跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 17:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:凃啟仁
研究生(外文):Chi-jen Tu
論文名稱:纖維材料對提昇混凝土工程性質與成本效益之研究
論文名稱(外文):Mechanical properties and cost-benefit analysis of oncrete by added fiber materials
指導教授:謝孟勳謝孟勳引用關係
指導教授(外文):Machine Hsie
學位類別:博士
校院名稱:國立中興大學
系所名稱:土木工程學系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:118
中文關鍵詞:聚丙烯纖維鋼纖維混合型纖維混凝土工程性質
外文關鍵詞:Polypropylene fiberSteel fiberHybrid fiber-reinforced concrete
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
混凝土材料中所添加之纖維,無論是金屬纖維或化合物纖維,其型式、細度、楊氏係數、抗拉強度等物性皆不同,加以所添加之含量,及與混凝土拌合後之分散性等,均會影響未來所形成之纖維混凝土工程性質。因此,本文首以網格狀(fibrillated)、直絲(staple fiber)、竹節單絲(monofilament)及折曲絲(staple fiber with crimp)等四種不同型式之聚丙烯纖維,分別以0.6kg/m3及0.9kg/m3之二種體積比含量,拌合於水泥砂漿中,初步試驗其抗壓、抗拉強度及阻抗塑性裂縫能力後,再進一步以相同含量,拌合於混凝土中,比對添加不同纖維型式狀況下,會造成混凝土之抗壓、劈裂抗拉、抗彎與耐磨耗強度及乾縮應變、抗衝擊能力等工程性質差異。經實驗結果知,各種聚丙烯纖維均可提升水泥砂漿或混凝土之工程性質,且纖維含量從0.6kg/m3提高至0.9kg/m3時,提升效果更趨明顯。然其中以折曲絲纖維之整體表現最佳,其原因為該纖維細度高、分散性佳,相對於水泥砂漿或混凝土單位體積內,擁有較多數量之纖維,可增加材料之彈性應變量、減少漿體之泌水量及阻抗細微裂縫擴大,使得混凝土在塑性階段所易產生之乾縮應變受到控制;另因該纖維具較高之楊氏係數及抗張能力,可於混凝土中分擔更多之內應力,使其抗壓、劈裂抗拉、抗彎強度、抗衝擊及耐磨能力得以提升最多。
繼添加單一種纖維之混凝土後,同時以兩種不同型式纖維,相互混合所製成之混合型纖維混凝土,為近年來纖維混凝土之發展趨勢,亦是深值探討之課題。故本文將先前實驗所得之具備較佳工程性質之折曲絲聚丙烯纖維,為試驗控制主軸,固定其含量比為0.6kg/m3,分別與扁平波浪(indented)及端鈎型(hooked-end)等二種不同型式鋼纖維混合加入混凝土中,每種鋼纖維則又各以15kg/m3、20kg/m3及25kg/m3三種含量,研究鋼-聚丙烯混合型纖維混凝土在不同纖維型式與比例因子下之工程性質。結果得到該種混合型纖維混凝土整體工程性質均較單添加鋼纖維或聚丙烯纖維之混凝土為佳,且混凝土之抗壓、劈裂抗拉、破裂模數、韌性指數及抗撞擊強度均是隨鋼纖維含量之增加而越顯提升,對於降低混凝土之乾縮應變與磨耗量等亦有顯著幫助。然其中以端鈎型鋼-聚丙烯所混合而成之混合型纖維混凝土,優於扁平鋼-聚丙烯混合型纖維混凝土之工程性質,此顯示前者所混合之兩種纖維互補性較佳,更利於強化混凝土之工程性質。
雖然鋼-聚丙烯混合型纖維混凝土具優良之性質,但一般而言,鋼纖維長期存在可能外露腐蝕等使用上之缺點,加以成本較高,運用上常受其限制。故本文另以粗長型單絲聚丙烯纖維,各以3kg/m3、6kg/m3及9kg/m3三種體積含量,仍與固定含量0.6kg/m3之折曲絲聚丙烯纖維相混合後加入混凝土,試利用改良後具較大強度之粗長型單絲聚丙烯纖維,研究取代鋼纖維之可行性。經實驗後發現,以兩不同型式之聚丙烯纖維相混合而成之混凝土,其工程性質亦較添加單一纖維為佳,尤其在韌性行為表現上已不同於以往之聚丙烯纖維混凝土,且已有鋼纖維混凝土之強化趨勢。其原因為細度高之折曲絲纖維能抑制混凝土初期裂縫,而粗長型單絲纖維具有較高之楊氏係數與勁度,在高含量時,能發揮如鋼纖維之作用般,承受混凝土破壞時之更多能量。顯示該兩種纖維所混合成之纖維結構,能有效相互分工,如同鋼-聚丙烯纖維混合型般,達到提升混凝土之工程性質。而添加粗長型單絲聚丙烯纖維於混凝土中,除能有條件的取代鋼纖維角色外,於成本效益上更值推廣,此一結果乃提供工程師於未來發展與運用纖維混凝土時之參考。
This research investigates the effects of the addition in mortar and concrete with four types of polypropylene fibers including monofilament, staple fibers with crimp, staple fibers, and fibrillated. The experimental results show that all four types of fibers can enhance the properties of mortar and concrete, and the more the fiber content is, the better the properties of concrete are. In addition, the staple fiber with crimp has the best performance among the four types. Because the staple fiber with crimp has higher fineness and better dispersion, it ensures that every unit volume of concrete uniformly