跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/28 12:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:郭清吉
研究生(外文):Ching-Chi Kuo
論文名稱:營建載重模式建立及支撐結構可靠度設計
論文名稱(外文):Development of Construction Load Modeling and Structural Reliability-Based Design of Falsework
指導教授:顏聰顏聰引用關係
學位類別:博士
校院名稱:國立中興大學
系所名稱:土木工程學系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:400
中文關鍵詞:結構可靠度設計營建載重強度折減因子載重因子
外文關鍵詞:Structural Reliability-Based DesignConstructional LoadThe Strength Reduction factorThe Load factor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:222
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在透過結構可靠度設計理論,對營建載重與模板支撐本體強度進行整合性研究。除由建築工地現場營建載重的模組化過程,建立適合模擬營建載重的或然率模式外,亦提出支撐結構在灌漿前、後階段於不同可靠度指數下所對應的強度折減因子及載重因子。工程單位可參考本研究結果以驗核灌漿前、後階段支撐結構之安全配置。
營建載重之建立結果顯示:灌漿前階段之載重來源以鋼筋材料為主,局部區域載重最大值45023.6 N/m2、平均值6940.3 N/m2、標準偏差4914.7 N/m2,或然率模式選擇以Type I極值分佈為最佳,對數常態分佈次之。灌漿後階段之載重來源除鋼筋材料外,尚有模板及支撐材料等,局部區域載重最大值61024.5 N/m2、平均值2430.2 N/m2、標準偏差3971.4 N/m2,或然率模式以Type II極值分佈及Type III極值分佈為最佳選擇模式。
對不同組搭型式之模板支撐結構本體強度研究顯示:由實際量測尺寸所求得之臨界載重平均值,與由材料尺寸標稱值所求得之臨界載重標稱值,二者比值相當接近。就支撐結構本體強度的變異係數而言,單層木支撐的變異係數為0.145、單層可調鋼管支柱的變異係數為0.078、聯合支撐鷹架系統的變異係數為0.107。
在支撐結構可靠度設計方面獲致以下結論:模板支撐本體強度折減因子隨著可靠度指數的增加而減小,但在同一可靠度指數情形下,不同工地所得之強度折減因子差異不大。營建靜載重因子並不隨可靠度指數的增加而變動。營建活載重因子隨著可靠度指數的增加而增加。且在同一可靠度指數情形下,不同工地之營建活載重因子差異相當大。在不同營建載重比條件下,強度折減因子隨著可靠度指數的增加而減小、靜載重因子呈小幅增加或維持定值,而活載重因子值增加的幅度則較大;在同一可靠度指數下,強度折減因子及活載重因子隨著載重比的增加而變大,而靜載重因子則有減小的現象;然而三種因子的增加或減小幅度並不明顯,且當活、靜載重比達到20以上時,設計因數即逐漸趨於定值。在不同營建活載重變異係數條件下,強度折減因子隨著可靠度指數的增加而減小、靜載重因子則維持定值,而活載重因子值有較大幅度的增加。若在同一可靠度指數下,強度折減因子及活載重因子隨著活載重變異係數的增加而變大,而靜載重因子則仍維持定值,且當活載重變異係數由0.2增加至2.0時,活載重因子則增加3 ~ 5倍。
以現有鋼結構設計容許應力法設計時,由於該法沒有考慮載重及支撐本體強度的變異性,且該法使用之設計參數為永久階段使用的參數,與營造階段情況不同,無法有效評估支撐工地組配實際情形。本研究之可靠度設計法考慮到鋼管鷹架與木支撐的互制行為及活載重的變異性,較能準確地驗核聯合支撐鷹架系統的極限承載力,對營建結構的安全性提供更好的保證。
This paper aims to conduct integration study on construction loads and falsework strength with design theories for structure reliability. It build up the probability model suitable for construction loads simulation through modularization process of construction loads on construction sites; and also propose corresponding the strength reduction factor and the load factors for shoring structures under different reliability index. Construction units can make reference to the research results to validate the safety configuration of the shoring structure before and after grouting.
The results of construction loads determination indicate that before grouting, the main load source is the steel bar. The maximum load value is 45023.6 N/m2. The average value is 6940.3 N/m2. The standard deviation is 4914.7 N/m2. As for the selection of probability model, type I extreme value distribution is the best choice, followed by lognormal distribution. After grouting, other than steel bars, load sources include formwork and supporting materials. The maximum load value is 61024.5 N/m2. The average value is 2430.2 N/m2. The standard deviation is 3971.4 N/m2. As for the selection of probability model, type II or type III extreme value distribution is the best choice.
Results of studies on the falsework strength with different setup types indicate that the average critical load calculated with actual measured dimensions is very close to the nominal critical load calculated with nominal material dimensions. In terms of the coefficient of variation of the falsework strength, for single-layer wooden shoring, the coefficient of variation is 0.145, for single-layer adjustable steel tube shoring, the coefficient of variation of is 0.078, and for combined setup shoring systems, the coefficient of variation of is 0.107.
