跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/26 09:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林嘉澤
研究生(外文):Jia-Ze Lin
論文名稱:應用波速評估現地硬固混凝土抗壓強度之驗證
論文名稱(外文):Verification of Using Pulse Velocity to Evaluate the In-Place Compressive Strength of Hardened Concrete
指導教授:林宜清林宜清引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土木工程學系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:61
中文關鍵詞:波速混凝土抗壓強度超音波脈衝波速法敲擊回音法反射波走時法
外文關鍵詞:pulse velocitycompressive strength of concreteultrasonic impact-echo methodtime-of-flightreflection technique
相關次數:
  • 被引用被引用:2
  • 點閱點閱:235
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的在於驗證波速-強度關係曲線應用於現地混凝土之實務性。主要工作有下列三項:(1)波速-強度關係曲線於圓柱試體之驗證;(2)超音波法與敲擊回音法波速比較;(3)波速-強度關係曲線於板狀結構物之驗證。本研究計畫先於實驗室選取三種配比分別灌製圓柱試體及板狀試體進行波速試驗,之後於現地選取六種配比灌製板狀試體並進行波速試驗後,套入波速-強度關係曲線,以抗壓強度進行驗證。
實驗結果顯示,圓柱試體及鑽心試體於面乾內飽和狀態下以超音波法波速預估強度結果良好;以敲擊回音法波速因試驗方式及波到判讀準則之不同須先以1.031為修正係數修正波速後,之後預估強度結果良好。
圓柱試體經不同烘乾時間得不同含水狀況後發現,發現於烘乾12小時前(含水損失約為2~4%)抗壓強度變化微小,因此認為現場混凝土因含水損失造成強度變化不影響波速-強度關係曲線之應用。而圓柱試體乾燥狀態約比面乾內飽和狀態下波速下降6%,因此後續試體以此為標準。
有關板狀試體則先於現場同時量測表面P波波速及內部P波波速後,觀察兩者差異後回復內部P波波速至面乾內飽和狀態後,以1.053為板狀試體內部P波波速修正係數修正後,再進行預估強度後可得良好結果,大部分預估強度與鑽心試體強度差異皆低於±15%以內。
The objective of this research is to verify the feasibility of applying the relationship between ultrasonic pulse velocity (UPV) and strength to evaluate the in-place strength of concrete. The main working tasks include: (1) verifying the UPV-strength relationship curve for estimating the strength of concrete cylinders made on site; (2) comparing the pulse velocities measured with the ultrasonic and impact-echo devices; and (3) applying the pulse velocity to nondestructive evaluation of the in-place strength of concrete plates. This study adopts three different mixture proportions of concrete to make cylindrical specimens and plate-like structures at laboratory. After that, six different mixture proportions of concrete were used to make plate-like structures on construction site. The pulse velocity was measured first and then the concrete strength was estimated by substituting the measured velocity into the UPV-strength relationship curve. The estimated strength was verified by the results of compressive test.
The experimental results show that the estimated strength of cylindrical specimens and core specimens taken from plate-like structures under the condition of saturated surface-dry (SSD) were good; on the other hand, due to the difference in experimental device and the signal analysis, a modification factor of 1.031 is necessary for the impact-echo velocity if the UPV-strength relationship is still used to estimate the concrete strength; the estimated strength results were also good.
Through different drying time, each cylindrical specimen has different water content, and it is found that the compressive strength varied slightly for the first twelve hours of oven-dry (water loss percentage is about 2% to 4%). Therefore, this study considered that the strength change cause by water loss of in-place concrete does not influence the application of UPV-strength relationship curve. In addition, for the reason that the pulse velocity of cylindrical specimens under oven-dry condition decreases about 6% compared to that of the SSD specimens, this study made it as a criterion to modify the pulse velocity for plate-like specimens with various moisture content afterward.
For the plate-like specimens used in this study, measured the surface P-wave and internal P-wave, and investigate the difference between surface P-wave and internal P-wave. Until the internal P-wave was recovered to the saturated surface-dry condition, use 1.053 as a modification factor to the internal P-wave of plate-like specimen measured by the impact-echo method, then the estimated strength could result well, and mostly the difference between the estimated strength and the core strength was within ±15%.