contains more quantity of fibers. The evenly dispersed fiber can resist drying shrinkage during the plastic stage and block the expansion of micro cracks, so it achieves optimal plastic crack control. Also, the staple fiber with crimp also has higher elastic modulus and tensile strength, so the numerous fibers that evenly distributed in the concrete can disperse stress and therefore increase compressive strength, splitting tensile strength, flexural strength, impact resistance, and abrasion resistance.
Moreover, this study investigates mechanical properties of steel-polypropylene hybrid fiber-reinforced concrete and polypropylene hybrid fiber-reinforced concrete. In steel-polypropylene hybrid fiber-reinforced concrete, the research focuses on two kinds of steel fibers, including indented steel fiber and hooked-end steel fiber. The fibers are added at three ratios of 15kg/m3, 20kg/m3, and 25kg/m3 to polypropylene fiber-reinforced concrete. The results show that the properties of steel-polypropylene hybrid fiber-reinforced concrete are better than those of steel fiber-reinforced concrete. There is positive correlation between the quantity of steel fiber and the mechanical properties of hybrid fiber-reinforced concrete, such as compressive strength, splitting tensile strength, modulus of rupture, toughness index, and impact resistance.
The quantity of steel fiber also affects abrasion resistance and drying shrinkage strain. Additionally, hooked-end steel fibers can bear more load than indented steel fibers.
On the other hand, the polypropylene hybrid fiber-reinforced concrete is used in two forms of polypropylene fibers including coarse monofilament, and staple fibers. The content of the former is at 3kg/m3, 6kg/m3, and 9kg/m3, and the content of the latter is at 0.6kg/m3. The experimental results show that the properties of polypropylene hybrid fiber-reinforced concrete are better than that of single fiber-reinforced concrete, in terms of the compressive strength, splitting tensile strength, and flexural properties.
The above two forms of fibers work complementarily. The staple fibers have better fineness and dispersion so they can restrain the cracks in primary stage, and the monofilament fibers have higher elastic modulus and stiffness. When the monofilament fiber content is high enough, it is similar to the function of steel fiber. Therefore, they can take more stress during destruction. In addition, hybrid fibers disperse throughout concrete, and they bond with mixture well, so the polypropylene hybrid fiber-reinforced concrete can effectively decrease drying shrinkage strain.