In terms of the reliability design of shoring structures, following conclusions are drawn: the reduction factor of falsework strength decreases with the increase of the reliability index. With the same reliability index, the reduction factors of falsework strength acquired on different construction sites do not show much difference. The construction dead load factors do not change with the increase of the reliability index. On the other hand, the construction live load factors increase with the increase of the reliability index. With the same reliability index, the construction live load factors acquired on different construction sites vary significantly. Under the condition of different construction loads ratio, with the increase of the reliability index, the strength reduction factor reduces, the dead load factor increases slightly or remains a constant value, while the live load factor increases more significantly. With the same reliability index, the strength reduction factor and live load factor increase with the increase of the load ratio. The dead load ratio decreases under the same condition. However, the increase or decrease of these three types of factors is not obvious. When live load ratio or dead load ratio reaches over 20.0, the design factor gradually reaches a constant value. Under the condition of different coefficients of variation for live construction load, with the increase of the reliability index, the strength reduction factor reduces, the dead load factor remains a constant value, and the live load factor increases more significantly. With the same reliability index, as the coefficient of variation of live loads increases, the strength reduction factor and live load factor increase, while the dead load factor remains a constant value. When the coefficient of variation of the live load increases from 0.2 to reach 2.0, the live load factor increases 3~5 times.
In the case of conducting design analysis with allowable stress design method for design of steel structures, since this method does not take into account the variation of loads and falsework strength and the design variables used in this method are variables for the permanent stage, which are different from those used in construction stage, this method cannot effectively evaluate the falsework strength on a real construction site. Since the reliability design method used in this study takes into account the interactive behaviors and the variation of live loads, it can validate the critical load of a combined setup shoring system more accurately and provide a better guarantee for the safety of construction structures.
總 目 錄
謝誌 i
中文摘要 ii
英文摘要 iv
總目錄 vi
表目錄 x
圖目錄 xiii
照片目錄 xxxviii
符號說明 xl
第一章 緒論 1
1.1研究背景 1
1.2研究目的 2
1.3研究步驟 2
1.4本文章節架構 3
第二章 工程現況及文獻回顧 4
2.1工程現況 4
2.1.1設計問題 4
2.1.2施工問題 6
2.1.3材料品質問題 7
2.2國內外相關文獻回顧 7
2.2.1支撐結構本體強度 7
