源限制最佳化排程
外文關鍵詞:Repetitive SchedulingGenetic AlgorithmGAMulti-resource ConstraintsOptimal SchedulingLinear Scheduling MethodLSM
相關次數:
  • 被引用被引用:8
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
重複性專案係指該專案中之作業具有高度相似性,作業資源之使用可以因應作業重複特性作連續性之安排而更有效率。綜觀其他國內外學者針對重複性排程最佳化之研究,其計算模式皆採『距離』為切割軸。例如將工項主觀採用某種長度(例如100 M)切割,同一切割單元內,派遣相同工班組合施作。如此之假設,目的是為了降低複雜度,以利模型建立與求解。
經由本研究實地探查,在「水平重複性工程」中,若採用『距離』為重複性排程之切割軸,常導致工班之更換派遣發生在奇怪的時間點。舉例來說,某段工項完成於某時間點(例如,中午14:30),則為了在本日剩下的工作時間能夠進行下一段工項,就必須在此時對工班進行調整。此點假設非常不符合工地之實際運作,且將形成工班派遣之浪費,這是造成重複性排程不易施行於實際工程之主因。
為克服上述缺點,本研究創新提出以『日期』為切割軸之排程最佳化模式(Time-driven Linear Scheduling Method, 簡稱 T-LSM)。T-LSM以『時間-日』為一個切割單元,確保同一天內,工班組合為相同,以期盡量貼近廠商實際派遣工班之方式。T-LSM針對單一工項列舉所有可能排列方式,並能考慮工項與工項之間有『時間』限制(例如 灌漿後2天才可拆模)、距離限制(例如 怪手作業範圍30m內不可以有其他工項施作),以及多元資源限制(鋼筋工班、模板工班、土方工班…)。本研究提出一套遺傳演算法求解最佳化排程模式,克服因採『時間』為切割軸而造成『編碼長度長短不一』的困難。本研究已將T-LSM排程方法導入『2008年台中道路台17線、台61線公路維修改善工程』。經實際採用T-LSM排程方式,執行結果獲得承包廠商的認同,證實可達到縮短工期,節省成本的效益。
Repetitive project scheduling indicates that operational procedures of a project have high similarities and the procedural resources, in response to its repetitive qualities, can be arranged continuously and thus become more effective. Most of the previous scholars proposes the optimization research of repetitive project scheduling adopt “distance” as segment-axis. For instance, labor items are cut subjectively by certain length unit (such as 100 Meter); within this cutting unit, the same work crew is assigned. Such hypothesis is created to decrease the complexity so as to build a model and locate the optimal solution.
However, after the actual investigation for this study, repetitive project scheduling based on “distance” as the segment axis is found to be flawed. That is, crew has to be stopped at a certain time (e.g., 2:00 pm) to undergo crew change shift. Therefore, the repetitive project scheduling is hardly applied to the actual construction spot due to its impractical effect and its trait of waste of work crew assigned.
To overcome this problem, this study creatively proposes a Time-driven Linear Scheduling Method (T-LSM). T-LSM regards “time - day” as unit to ensure that the work crew is the same within one day in order to match up the actual method the contractor assigns. T-LSM lists all possible scheduling methods toward a single labor item and takes into account time constraints between labor items (e.g., the form works are removed two days after grouting), distance constraints (e.g., other construction works are not allowed within 30 meters from excavator work), and multi-resource constraints (e.g., reinforced concrete crew, model crew, earthwork crew and so forth).
The study suggests an optimal scheduling model which employs genetic algorithm to solve the problem of “different length of genes” resulted from time-driven axis. T-LSM presented by this study has been applied into “2008 improved construction works of Taichung roads (provincial highway No.17 and provincial highway No.61)”. The empirical outcome through T-LSM scheduling model confirmed by the contractor proves that it can virtually shorten working periods and save the cost.