目 錄
誌謝 i
中文摘要 ii
Abstract iv
目錄 vi
圖目錄 xi
表目錄 xiii
符號說明 xv
第一章 緒論 1
1.1 研究動機 1
1.2 研究方法與目的 3
1.3 研究內容與流程 4
第二章 文獻回顧 6
2.1 纖維混凝土材料特性 6
2.1.1 纖維混凝土之演進與發展 6
2.1.2 纖維材料種類與特性 7
2.2 混凝土之破壞行為 9
2.2.1 裂縫成長過程 10
2.2.2 內應力破壞模式 11
2.2.3 纖維混凝土與純混凝土破壞行為比較 13
2.3 纖維加強混凝土之影響參數 15
2.3.1 纖維種類 16
2.3.2 纖維含量 16
2.3.3 纖維長徑比 18
2.3.4 纖維臨界長度 18
2.3.5 纖維方向係數與間隔係數 19
2.4 纖維混凝土之加強機理分析 20
2.4.1 抗壓強度 20
2.4.2 抗拉強度 22
2.4.3 抗彎強度 24
2.4.4 韌性行為 25
2.4.5 抵抗塑性龜裂 26
2.4.6 乾縮應變 27
2.5 各種纖維混凝土之工程性質與差異 29
2.5.1 聚丙烯纖維混凝土 29
2.5.2 鋼纖維混凝土 30
2.5.3 混合型纖維混凝土 32
2.6 纖維混凝土之施工與成本效益 33
第三章 聚丙烯纖維對水泥砂漿之強度與抗龜裂影響 35
3.1 試驗構想與目的 35
3.2 試驗材料 36
3.3 試驗方法與設備 39
3.4 試驗結果討論 40
3.4.1 分散性 40
3.4.2 流度 41
3.4.3 抗壓強度 42
3.4.4 抗拉強度 43
3.4.5 抑制塑性裂縫能力 45
第四章 聚丙烯纖維種類對提昇混凝土工程性質之差異 47
4.1 緣起與試驗目的 47
4.2 試驗材料 47
4.3試體製作 49
4.4 試驗方法與設備 49
4.4.1 纖維混凝土水洗實驗 49
4.4.2 抗壓實驗 50
4.4.3 劈裂抗拉實驗 51
4.4.4 抗彎實驗 52
4.4.5 乾縮實驗 53
4.4.6 耐磨耗實驗與表示法 54
4.4.7 衝擊實驗 56
4.5 結果與討論 58
4.5.1 水洗試驗結果 58
4.5.2 抗壓強度 59
4.5.3 劈裂抗拉強度 62
4.5.4 抗彎強度 63
4.5.5 乾縮應變值比較 64
4.5.6 耐磨耗強度 64
4.5.7 抗衝擊能力 66
第五章 聚丙烯-鋼纖維混合型混凝土之工程性質 69
5.1 試驗方向與規劃 69
5.2 試驗材料 69
5.3 拌合方法與試體製作 71
5.4 試驗方法與流程 72
5.5 結果與討論 74
5.5.1 抗壓強度 74
5.5.2 劈裂抗拉強度 76
5.5.3 破裂模數 78
5.5.4 韌性指數 79
5.5.5 乾縮應變 80
5.5.6 耐磨耗強度 82
5.5.7 抗撞擊性 83
第六章 聚丙烯混合型混凝土之工程性質 86
6.1.試驗目的與規劃 86
6.2 試驗材料 86
6.3拌合方法與試驗流程 87
6.4 結果與討論 88
6.4.1 坍度變化 88
6.4.2 抗壓強度 89
6.4.3 劈裂抗拉強度 91
6.4.4 破裂模數 92
6.4.5 韌性指數 93
6.4.6 乾縮應變 95
第七章 纖維混凝土技術與成本效益分析 96
7.1 施工技術與規範制定 96
7.2 成本效益分析 97
7.2.1直接成本 99
7.2.2間接成本 100
第八章 結論與建議 102
8.1 結論 102
8.1.1聚丙烯纖維種類對混凝土材料品質之影響 102
8.1.2 聚丙烯-鋼纖維之混合型纖維混凝土品質探討 103
8.1.3 聚丙烯混合型纖維混凝土品質之提昇效益 104
8.1.4 纖維混凝土之成本效益 104
8.2 建議 105
8.2.1 後續研究 105
8.2.2 其他 105
參考文獻 107
附錄 119
自述 122
[1]M.L.B.C. Reis, I.C. Neves, A.J.B. Tadeu, and J.P.C. Rodrigues, High temperature compressive strength of steel fiber high strength concrete, J. Mater. Civ. Eng., 13(3) (2001) 230-234.
[2]L. Taerwe, and A. Van-Gysel, Influence of steel fibers on design stress-strain curve for high-strength concrete, J. Eng. Mech., 22(8)(1996) 695-704.
[3]Z. Bayasi, and M. Mclntyre, Application of fibrillated polypropylene fibers for plastic shrinkage cracking in silica fume concrete, ACI Mater. J., 99(4)(2002) 337-344.
[4]P.S. Song, S. Hwang, and B.C. Sheu, Statistical evaluation for impact resistance of steel-fiber-reinforced concrete, Mag. Concr. Res., 56(8)(2004)437-442.
[5]M. Kakemi, and D. Hannant, Effect of autoclaving on cement composites containing polypropylene, glass and carbon fibers, Cem. Concr. Compos., 18(1) (1996) 61-66.