2.2.2營建載重 10
2.3小結 13
第三章 結構可靠度設計之基本理論 15
3.1前言 15
3.2可靠度基本理論 15
3.2.1極限狀態的定義 15
3.2.2可靠度指標 16
3.2.3一階二次矩法 18
3.2.3.1一階近似式 18
3.2.3.2二次矩法 20
3.2.4線性功能函數 23
3.2.5等效常態分佈 24
3.2.6不確定性分析 26
3.2.7基於可靠度的結構設計流程 28
3.3小結 29
第四章 營建載重模組化及其或然率模式之建立 32
4.1灌漿前、後營建載重之定義 32
4.2營建載重調查規劃 32
4.2.1工地選定及前置作業 32
4.2.2營建載重調查方法 33
4.3營建載重模組化之建立 35
4.3.1載重模組化 35
4.3.2載重調查結果及工地現況說明 36
4.3.2.1灌漿前鋼筋吊置作業階段 36
4.3.2.2灌漿前樑模組立作業階段 39
4.3.2.3灌漿前版筋組立作業階段 40
4.3.2.4灌漿後營建材料吊置作業階段 40
4.3.2.5灌漿後柱筋組立作業階段 41
4.3.2.6灌漿後模板作業階段 41
4.3.2.7載重調查結果 43
4.3.3模組化載重之應用 43
4.3.3.1灌漿前模組化載重之應用 44
4.3.3.2灌漿後模組化載重之應用 44
4.4營建載重或然率模式之建立 45
4.4.1或然率紙 45
4.4.1.1常態分佈或然率紙製作 46
4.4.1.2對數常態分佈或然率紙製作 47
4.4.1.3指數分佈或然率紙製作 47
4.4.1.4 Type I 極值分佈或然率紙製作 48
4.4.1.5 Type II 極值分佈或然率紙製作 49
4.4.1.6 Type III 極值分佈或然率紙製作 50
4.4.1.7偉伯分佈或然率紙製作 51
4.4.2或然率模式適合度檢定 52
4.4.3營建載重或然率模式 53
4.4.3.1灌漿前營建載重之或然率模式 53
4.4.3.1.1常態分佈 53
4.4.3.1.2對數常態分佈 54
4.4.3.1.3指數分佈 54
4.4.3.1.4 Type I 極值分佈 54
4.4.3.1.5 Type II 極值分佈 54
4.4.3.1.6 Type III 極值分佈 54
4.4.3.1.7偉伯分佈 55
4.4.3.1.8適合度檢定結果 55
4.4.3.1.9總體營建載重之或然率模式 55
4.4.3.2灌漿後營建載重之或然率模式 56
4.4.3.2.1常態分佈 56
4.4.3.2.2對數常態分佈 56
4.4.3.2.3指數分佈 56
4.4.3.2.4 Type I 極值分佈 56
4.4.3.2.5 Type II 極值分佈 57
4.4.3.2.6 Type III 極值分佈 57
4.4.3.2.7偉伯分佈 57
4.4.3.2.8適合度檢定結果 57
4.4.3.2.9總體營建載重之或然率模式 58
4.4.4營建載重或然率模式之應用 58
4.5小結 58
第五章 支撐結構之可靠度設計 170
5.1支撐結構系統定義 170
5.2營建載重部分 170
5.2.1灌漿前營建載重 171
5.2.2灌漿後營建載重 173
5.2.3載重作用下之模板支撐反力 174
5.2.3.1載重模式試驗 174
5.2.3.2不同載重下支撐之反力 175
5.3支撐結構本體強度 176
5.3.1單層組搭 177
5.3.1.1單根木支撐承載力 178
5.3.1.2單根可調鋼管支柱承載力 180
5.3.2單組聯合支撐鷹架承載力 183
5.3.3不確定性分析 186
5.4基於可靠度之結構設計 187
5.4.1基於可靠度之設計程序 187
5.4.2基於可靠度之模板支撐結構設計 190
5.4.2.1 單層木支撐 190
5.4.2.2 單層可調鋼管支柱 193
5.4.2.3 聯合支撐鷹架系統 196
5.4.2.4 載重比對設計因數之影響 199
5.4.2.5 載重變異係數對設計因數之影響 200
5.5 實例探討 201
5.6小結 221
第六章 結論與建議 365
6.1 結論 365
6.2建議 367
參考文獻 368
附錄A Matlab簡易程式檔 377
附錄B 不同可靠度指數之計算例 385

表 目 錄
表2.1 歷年來模板支撐倒塌案例彙整表 14
表4.1A 營建施工階段之灌漿前、後作業區分表 60
表4.1B 載重於不同營建階段之靜、活載重定義 60
表4.2 不同作業階段之營建載重調查工地場次統計表 60
表4.3 現場取樣之貫材單位重(台電○○新建工地) 61
表4.4 表列計算值與直接量測值比較(台電○○新建工地) 61
表4.5 現場取樣之貫材單位重(台中市西區○○新建工地) 62
表4.6 現場取樣之模板平均重量(台中市西區○○新建工地) 62
表4.7 表列計算值與直接量測值比較(台中市西區○○新建工地) 62
表4.8 台中市西區○○新建工地灌漿前營建載重調查表 63
表4.9 鉅虹○○新建工地灌漿前營建載重調查表 65
表4.10 太子○○A棟新建工地灌漿前營建載重調查表 66
表4.11 順天○○B棟新建工地灌漿前營建載重調查表 66
表4.12 勝美○○A棟新建工地灌漿前營建載重調查表 67
表4.13 勝美○○C棟新建工地灌漿前營建載重調查表 67
表4.14 聖俯○○A棟新建工地灌漿前營建載重調查表 68
表4.15 聖俯○○B棟新建工地灌漿前營建載重調查表 68
表4.16 久鼎○○A棟新建工地灌漿前營建載重調查表 69
表4.17 鄉林○○B區新建工地灌漿前營建載重調查表 69
表4.18 順天○○A棟新建工地灌漿前營建載重調查表 70
表4.19 財政○○新建工地灌漿前營建載重調查表 70
表4.20 久鼎○○B棟新建工地灌漿前營建載重調查表 71
表4.21 鄉林○○D區新建工地灌漿前營建載重調查表 71
表4.22 鄉林○○A8區新建工地灌漿前營建載重調查表 72
表4.23 鄉林○○C區新建工地灌漿前營建載重調查表 72
表4.24 鄉林○○A8區新建工地灌漿後組模初期營建載重調查表 73
表4.25 鄉林○○C區新建工地灌漿後組模初期營建載重調查表 73
表4.26 鄉林○○D區新建工地灌漿後組模初期營建載重調查表 74
表4.27 鉅虹○○新建工地灌漿後營建載重調查表 74
表4.28 聖俯○○A棟新建工地灌漿後營建載重調查表 75
表4.29 聖俯○○B棟新建工地灌漿後營建載重調查表 75
表4.30 久鼎○○A棟新建工地灌漿後營建載重調查表 76
表4.31 台中市西區○○新建工地灌漿後營建載重調查表 76
表4.32 太子○○B棟新建工灌漿後營建載重調查表 77
表4.33 順天○○A棟新建工地灌漿後營建載重調查表 77