誌謝 i
摘要 ii
Abstract iii
圖目錄 vi
表目錄 viii
第1章 緒論 1
1.1. 研究背景與動機 1
1.2. 研究目的 2
1.3. 研究限制 3
1.4. 研究方法與流程 4
1.5. 論文架構 5
第2章 文獻回顧 6
2.1. 重複性作業的排程方法 6
2.1.1. 傳統要徑法CPM(Critical Path. Method Schedule) 6
2.1.2. 線性平衡法LOB(Line of Balance)或類似圖示排程法 7
2.1.3. 數學模式分析法(Mathematical Analytical Methods) 8
2.1.4. 模擬與基因等非傳統分析法 10
2.2. 進化策略演算法 11
2.3. 重複性作業相關文獻整理 12
第3章 基本理論架構介紹 17
3.1. 切割單元 17
3.2. 距離及時間限制 19
3.2.1. 距離限制LD(Limited Distance) 19
3.2.2. 時間限制LT(Limited Time) 21
3.3. 資源設定 22
3.3.1. 資源庫Resources Base 22
3.3.2. 資源組Resources Set 22
3.4. 進化策略演算法編碼架構說明 24
3.4.1. 傳統方式以距離為切割軸的基因演算行為 24
3.4.2. 本排程以日期為切割軸的基因演算行為 26
3.4.3. 本研究編碼結構設定 27
3.4.4. 編碼適存值計算 30
3.5. 進化策略演算法演算流程及步驟 35
第4章 案例實證 39
4.1. 工程基本資料 39
4.2. 導入本研究排程 47
4.3. 排程成果展示 48
第5章 結論與未來研究方向 58
5.1. 結論 58
5.2. 未來研究方向 59
第6章 參考文獻 60
English References
[1].Arditi D. and Albulak, Z.M. (1986). “ Line-of-balance scheduling in pavement construction.” J. Constr. Div., Am. Soc. Civ. Eng., 112(3), 411-424.
[2].Birrell,G. S. (1980). “Construction planning –beyond the critical path.” J. Constr. Div., Am. Soc. Civ. Eng., 106(3), 389-407.
[3].El-Rayes, K. and Moselhi, O. (2001a). “Optimizing resource utilization for repetitive construction projects.”J. Constr. Eng. Manage., 127(1), 18-27
[4].El-Rayes, K. (2001b). “Object-oriented model for for repetitive construction scheduling.” J. Constr. Eng. Manage., 127(3), 199-205
[5].Harmelink, D. J. (1995). “Linear scheduling model: The development of a linear scheduling model with mirco computer applications for high-way construction project control.” Ph.D. thesis, Iowa State University, Ames, Iowa.
[6].Harmelink, D. J. and Rowings, E. J. (1998). “Linear scheduling model: Development of controlling activity path.” J. Constr. Eng. Manage., 124(24), 263-268.
[7].Harris, R. B. and Ioannou, P. G.(1998). “Scheduling projects with repeating activities. ” J. Constr. Eng. Manage., 124(4), 269-278.
[8].Hegazy, T, Shabeeb, A. K. and Elbeltagi, E.(2000). “Algorithm for scheduling with multiskilled constrained resource ” J. Constr. Eng. Manage., 126(6), 414-421
[9].Hyari, K. and El-Rayes, K. (2006). “ Optimal planning and scheduling for repetitive construction projects.” J. Manage. Eng., 10(1), 11-19
[10].Harmelink, D. J. and Yamin, R. A. (2001). “Comparison of Linear Scheduling Model (LSM) and Critical Path Method (CPM).” J. Constr. Eng. Manage., 127(5), 374-381
[11].Hegazy, T. and Wassef, N (2001). “Cost Optimization in Projects with Repetitive Nonserial Activities.” J. Constr. Eng. Manage., 127(3), 183-191
[12].Harris, R. B. and Ioannou , P.G. (1998).“Scheduling project with Repetitive Activities.” J. Constr. Eng. Manage., 124(4), 183-191
[13].Ipsilandis, P. G. (2007). “Multiobject Linear Programming Model for Scheduling Linear Repetitive Projects.” J. Constr. Eng.Manage., 133(6), 498-505
[14].Kandil, A. and El-Rayes, K. (2006). “Parallel Genetic Algorithms for Optimizing Resource Utilization in Large-Scale Construction Projects.”J. Constr. Eng. Manage., 132(5), 491-498
[15].Leu. S. S., and Yang, C. H. (1999). “GA-Base Mukticriteria Model for Construction Scheduling.” J. Constr. Eng. Manage., 125(6), 420-427.