[6]P.S. Song, S. Hwang, and B.C. Sheu, Assessment of statistical variations in impact resistance of high-strength concrete and high-strength steel fiber-reinforced concrete, Cem. Concr. Res., 35(2005) 393-399.
[7]ACI 305R-96, Hot weather concrete, Manual of concrete practice, Part 2.
[8]H. Krenchel, S.P. Shah, Restrained shrinkage tests with polypropylene fibers reinforced concrete, ACI SP-105, (1987) 141-158.
[9]S. Mindess, C. Yan, G. Vondran, and A. Benturt, Impact resistance of concrete containing both conventional steel reinforcement and fibrillated polypropylene fibers, ACI Mater. J., 86(6) (1989) 545-549.
[10]W. Yao, J. Li, and K Wu, Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction, Cem. Concr. Res., 33(1)(2003) 27-30.
[11]N. Banthia, and N. Nandakumar, Crack growth resistance of hybrid fiber reinforced cement composites, Cem. Concr. Compos., 25(1)(2003) 3-9.
[12]B. Chen, and J. Liu, Contribution of hybrid fibers on the properties of the high-strength lightweight concrete having good workability, Cem. Concr. Res., 35(5) (2005) 913-917.
[13]V. Bindiganavile, and N. Banthia, Polymer and steel fiber-reinforced cementitious composites under impact loading-part 2: flexural toughness, ACI Mater. J., 98(1) (2001) 17-24.
[14]P.S. Song, and S. Hwang, Mechanical properties of high-strength steel fiber- reinforced concrete, Constr. Build. Mater., 18(9) (2004) 669-673.
[15]P.S. Song, S. Hwang, and B.C. Sheu, Strength properties of nylon-and polypropylene-fiber-reinforced concrete, Cem. Concr. Res., 35(8)(2005) 1546-1550.
[16]Z. Bayasi, and M. Mclntyre, Application of fibrillated polypropylene fibers for plastic shrinkage cracking in silica fume concrete, ACI Mater. J., 99(4)(2002) 337-344.
[17]C.X. Qian, and P. Stroeven, Development of hybrid polypropylene-steel fiber- reinforced concrete, Cem. Concr. Res., 30(1)(2000) 63-69.
[18]S. Singh, A. Shukla, and R. Brown, Pullout behavior of polypropylene fibers from cementitious matrix, Cem. Concr. Res., 34(2004) 1919-1925.
[19]D.R. Lankard, Preparation, Properties and applications of cement-based composites containing 5 to 20 percent steel fiber, Lankard Materials Laboratory, Inc. Columbus, Ohio, USA, (1985).
[20]Y. Ohama, M. Amano, M. Endo, Properties of carbon fiber reinforced cement with silica fume, Concrete International, March (1985) 58-62.
[21]宋佩瑄, 鋼纖維混凝土Kuc值及韌性指數之研究, 土木水利, 4(14)(1988) 91-100.
[22]D.R. Lankard, Slurry Infiltrated fiber concrete (SIFCON.), Concrete International, December (1984) 44-47.
[23]J. Edgingto, D.J. Hannant, and R.I.T. Williams, Steel fiber reinforced concrete, Building Research Establishment Current Paper, July (1974) CP 69/74
[24]R.L. Jindal, Shear and Moment Capacities of Steel Fiber Reinforced Concrete Beams, Fiber Reinforced Concrete, ACI Publication, SP-81 (1984) 1-16.
[25]A.P. Hibbret, F.J. Grimer, Flexural fatigue of glass fiber reinforced cement, Building Research Establishment Current Paper, January (1976) CP 12/76
[26]G. Ture, GRC Production & Uses, Palladian Publications Ltd, London (1986).
[27]Better concrete with Fibermesh polypropylene fibres, Concrete, June (1997) 28-29.
[28]I. Pardon, R.F. Zollo, Effect of synthetic fibers on volume stability and cracking of Portland cement concrete and mortar, ACI Mater. J., 87(4) (1990) 327-332.
[29]P.Soroushian, Mechanical properties of concrete materials reinforced with polypropylene or polypropylene fibers, ACI Mater. J., 89(6)(1992) 535-540.
[30]美國FibermeshTM 纖維網技術資料,新加坡BEST有限公司.
[31]盧俊文, 陳孟魁, 黃士益, 沈永年, 纖維混凝土之性能及應用,國立高雄應用科技大學土木系經緯, 23(2003) 49-55.