表4.34 順天○○B棟新建工地灌漿後營建載重調查表 78
表4.35 勝美○○B棟新建工地灌漿後營建載重調查表 78
表4.36 聖俯○○C棟新建工地灌漿後營建載重調查表 79
表4.37 久鼎○○B棟新建工地灌漿後營建載重調查表 79
表4.38 鄉林○○A8區新建工地灌漿後營建載重調查表 80
表4.39 鄉林○○D區新建工地灌漿後營建載重調查表 80
表4.40 灌漿前階段營建載重之最大值、平均值及標準偏差 81
表4.41 灌漿後階段營建載重之最大值、平均值及標準偏差 81
表4.42 不同或然率分佈函數之標準隨機變數s及其累積或然率值F(s) 82
表4.43 K-S test中 之臨界值 82
表4.44 灌漿前階段營建載重在不同或然率分佈模式下之適合度檢定結果 83
表4.45 灌漿後階段營建載重在不同或然率分佈模式下之適合度檢定結果 84
表4.46 灌漿前階段營建載重適合不同或然率模式之工地數 85
表4.47 灌漿後階段營建載重適合不同或然率模式之工地數 85
表5.1 營建階段之載重型態、載重來源及危害模式………………..……………….223
表5.2 不同文獻之營建載重或然率模式及統計參數彙整表 224
表5.3 灌漿前階段營建載重之統計参數總表 224
表5.4 灌漿後階段營建載重之統計参數總表 225
表5.5 均佈載重作用在不同跨距(1跨∼10跨)之支承反力係數分佈表 226
表5.6 10 跨影響線載重配置圖之各支承反力係數總表 229
表5.7 不同邊界條件下之柱結構有效長度K值(無側向位移) 230
表5.8 不同木支撐材料之靜曲彈性模數統計參數 230
表5.9 建築樓層高度及木支撐長度、斷面之尺寸量測資料及其統計參數 231
表5.10 不同長度之單根木支撐破壞載重值及其統計參數 232
表5.11 影響木支撐(冰片樹)結構本體強度之隨機變數統計参數值 232
表5.12 可調鋼管支柱斷面性質之量測統計參數及CNS規定 233
表5.13 可調鋼管支柱之彈性模數及其統計參數 234
表5.14 建築樓層高度及可調鋼管支柱長度之量測資料及其統計參數 234
表5.15 影響可調鋼管支柱結構本體強度之隨機變數統計参數值 235
表5.16 聯合支撐鷹架系統之鋼管鷹架斷面近似等效慣性矩 235
表5.17 影響聯合支撐鷹架系統結構本體強度之隨機變數統計参數值 235
表5.18 灌漿前階段單層木支撐結構可靠度指數與設計因數之關係總表 236
表5.19 灌漿後階段單層木支撐結構可靠度指數與設計因數之關係總表 237
表5.20 灌漿前階段單層可調鋼管支柱結構可靠度指數與設計因數之關係總表 238
表5.21 灌漿後階段單層可調鋼管支柱結構可靠度指數與設計因數之關係總表 239
表5.22 灌漿前階段聯合支撐鷹架系統結構可靠度指數與設計因數之關係總表 240
表5.23 灌漿後階段聯合支撐鷹架系統結構可靠度指數與設計因數之關係總表 241
表5.24 總合工地模板支撐結構可靠度指數及設計因數之關係表 242
表5.25 灌漿前階段之模板支撐結構可靠度指數(
[1] 行政院勞委會,1991-1998 “營造業職業災害實例”,8冊。
[2] 顏聰,朱明信,郭其珍,林建宏,林其璋,黃玉麟,彭瑞麟,陳瀛州,“施工架及模板支撐作業安全檢討與自動檢查技術報告書”,行政院勞工委員會,勞工技術叢書 03-41-05,臺北,1991。
[3] 顏聰,林建宏,郭其珍,朱明信,黃玉麟,陳豪吉,陳惠發,Rosowsky, D.V.,Pan, A.D.,黃傳欣,“鋼管架支撐倒塌事故防止技術研究”,行政院勞工委員會,臺北,1993。
[4] 顏聰,陳惠發,林宜清,黃玉麟,陳豪吉,黃傳欣,“模板支撐倒塌預警系統鋼管架支撐承受非規則荷重之研究”,行政院勞工委員會勞工安全衛生研究所,臺北,1994。
[5] 顏聰,陳惠發,林建宏,郭其珍,朱明信,林宜清,黃玉麟,陳豪吉,Rosowsky, D.V.,Pan, A.D.,黃傳欣,“營造工程各種木材模板支撐材質強度及施工自動檢查技術研究”,行政院勞工委員會勞工安全衛生研究所,臺北,1994。
[6] 顏聰,林宜清,黃玉麟,陳豪吉,彭瑞麟,“鋼管施工架施工安全規範研究報告〞,行政院勞工委員會,臺北,1995。
[7] 顏聰,陳惠發,林宜清,黃玉麟,陳豪吉,彭瑞麟,“模板支撐倒塌預警系統鋼管架與木材支撐之互制影響及倒塌預警系統之建立”,行政院勞工委員會,IOSH84-S121,臺北,1995。
[8] 顏聰,“鋼管施工架模板支撐施工安全作業之建立與推廣”,財團法人台灣營建研究中心,1995。
[9] 林宜清,顏聰,黃玉麟,陳豪吉,彭瑞麟,“行政院勞工安全委員會委託研究報告
[10] “營建災害預警技術研究--模板倒塌預警系統安全指標之確定”,行政院勞工安全衛生研究所,1997。
[11] 顏聰,彭瑞麟,林宜清,陳豪吉,耿彥偉,“鷹架模板支撐系統使用木支撐之承載力”,中國土木水利工程學刊,1999。
[12] 顏聰,林宜清,黃玉麟,彭瑞麟,蔡慰龍,“鋼管施工架模板支撐在偏心載重作用下之承載力”,中國土木水利工程學刊,第九卷,第四期,pp.655-663,1997。
[13] 顏聰、彭瑞麟、陳惠發、Rosowsky, D.V.、潘德恩,“混凝土澆置之載重型態及澆灌路徑對模板支撐結構安全性之影響”,營建知訊,161期,pp.18-32,1996。
[14] 顏聰、彭瑞麟、陳惠發、潘德恩、陳紹禮,“鋼管施工架之應用及其模板支撐破壞模式之探討”,營建知訊,158期,pp.13-22,1996。
[15] 李政峰,“木材模板支撐系統之承載能力研究”,國立中興大學土木工程研究所,台中,碩士論文,1995。
[16] 彭瑞麟、顏聰、林宜清、伍勝民,“由營建倒塌意外談國內中挑空建築雙層組搭支撐之安全”,營建知訊,171期,pp.10-26,1997。
[17] 彭瑞麟、黃威鈞,“中挑空建築模板支撐之穩定分析—單層系統”,第22屆力學會議,pp.87-94,1998。
[18] 彭瑞麟、鞏景漢,“中挑空建築模板支撐之穩定分析—雙層系統”,第22屆力學會議,pp.159-166,1998。
[19] 顏聰,林宜清,黃玉麟,陳豪吉,蔡慰龍,巫昆霖,彭瑞麟,陳惠發,“鋼管支撐架承受非對稱荷重及側向位移之研究”,勞工安全衛生研究季刊,第三卷,第一期,pp.51-69,1995。
[20] 黃玉麟、顏聰、林雍智、陳惠發,“混凝土灌漿作業對鋼管支撐架之荷重問題”,中國土木水利工程學刊,8卷2期,第281-286頁,1996。
[21] 顏聰、黃玉麟、紀人超、林宜清,“鋼管施工架之支撐能力”,中國土木水利工程學刊,8卷1期,第33-34頁,1996。