[16].Liu, L. Y., Burns, S. A. and Feng, C. W. (1995). “Construction time-cost trade-off analysis using LP/IP hybrid method.” J. Constr. Eng. Manage., 121(4), 446-454
[17].Mattila, K. G., and APark, A. (2003). “Comparison of linear scheduling model and repetitive scheduling method.” J. Constr. Eng. Manage., 129(1), 56-64.
[18].Mattila, K. G., and Abraham, D. M. (1998). “Resource leveling of linear schedules using integer linear programming.” J. Constr. Eng. Manage., 124(3), 232-244.
[19].Moselhi O.and El-Rayes K. (1994). "Scheduling of repetitive project with cost optimization” J. Constr. Eng.Manage., 119(4), 681-697
[20].Reda R. M. (1990). "RPM repetitive project modeling" J. Constr. Eng.Manage., 116(2), 316-330
[21].Russell, A. D., and Ceselton, W. F. (1988). “ Extensions to linear schedule method.” J. Constr. Eng. Manage., 114(4), 36-52.
[22].Russell, A. D., and Wong, W. C. M. (1993). “New generation of planning structures.” J. Constr. Eng. Manage., 129(2), 196-214.
[23].Reda, R. B. (1990). “RPM: Repetitive project modeling.” J. Constr. Eng. Manage., 116(2), 316-330.
[24].Selinger, S. (1980). “Construction planning for linear projects.” J. Constr. Div., Am. Soc. Civ.Eng., 10(2), 195-205.
[25].Senior, B.A. and Halpin, D.W. (1998) “ Simplified stimulation system for construction project.” J. Constr. Eng. Manage., 124(1), 72-81.
[26].Senouci, A. and Eldin, N. (1996) “ Dynamic programming approach to scheduling of nonserial linear project.” J. Comput. Civ. Eng., 10(2), 106-114April 1996
[27].Suhail,A. and Neale, R. (1994). “CPM/LOB: New methodology to integrate CPM and line of balance.” J. Constr. Eng. Manage., 120(3), 667-684.
[28].Thabet, W. Y. and Beliveau, Y. J. (1994) “ HVLS: Horizontal and vertical logical scheduling for multistory projects.” J. Constr. Eng. Manage., 120(1), 875-892.
[29].Vorster, M. C. , Beliveau, Y.J.and Bafna, T.(1992a). “ Linear scheduling and visualization.” Transportation Research Record,1351,32-39
[30].Vorster, M. C. ,and Bafna, T.(1992b). Discussion of “Formal development of line-of-balance,” by Z. M. Al Sarraj. J. Constr. Eng. Manage., 118(1), 210-211
[31].Vanhoucke, M. (2006). "Work continuity constraints in project scheduling” J. Constr. Eng. Manage., 132(1), 14-24
[32].Yang , I.T. (2002). "Repetitive Project Planner : Resource-Driven Scheduling For Repetitive Construction Projects. " Ph.D. thesis, Univ. of Michigan, Ann Arbor.
[33].Yang, I. T. and Ioannou P. G (2004). "Scheduling system with focus on practical concerns in repetitive projects. " Constr. Manage. Econom., 22, 619-630
[34].Yang, I. T. (2006). "Using Gaussian copula to simulate repetitive project. " Constr. Manage. Econom., 24, 901-909

中文參考文獻
[1].孫國勛 (2005). "工作群組式重複性專案排程與最佳化模式之研究" 國立中央大學 ,桃園
[2].蕭博文 (2002)"應用禁忌搜尋法求解營建工程專案多重資源排程最佳化之研究" 朝陽科技大學 ,台中
[3].施國詮 (2004) "應用限制規劃於營建專案有限資源排程與重排程最佳化問題之研究" 國立雲林科技大學 ,雲林
[4].林欣慧 (2005) "多組態資源限制專案排程問題解算之研究-包含不可恢復資源限制 " 元智大學 ,桃園
[5].Michael Negnevitsky "人工智慧:智慧型系統導論(第二版) ",7,2-40
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