[32]巫漢添, 李騰芳, 林忠仁, 陳彥夙, 聚丙烯纖維混凝土與砂漿的工程性質暨防裂成效 (上), 現代營建, 246(2000) 68-76.
[33]巫漢添, 李騰芳, 林忠仁, 陳彥夙, 聚丙烯纖維混凝土與砂漿的工程性質暨防裂成效 (下), 現代營建, 247(2000) 59-67.
[34]S. Mindess, J.F. Young, Concrete, Prentice-Hall Inc., New Jersey (1981)
[35]D.C. Druck, Some implications of work hardening and ideal plasticity, Quarterly of applied mathematics, 7(1950) 411-418.
[36]S. Mindess, The application of fracture mechanics to cement and concrete; a history review, Fracture mechanics of concrete, Elsevier Science Publishers B. V. Amsterdam (1983).
[37]H. Mihashi, A stochastic theory for fracture of concrete, Fracture mechanics of concrete, Elsevier Science Publishers B.V. Amsterdam (1983).
[38]宋佩瑄, 纖維材料及纖維混凝土加強原理(中), 現代營建, 110(1989) 61-66.
[39]R.N. Swamy, P.S. Mangat, and C.V.S.K. Pao, The mechanics of fiber reinforced of cement matrices, Fiber Reinforced Concrete, ACI Publication. SP-44, (1974) 1-28.
[40]R.F. Zollo, Fiber-reinforced concrete: an overview after 30 years of development, Cem. Concr. Compos., 19(1997) 107-122.
[41]S.A. Keyvani, N. Saeki, Behavior of fiber concrete composites using recycled steel shaving, Journal of Solid Waste Technology And Management, 24(1997) 1-8.
[42]N. Krstulovic-Opara, S. Malak, Micromechanical tensile behavior of slurry infiltrated continuous-fiber-mat reinforced concrete (simcon), ACI Mater. J., 94(1997) 373-384.
[43]C.X. Qian, and P. Stroeven, Fracture properties of concrete reinforced with steel- polypropylene hybrid fibers, Cem. Concr. Compos., 22(4)(2000) 343-351.
[44]P.S. Song, J.C. Wu, S. Hwang, and B.C. Sheu, Statistical analysis of impact and strength reliability of steel-polypropylene hybrid fiber-reinforced concrete, Constr. Build. Mater., 19(1)(2005) 1-9.
[45]W. Sun, H. Chen, X. Luo, and H. Qian, The effect of hybrid fibers and expansive agent on the shrinkage and permeability of high-performance concrete, Cem. Concr. Res., 31(4)(2001) 595-601.
[46]P. Balaguru, M.G. Dipsia, Properties of fiber reinforced high-strength lightweight concrete, ACI Mater. J., 90(5)(1993) 399-405.
[47]C. Yeol, L.Y. Robert, Experimental relationship between splitting tensile strength and compressive strength of GFRC and PFRC, Cem. Concr. Res., 35(2005) 1587-1591.
[48]A.M. Alhozaimy, P. Soroushian, and F. Mirza, Mechanical properties of polypropylene fiber reinforced concrete and the effects of Pozzolanic materials, Cem. Concr. Compos., 18(2)(1996)85-92.
[49]J. Edgington, D. J. Hannant, and R.I.T. Williams, Steel fiber reinforced concrete, Concrete , The Construction Press Ltd , England, CP 69/74 (1978) 154-175.
[50]J. Gao, W. Sun, and K. Morino, Mechanical property of steel fiber-reinforced, high-strength, lightweight concrete, Cem. Concr. Compos., 19(1997) 307-313.
[51]Y. Shao, S.P. Shah, Mechanical properties of pva fiber reinforced cement composites fabricated by extrusion processing, ACI Mater. J., 94(1997) 555-564.
[52]P.J. Kim, C.H. Wu, Z. Lin, V.C. Li, B. deLhoneux, and S.A.S. Akers, Micromechanics-based durability study of cellulose cement in flexure, Cem. Concr. Res., 29(1999) 201-208.
[53]V.Bindiganavile, N. Banthia, Polymer and steel fiber-reinforced cementitious composites under impact loading-part1: bond-slip response, ACI Mater. J., 98(2001) 10-16.
[54]W. Zhu, P.J.M. Bartos, Assessment of interfacial microstructure and bond properties in aged grc using a novel microindentation method, Cem. Concr. Res., 27(1997) 1701-1711.