[22] 沈進發,1994;”模板工程—經濟、設計、施工及安全”,十版,台灣省台北市。
[23] 石正義,1994;”建築模板施工設計實務”,再版,台灣省台北市,詹氏書局,pp.263。
[24] 失杉浦光義著,崔征國譯,1994;”圖解建築工程系列—圖解建築施工”,再版,台灣省台北市,詹氏書局,pp.273。
[25] 大屋準三著,崔征國譯,1992;”建築臨時架設物之實務2—圖解模板支保計畫”,一版,台灣省台北市,詹氏書局,pp.155。
[26] 武井一夫、中川三夫、下村一、飯塚雅弘著,崔征國譯,1991;”建築物假設計算”,一版,台灣省台北市,詹氏書局,pp.172。
[27] 高健章,“國內鋼管鷹架使用現況安全之探討”,財團法人台灣營建研究中心,1983。
[28] 呂良正,高健章,楊永斌,黃偉熙,黃木源,鄒慶暉,吳世雄,林楨中,”鋼管施工架之承載力及頻率量測研究”,行政院勞工委員會勞工安全衛生研究季刊,1997。
[29] Grundy, P., and Kabaila, A., “Construction Loads on Slabs with Shore Formwork in Multistory Buildings,” ACI Journal, Proceedings Vol.60, No.12, pp.1729-1738, 1963.
[30] Hadiprino, F.C., and Wang, H.K., “Analysis of causes of formwork Failures in Concrete Structures,” Journal Construction Engineering and Management, ASCE, Vol.112, No.1, pp.112-121, 1986.
[31] Mosallam, K., and chen, W.F., “Design Considerations for Formwork in Multistory Concrete Buildings,” Engineering Structures, Vol.12, No.ST3, pp.163-172, 1990.
[32] 陳瑞華,蔡益超,“建築物載重之現況調查與分析”,內政部建築研究所,臺北,1998。
[33] Dunham, J.W., Brekke, C.N.,and Thompson, G.N.,”Live Load on Floors in Buildings,” Buildings and Structures Report 133, U.S. National Bureau of Standards, Wsahington, D.C.,Dec., 1952.
[34] Bryson, J.O. and Gross, D., “Techniques for the Survey and Evaluation of Live Floor Loads and Fire Loads in Modern Office Buildings,” NBS Building Science Series 16, U.S. Dept. of Commerce, Washington, D.C., 1968.
[35] Karman, T., “Statistical Investigation on Live Load on Floors,” International Council for Building Research, Studies of Documentation Committee W23, Madrid, Spain, 1969.
[36] Corotis, R.B. and Doshi, V.A., “Probability Models for Live Load Survey Results,” Journal of the Structural Division, ASCE, Vol.103, No.ST6, pp.1257-1274, 1977.
[37] Culver, C.G., "Live Load Survey Results for Office Buildings,” Journal of the Structural Division, ASCE, Vol.102, pp.2269-2284, 1976.
[38] Ayoub, H.N., “Development of Probability Models for Concrete Formwork Live Loads,” PhD thesis, Marquette University, Milwaukee, Wisc., 1992.
[39] Ayoub, H.N., and Karshenas, S., “Survey Results for Concrete Construction Live Loads on Newly Poured Slabs,” Journal of Structural Engineering, ASCE, Vol.120, No.5, pp.1543-1561, 1994.
[40] Peir, J.C and C.A.Cornell, “Spatial and Temporal Variability of Live Loads,” Journal of the Structural Division, ASCE, Vol.99, No.5, pp.903-922, 1973.
[41] Karshenas, S., and Ayoub, H.N., “Analysis of Concrete Construction Live Loads on Newly Poured Slabs,” Journal of Structural Engineering, ASCE, Vol.120, No.ST5, pp.1525-1542, 1994.
[42] Corotis, R.B. and Doshi, V.A., “Probability Models for Live Load Survey Results,” Journal of the Structural Division, ASCE, Vol.103, No.ST6, pp.1257-1274, 1977.
[43] Jaria, V., and Corotis, R.B., “Sum of Independent Gamma Live Loads Model,” Journal of the Structural Division, ASCE, Vol.105, No.ST8, pp.1701-1705, 1979.