[55]X. Fu, D.D.L. Chung, Sensitivity of the bond strength to the structure of the interface between reinforcement and cement, and the variability of this structure, Cem. Concr. Res., 28(1998) 787-793.
[56]Y. Li, S. Hu, the Microstructure of the interfacial transition zone between steel and cement paste, Cem. Concr. Res., 31(2001) 385-388.
[57]W. Lu, X. Fu, and D.D.L. Chung, Shotcrete a comparative study of the wettability of steel, carbon, and polyethylene fibers by water, Cem. Concr. Res., 28(1998) 783-786.
[58]L.D. Lorenzis, B. Miller, and A. Nanni, Bond of fiber-reinforced polymer laminates to concrete, ACI Mater. J., 98(2001) 256-264.
[59]Y. Wang, A. Zureick, B. Cho, and D.E. Scott, Properties of fibre reinforced concrete using recycled fibres from carpet industrial waste, J. Mater. Sci., 29(1994) 4191-4199.
[60]V.M. Malhotra, G.G. Carette, and A. Bilodeau, Mechanical properties and durability of polypropylene fiber reinforced high-volume fly ash concrete for shotcrete applications, ACI Mater. J., 91(1994) 478-486.
[61]P.Soroushian, S. Ravanbakhsh, High-early-strength concrete: mixture proportioning with processed cellulose fiber for durability, ACI Mater. J., 96(1999) 593-599.
[62]A. Khajuria, P. Balaguru, Behavior of new synthetic fiber reinforced concrete, Civil Engineering Department Report, 89(13)(1989) 89.
[63]S.B. Park, E.S. Yoon, and B.I. Lee, Effects of processing and materials variations on mechanical properties of lightweight cement composites, Cem. Concr. Res., 29(1999) 193-200.
[64]S.B.Park, B.I. Lee, Mechanical properties of carbon fiber- reinforced polymer impregnated cement composites, Cem. Concr. Compos., 15(1993) 153-163.
[65]T. Poskova, C. Meyer, Low-cycle fatigue of plain and fiber-reinforced concrete, ACI Mater. J., 94(1997) 373-385.
[66]P.R. Blankenhorn, M.R. Silsbee, B.D. Blankenhorn, M.D. Cola, and K. Kessler, Temperature and moisture effects on selected properties of wood fiber cement composites, Cem. Concr. Res., 29(1999) 737-741.
[67]S. Wen, D.D.L. Chung, Piezoresistivity in continuous carbon fiber cement-matrix composite, Cem. Concr. Res., 29(1999) 445-449.
[68]J. Zhang, H. Stang, Applications of stress crack width relationship in predicting the flexural behavior of fiber-reinforced concrete, Cem. Concr. Res., 28(1998) 439-452.
[69]P.Robins, S. Austin, J. Chandler, and P. Jones, Flexural strain and crack width measurement of steel-fiber-reinforced concrete by optical grid and electrical gauge methods, Cem. Concr. Res., 31(2001) 719-729.
[70]謝孟勳, 凃啟仁, 宋佩瑄, 不同型式聚丙烯纖維混凝土之耐磨及抗衝擊性研究,中華民國第14屆鋪面工程學術研討會暨2007世界華人鋪面專家聯合學術研討會, 雲林科技大學(2007)389-398.
[71]A.E. Naaman, S.P. Shah, and J.L. Thorne, Some developments in polypropylene fibers for concrete, ACI SP-81, (1984) 375-396.
[72]M.A. Sanjuan, C. Andrade, and A. Bentur, Effect of crack control in mortars containing polyethylene fibers on the corrosion of steel in a cementitious matrix, ACI Mater. J., 94(2)(1997) 134-141.
[73]N. Banthia., and R. Gupta, Influence of polypropylene fiber geometry on plastic shrinkage cracking in Concrete, Cem. Concr. Res., 36(2006) 1263-1267.
[74]R.J. Ward, V.C. Li, Dependent of flexural behavior of fiber reinforced mortar on material fracture resistance and beam size, ACI Mater. J., 87(6)(1990) 627-637.
[75]陳清泉, 陳振川, 袁宏續, 詹穎雯, 爐石為水泥熟料與填加料對混凝土特性影響之文獻及國外現況調查研究, 財團法人台灣營建研究中心研究報告, (1987)61,
[76]S.Mindess, J.F. Young, Concrete, Prentice-Hall Inc., New Jersey (1981).