[44] Liu, X., and Chen, W.F., “Probability Distribution of Maximum Wooden Shore Loads in Multistory R/C Buildings,” Structural Safety, Elsevier Science Publishers, Vol.4, pp.197-215, 1987.
[45] Liu, X., Chen, W.F., and Bowman, M.D. “Construction Load Analysis for Concrete Structures,” Journal of Structural Engineering, ASCE, Vol.111, pp.1019-1036, 1985.
[46] Liu, X., Chen, W.F., and Bowman, M.D. “Shore-Slab Interaction in Concrete Buildings,” Journal of Structural Engineering and Management, ASCE, Vol.112, No.2, pp.227-244, 1986.
[47] Agarwal, R. K., and Gardner, N. J., “Form and Shore Requirements for Multistory Flat Slab Type Buildings,” ACI Journal, V.71, No.11, pp. 559-569, 1974.
[48] Rosowsky, D.V., Philbrick, T.W., and Huston Dryver R., ”Observations from Shore Load Measurements During Concrete Construction.” Journal of Performance of Construction Facilities, Vol.11, No. 1, pp.18-23, 1997.
[49] Rosowsky, D.V., Huston, Dryver R., Fuhr Peter, and Chen, W.F., “Measuring Formwork Loads During Construction,” Concrete Internation, Vol.16, No. 11, pp.21-25, 1994.
[50] EI-Shahhat, A.M., Rosowsky, D.V., and Chen, W.F., “Construction Safety of Multistory Concrete Buildings,” ACI Structural Journal, Vol.90, No.4, pp.335-341, 1993.
[51] EI-Shahhat, A.M., Rosowsky, D.V., and Chen, W.F., “Partial Factor Design for Reinforced Concrete Buildings during Construction,” ACI Structural Journal, Vol.91, No.4, pp.475-495, 1994.
[52] EI-Shahhat, A.M., and Chen, W.F., “Improved Analysis of Shore-Slab Interaction,” ACI Structural Journal, Vol.89, No.5, pp.528-537, 1992.
[53] Stuart G.R., “Probability-based Patterned Live Loads for Design,” Structural Safety, Elsevier Science Publishers, Vol.19, No.1, pp.37-52, 1997.
[54] Ayyub, B.M., “Structural Safety Analysis of Reinforced Concrete Building during Construction,” USA, Georigia Lnstitute of Technology, 1983.
[55] Ellingwood, B. R., Galambos, T.V., MaGregor, J.G., and Cornell, C.A.,”Development of a Probability Based Load Criterion for American National Standard A58,” NBS Special Publication 577, National Bureau of Standards, Washington, D.C., 1980.
[56] Ellingwood, B. R. , MaGregor, J.G., Galambos, T.V., and Cornell, C.A., ”Probability Based Load Criteria : Load Factors and Load Combinations,” Journal of the Structural Division, ASCE, Vol.108, No.ST5, pp.978-997, 1982.
[57] Fang, D.P., Geng, C.D., Zhu, H.Y., and Liu, X.L., “Floor Load Distribution in Reinforced Concrete Buildings During Construction,” ACI Structural Journal, Vol.98, No.2, pp.149-156, 2001.
[58] Wen, Y.K., “Statistical Combination of Extreme Loads,” Journal of the Structural Division, ASCE, Vol.103, No.ST5, pp.1079-1093, 1977.
[59] Ang, AH-S., and Cornell C.A., “Reliability Bases of Structural Safety and Design,” Journal of the Structural Division, ASCE, Vol.100, pp.1755-1769, 1974.
[60] Ang, AH-S., and Tang, W.H., “Probability Concepts in Engineering Planning and Design,” John Wiley and Sons, Inc., New York, 1975.
[61] 內政部,1995 “建築技術規則”。
[62] ACI Committee 347, “Recommended Practice for Concrete Formwork”, ACI 347R-88, American Concrete Institute, Detroit, 1990.
[63] Huang, Y.L., “Gravity Load and Resistance Factor Design Guidelines for High Clearance Scaffold Systems,” Ph.D. Dissertation, Purdue University, West Lafayette, IN., 1995.
[64] Peng, J.L., Pan, A.D., Rosowsky, D.V., Chen, W.F., Yen, T., and Chan, S.L., “High Clearance Scaffold Systems During Construction, Part I: Structural Modeling and Modes of Failure,” Engineering Structures, Vol. 18, No. 3, pp.247-257, 1996.
[65] Peng, J.L., Rosowsky, D.V., Pan, A.D., Chen, W.F., Chan, S.L., and Yen, T., “High Clearance Scaffold Systems During Construction, Part II: Structural Analysis and Development of Design Guidelines,” Engineering Structures, Vol. 18, No. 3, pp.258-267, 1996.
[66] Larrabee, R.D. and Cornell, C.A., “Combination of Various Load Processes,” Journal of the Structural Division, ASCE, Vol.107, pp.223-239, 1981.
[67] Lew, H.S., “Safety During Construction of Concrete Buildings – a Status Report,” NBS Building Sciences Series No.80, National Bureau of Standards, Washington D.C.,1976.
[68] Lew, H.S., “Construction Loads and Load Effects in Concrete Building Construction,” Concr. Int., Vol.7, No.4, pp.20-23,1985.
[69] Madsen, H., Kilcup, R., and Cornell, C.A., “Mean Upcrossing Rate for Stochastic Load Processes,” Probabilistic Mechanics and Structural Reliability, ASCE, New York, pp.54-58.