[77]R.W. Poston, K. Kesner, J.E. McDonald, A.M. Vaysburd, and P.H. Emmons, Concrete repair material performance-laboratory study, ACI Mater. J., 98(2001) 137-147.
[78]Y.M. Lim, H. Wu, and V.C. Li, Development of flexural composite properties and dry shrinkage behavior of high-performance fiber reinforced cementitious composites at early ages, ACI Mater. J., 96(1999) 20-26.
[79]黃兆龍, 洪文方, 爐石在混凝土的應用-固態廢棄物處理研究方案之二, 財團法人台灣營建研究中心研究報告, 21 (1985)
[80]W. Sun, H. Chen, X. Lou, and H. Qian, The effect of hybrid fibers and expansive agent on the shrinkage and permeability of high-performance concrete, Cem. Concr. Res., 31(2001) 595-601.
[81]J. Zhang, V.C. Li, Influences of fibers on drying shrinkage of fiber-reinforced cementitous composite, J. Eng. Mech., 127(2001) 37-44.
[82]R.D. Toledo, M.A. Sanjuan, Effect of low modulus sisal and polypropylene fiber on the free and restrained shrinkage of mortar at early age, Cem. Concr. Res., 29(1999) 1597-1604.
[83]A. Lanning, Synthetic fibers, Concrete Construction, July (1992) 525-530.
[84]S. Furlan, and J.B. Hanai, Shear behaviour of fiber reinforced concrete beams, Cem. Concr. Compos., 19(4)(1997) 359-366.
[85]P. Soroushian, H. Elyamany, A. Tlili, and K. Ostowari, Mixed-mode fracture properties of concrete reinforced with low volume fractions of steel and polypropylene fibers, Cem. Concr. Compos., 20(1)(1998) 67-68.
[86]Yu-Wen Liu, W.S. Wei, and Z.T. Chen, Concretes increase polypropylene textile fiber bears the impact abrasion nature discussion, tenth session of textile fiber concretes academic conference, Shanghai. Chinese, (2004)377-382.
[87]R.H. Haddad, and M.M. Smadi, Role of fibers in controlling unrestrained expansion and arresting cracking in portland cement concrete undergoing alkali-silica reaction, Cem. Concr. Res., 34(2004) 103-108.
[88]A.R. Khaloo, N. Kim, Mechanical properties of normal to high-strength steel fiber-reinforced concrete, Cem. Concr. Aggr., 18(2)(1996) 92-97.
[89]Q. Chunxiang, I. Patnaikuni, Properties of high strength steel fiber-reinforced concrete beam in bending, Cem. Concr. Compos., 21(1)(1999) 73-81.
[90]Marar, K., Eren, Ö., Celik, and T., Relationship between impact energy and compression toughness energy of high-strength fiber-reinforced concrete, Mater. Lett., 47(3)(2001) 297-304.
[91]L. Daniel, A. Loukili, Behavior of high-strength fiber reinforced concrete beams under cyclic loading, ACI Struct. J., 99(3)(2002) 248-256.
[92]V. Ramakrishnan, W.V. Coyle, V. Kulandaisamy, and E.K. Schrader, Performance characteristics of fiber reinforced concrete with low fiber contents, ACI J., 78(4) (1981) 388-394.
[93]P.Soroushian, M. Nagi, and A. Alhozaimy, Statistical Variations in the mechanical properties of carbon fiber reinforced cement composites, ACI Mater. J., 89(15) (1992) 131-139.
[94]M.C. Nataraja, N. Dhang, and A.P. Gupta,, Statistical variations in impact resistance of steel fiber-reinforced concrete subject to drop weight test, Cem. Concr. Res., 29(7)(1999) 989-995.
[95]B.P. Hughes, Experimental test result for flexure and direct tension of fiber cement composites, Int. J. Cem. Compos. Lightweight Concrete, 3(1)(1981) 13-26.
[96]G.R. Williamson, Effect of steel fibers on the compressive strength of concrete, ACI SP-44, (1974) 195-207.
[97]F.F. Wafa, S.A. Ashour, Mechanical properties of high-strength fiber reinforced concrete, ACI Mater. J., 89(5)(1992) 449-455.
[98]R.J. Craig, J. McConnell, H. Germann, N. Dib, and F. Kashani, Behavior of reinforced fibrous concrete columns, ACI SP-81, (1984) 69-105.
[99]Z. Jun, H. Stang, Fatigue performance in flexure of fiber reinforced, ACI Mater. J., 95(7)(1998) 58-67.