[70] Peng, J.L., Pan, A.D.E., Chen, W.F., Yen, T., and Chan, S.L., “Structural Modeling and Analysis of Modular Falsework Systems,” ASCE Journal of Structural Engineering, Vol. 123, No. 9, pp.1245-1251, 1997.
[71] 王鍾勝,“大面積灌漿支撐結構系統承載力研究”,國立雲林科技大學營建工程研究所,雲林,碩士論文,2002。
[72] American National Standard for Construction and Demolition Operations, “Concrete and Masonry Work Safety Requirements, ” ANSI A10.9, New York, 1983.
[73] American National Standards Institute, “American National Standard for Construction and Demolition Operations: Scaffolding-Safety Requirements,” ANSI A10.8∼1988, New York, 1988.
[74] American National Standards Institute, “Building Code Requirements for Minimum Design Loads in Buildings and Other Structures ,” ANSI A58.1, New York, 1972.
[75] Ayer, F., and Cornell, C.A., “Grid Maximization by Mathematical Programming,” Journal of the Structural Division, ASCE, Vol.94, No.ST2, pp.529-549, 1968.
[76] Bickley, D.T., "Probability Distribution of Maximum Sustained Load,” Journal of the Structural Division, ASCE, Vol.100, No. ST11, pp.2361-2365, 1974.
[77] Chalk, P.L. and Corotis, R.B., “Probability Models for Design Live Loads,” Journal of the Structural Division, ASCE, Vol.106, No.ST10, pp.2017-2033, 1980.
[78] Chalk, P.L., “A Probabilistic Determination of Design Live Loads for Buildings,” thesis presented to Northwestern University, in 1979, in partial fulfillment of the requirements for the degree of Master of Science.
[79] Chan, S.L., ”Geometric and Material Nonlinear Analysis of Beam-Columns and Frames Using the Minimum Residual Displacement Method,” Int. J. Num. Methods in Engrg., 26, pp.2657-2669, 1988.
[80] Chan, S.L., ”Large Deflection Kinematics Formulation for Three Dimensional Framed Structures,” Computer Methods in Applied Mechanics and Engineering, 95, pp.17-36, 1992.
[81] Chan, S.L., Zhou, Z.H., Chen, W.F., Peng, J.L., and Pan, A.D., “Stability Analysis of Semirigid Steel Scaffolding,” Engineering Structures, Vol. 17, No.8, pp.568-574, 1995.
[82] Cornell, C.A., and Corotis, R.B., discussion of “Statistical Model for Live Floor Loads,” by Hasofer, A.M., Journal of the Structural Division, ASCE, Vol.95, No.ST7, pp.1576-1581, 1969.
[83] Culver, C.G., "Survey Results for Fire Loads and Live Loads in Office Buildings,” NBS Building Science Series Report 85, Center for Building Technology, National Bureau of Standards, Washington, D.C., 1976.
[84] Dunham, J.W., ”Design Live Loads in Buildings,” Transactions, ASCE, Vol.112, No.2311, pp.725-744, 1947.
[85] Ellingwood, B.R. and Culver, C.J., “Analysis of Live Loads in Office Buildings,” Journal of the Structural Division, ASCE, Vol.103, No.ST8, pp.1551-1560, 1977.
[86] Fang, D.P., Zhu, H.Y., Geng, C.D., and Liu, X.L., “On-Site Measurement of Load Distribution in Reinforced Concrete Buildings During Construction,” ACI Structural Journal, Vol.98, No.2, pp.157-163, 2001.
[87] Fisher, J.W., Galambos, T.V., Kulak, G.L., and Ravindra, M.K., “Load and Resistance Factor Design Criteria for Connectors,” Journal of the Structural Division, ASCE, Vol.104, No.ST9, pp.1427-1441, 1978.
[88] Geildl, V., and Saunders, S., “Calculation of Reliability for Time-Varying Loads and Resistances,” Structural Safety, Amsterdam, Vol.4, pp.285-287, 1987.
[89] Grigoriu, M. and Turkstra, C., “Structural Safety Indices for Repeated Loads,” Journal of the Engineering Mechanics Division, ASCE, Vol.104, No.EM4, pp.829-844, 1978.
[90] Harris, M.E. and Corotis, R.B., “Hospital Inventory Load Survey,” Journal of the Structural Division, ASCE, Vol.104, No.ST12, pp.1859-1868, 1978.
[91] Harris, M.E. Corotis, R.B., and Bova, A.M., “Area-Dependent Processes for Structural Live Loads,” Journal of the Structural Division, ASCE, Vol.107, No.ST5, pp.857-872, 1981.
[92] Hasofer, A.M., “Statistical Model for Live Floor Loads,” Journal of the Structural Division, ASCE, Vol.94, No.ST10, pp.2183-2196, 1968.
[93] Hasofer, A.M., “Time Dependent Maximum of Floor Live Loads,” Journal of the Engineering Mechanics Division, ASCE, Vol.100, pp.1086-1091, 1974.
[94] Heaney, A.C., “A Reliability-Based Study Concerning Live Loads and Codified Structural Design,” thesis presented to the University of Waterloo, Ontario, in 1971, in partial fulfillment of the requirements for the degree of Doctor of Philosophy.