[100]S. Wei, G. Jianming, and Y. Yun, Study of the fatigue performance and damage mechanism of steel fiber reinforced concrete, ACI Mater. J., 93(23)(1996) 206-212.
[101]A.E. Naaman, H. Hammoud, Fatigue characteristics of high performance fiber-reinforced concrete, Cem. Concr. Compos., 20(3)(1998) 353-363.
[102]U. Yao, J. Li, and K. Wu, Mechanical properties of hybrid fiber-reinforced concrete at low fiber volume fraction, Cem. Concr. Res., 33(1)(2003) 27-30.
[103]J.S. Lawler, D. Zampini, and S.P. Shah, Microfiber and macrofiber hybrid fiber-reinforced concrete, J. Mater. Civil Eng., 17(5)(2005) 595-604.
[104]M.A. Harding, Mixing, placing and finishing fiber-reinforced concrete, Concrete Construction, July (1996) 537-540
[105]C. Keith, Better concrete with polypropylene fibres, Concrete, Sept/Oct (1994) 52-53.
[106]Mc Whannell, G., et. al, Floor and flaws-some views on fibers in slabs, Concrete, May/Jun(1994) 32-34.
[107]ACI Committee 210, Erosion of Concrete in Hydraulic Structures (210R-93), ACI Manual Concrete Practice, Part 1, American Concrete Institute, Farmington Hill, MI(2003).
[108]N. Papenfus, Applying concrete technology to abrasion resistance, Proceedings of the 7th International Conference on Concrete. Block Paving (PAVE AFRICA), October (2003).
[109]P. Soroushian, and S. Ravanbakhsh, Control of plastic shrinkage cracking with specialty cellulose fibers, ACI Mater. J., 95(4) (1998) 429-435.
[110]Annual Book of ASTM C 778, Standard specification for standard sand, ASTM Standards for Concrete and Mineral Aggregates, 4(1)(1993) 346-348.
[111]Annual Book of ASTM C 230, Standard specification for flow table for use in tests of hydraulic cement, ASTM Standards for Concrete and Mineral Aggregates, 4(1) (1993) 135-139.
[112]J. Potrebowski, The splitting tensile test applied to steel fibre reinforced concrete, Int. J. Cem. Compos. Lightweight Concrete, 5(1)(1983)49-53.
[113]Annual Book of ASTM C 150, Standard specification for Portland cement, ASTM. Standards for Concreteand Mineral Aggregates, 4(1)(1993) 93-97.
[114]Annual Book of ASTM C 31, Standard practice for making and curing concrete test specimens in the field, ASTM. Standards for Concreteand Mineral Aggregates, 4(04.02)(2002)
[115]Annual Book of ASTM C 39, Standard test method for compressive strength of cylindrical concrete specimens, ASTM. Standards for Concrete and Mineral Aggregates, 4(04.02)(2002)
[116]Annual Book of ASTM C 496, Standard test method for splitting tensile strength of cylindrical concrete specimens, ASTM. Standards for Concrete and Mineral Aggregates, 4(04.02)(2002)
[117]Annual Book of ASTM C 293, Standard test method for flexural strength of concrete (using simple beam with center-point loading), ASTM. Standards for Concrete and Mineral Aggregates, 4(04.02)(2002)
[118]Annual Book of ASTM C157, Standard test method for length change hardened hydraulic-cement mortar and concrete, ASTM. Standards for Concrete and Mineral Aggregates, 4(04.02)(2002)
[119]Annual Book of ASTM C 944-99, Standard test method for abrasion resistance of concrete or mortar surfaces by the rotating-cutter method, 4(04.02)(2005)
[120]ACI Committee 544, Measurement of properties of fiber reinforced concrete, ACI Mater. J., 85(6)(1988) 583-593.
[121]P.K. Mehta, Concrete structure, properties and materials, Matériaux, Prentice-Hall, (1986).
[122]T.C. Liu, Abrasion resistance of concrete, ACI Journal., 78(5)(1981) 341-350.
[123]ASTM C 1018, Test method for flexural toughness and first-crack strength of fiber reinforced concrete (using beam with third-point loading), Annual Book ASTM Standards, 4(04.02)(2002).
[124]K. Tawfig, J. Armaghani, and R. Ruiz, Fatigue cracking of polypropylene fiber reinforced concrete, ACI Mater. J., 96(2)(1999) 226-233.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top