[95] Jirsa, J.O., Sozen, M.A., and Siese, C.P., “Pattern Loadings on Reinforced Concrete Floor Slabs,” Journal of the Structural Division, ASCE, Vol.96, No.ST6, pp.1117-1137, 1969.
[96] Kameda, H., and Koike, T., “Reliability Theory of Deteriorating Structures,” Journal of the Structural Division, ASCE, Vol.101, No.ST1, pp.295-310, 1975.
[97] Mahadevan, S., and Xiao, Q. “Time-Variant Reliability of Brittle Structural Systems,” Journal of the Engineering Mechanics, ASCE, Vol.121, No.3, pp.414-423, 1995.
[98] McGuire, R.K. and Cornell, C.A., “Live Load Effects in Office Buildings,” Journal of the Structural Division, ASCE, Vol.100, pp.1351-1366, 1974.
[99] Melchers., R.E., “Structural Reliability : Analysis and Prediction,” John Wiley and Sons, Inc., New York, 1987.
[100]Melchers., R.E., “Load Space Formulation for Time Dependent Structural Reliability” Journal of Engineering Mechanics, Vol.116, No.1, pp.189-203, 1992.
[101]Pearce., H.T., and Wen, Y.K. “Stochastic Combination of Load Effects ” Journal of Structural Engineering , ASCE, Vol.110, No.7, pp.1613-1629, 1984.
[102]Peng, J.L., Rosowsky, D.V., Pan, A.D.E., Chen, W.F., and Chan, S.L., “Simplified Modeling and Analysis of Pattern Loading Effects on Shoring Systems During Construction,” Advances in Structural Engineering, Vol. 1, No. 3, pp.203-218, 1998.
[103]Peng, J.L., Yen, T., Lin, I., Wu, K.L., and Chen, W.F., “Performance of Scaffold Frame Shoring Under Pattern Loads and Load Paths,” ASCE Construction Engineering and Management Journal, Vol. 123, No. 2, pp.138-145, 1997.
[104]Peng, J.L., “Analysis Models and Design guidelines for High-Clearance Scaffold Systems,” Ph.D. Dissertation, Purdue University, West Lafayette, IN., 1994.
[105]Peng, J.L., Pan, A.D.E., and Chan, S.L., “Simplified Models for Analysis and Design of Modular Falsework,” Journal of Constructional Steel Research, Vol. 48, No. 2/3, pp.189-209, 1998.
[106]Peng, J.L., Rosowsky, D.V., Pan, A.D., Chen, W.F., and Yen, T., “Analysis of Concrete Placement Load Effects Using Influence Surfaces,” ACI Structural Journal, V. 93, No. 2, pp.180-186, 1996.
[107]Reid, S.G., “Floor Live Loads Models and Pattern Load Effects,” In Probabilistic Mechanics and Structural and Geotechnical Reliability, ed. Y.K. Lin, ASCE, pp.503-506, 1992.
[108]Reid, S.G., “Random Response to Stochastic Floor Loading,” Structural Safety, Elsevier Science Publishers, Vol.2, No.2, pp.105-117, 1985.
[109]Rosowsky, D.V., Huang, Y.L., Chen, W.F., and Yen, T., “Modeling Concrete Placement Loads During Construction,” Engineering Structures, Vol. 6, No. 2, pp.71-84, 1994.
[110]Ruid, S.E., and Soriano, J.A., “Design Live Loads for Office Building in Mexico and USA,” Journal of the Structural Engineering, ASCE, Vol.123, No.6, 1997.
[111]Ruid, S.E., and Trujillo, A.S., “Design Live Loads for Classrooms in United States and Mexico,” Journal of the Structural Engineering, ASCE, Vol.123, No.12, pp.1652-1657, 1997.
[112]Sentler, L., “Live Load Surveys, A review with Discussions,” Report 78, Lund Institute of Technology, Division of Building Technology, Lund, Sweden, 1976.
[113]Turkstra, C.J. and Madsen, H.O., “Load Combinations in Codified Structural Design,” Journal of the Structural Division, ASCE, Vol.106, pp.2527-2543, 1973.
[114]Walker, A.C., “Study and analysis of the 120 Failure causes,” Structural Failures in Buildings, Instn. Of Structural Engineering, London, England, pp.15-40, 1981.
[115]Wen, Y.K., “Statistical of Extreme Live Load on Buildings,” Journal of the Structural Division, ASCE, Vol.105, No.ST10, pp.1893-1900, 1979.
[116]Wen, Y.K., “Clustering Model for Correlated Load Processes,” Journal of the Structural Division, ASCE, Vol.107, No.ST5, pp.965-983, 1981.
[117]Wen, Y.K., and Yeo, G.L. “Design Live Loads for Passenger Cars Parking Garages,” Journal of the Structural Engineering, ASCE, Vol.127, No.ST3, pp.280-289, 2001.
[118]“可調鋼管支柱支撐力試驗報告書”,國立中興大學土木工程系,臺中,1995,委託者:玉樹營造股份有限公司。
[119]蔡益超,彭瑞麟,“預力電桿可靠度設計”,國立臺灣大學土木工程研究所,臺北,1986。
[120]彭瑞麟,潘吉齡,黃培松,“營建工程鋼管施工架結構承載力之探討”,中國土木水利工程學刊,第十六卷,第三期,pp.425-435,2004。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top