總目錄
中文摘要 I
英文摘要 II
目錄 III
表目錄 V
圖目錄 VIII


目錄
第一章 緒論 1
第二章 文獻回顧 3
2-1 混凝土強度之非破壞檢測技術介紹 3
2-2 混凝土之特性與材料組成 14
2-2-1 混凝土材料之組成 15
2-2-2 混凝土強度之影響因素 16
2-3 混凝土之波傳行為特性 19
2-3-1 波速檢測於混凝土性質之研究 19
2-3-2 影響混凝土波傳速度之主要因素 21
2-4 波速與混凝土強度之關係 23
第三章 檢測原理與儀器設備 26
3-1 超音波法 26
3-1-1 試驗原理與方法 26
3-1-2 試驗儀器 28
3-1-3 試驗步驟 28
3-2 敲擊回音法 29
3-2-1 P-波波速量測(時間域分析) 30
3-2-2 試驗儀器 31
3-2-3 試驗步驟 32
3-3 反射波走時法[63-64] 32
3-4 抗壓強度試驗 33
第四章 試驗規劃 35
4-1 圓柱試體規劃 35
4-2 實驗室澆製板狀試體規劃 35
4-3 現場澆製板狀試體規劃 36
4-4 波速-強度關係曲線之驗證 36
第五章 圓柱試體試驗結果討論 38
5-1 各配比圓柱試體實際粗骨材用量討論 38
5-2 面乾內飽和狀態(SSD)試體之試驗結果討論 38
5-3 不同含水量對波速與強度之影響 40
第六章 實驗室澆製板狀試體結果討論 42
6-1 配比0.35板狀試體試驗結果討論 42
6-2 配比0.5板狀試體試驗結果討論 44
6-3 配比0.65板狀試體試驗結果討論 45
第七章 現場澆製板狀試體驗證結果 48
7-1 各配比板狀試體實際粗骨材用量討論 48
7-2 配比350-1板狀試體試驗結果討論 48
7-3 配比280-3板狀試體試驗結果討論 49
7-4 配比SCC2-5板狀試體試驗結果討論 50
7-5 配比175-8板狀試體試驗結果討論 51
7-6 板狀試體內部P波波速與超音波波速之關係 52
第八章 結論與建議 54
參考文獻 56


表目錄
表2-1 量測混凝土超音波波速之相關規範[2] 62
表2-2 各種混凝土強度現場試驗法之原理與優缺點 63
表2-3 混凝土材料組成與性質之相關研究文獻 64
表2-3(續) 混凝土材料組成與性質之相關研究文獻 65
表2-4 混凝土材料波傳速度之相關研究文獻 66
表2-4(續) 混凝土材料波傳速度之相關研究文獻 67
表2-4(續) 混凝土材料波傳速度之相關研究文獻 68
表2-4(續) 混凝土材料波傳速度之相關研究文獻 69
表4-1 各試驗配比資料-1 70
表4-2 各試驗配比資料-2 70
表5-1 各配比圓柱試體粗骨材用量 71
表5-2 各配比圓柱試體試驗結果 72
表5-3 各配比圓柱試體波速比 73
表5-4 各配比圓柱試體修正波速預估強度結果 73
表5-5 配比0.35圓柱試體烘乾試驗結果 74
表5-6 配比0.35圓柱試體試驗結果 75
表5-7 配比0.5圓柱試體烘乾試驗結果 76
表5-8 配比0.5圓柱試體烘乾差異結果 77
表5-9 配比0.65圓柱試體烘乾試驗結果 78
表5-10 配比0.65圓柱試體烘乾差異結果 79
表6-1 配比0.35板狀試體表面P波試驗結果 80
表6-2 配比0.35板狀試體反射波走時法試驗結果 80
表6-3 配比0.35鑽心試體試驗結果 81
表6-4 配比0.35板狀試體之波速量測與修正含水量預估強度結果 82
表6-5 配比0.5板狀試體表面P波試驗結果 83
表6-6 配比0.5板狀試體反射波走時法試驗結果 84
表6-7 配比0.5鑽心試體試驗結果 85
表6-7(續) 配比0.5鑽心試體試驗結果 86
表6-8 配比0.5板狀試體之波速量測與修正含水量預估強度結果 87
表6-8(續) 配比0.5板狀試體之波速量測與修正含水量預估強度結果 88
表6-9 配比0.65板狀試體表面P波試驗結果 89
表6-10 配比0.65板狀試體反射波走時法試驗結果 89
表6-11 配比0.65鑽心試體試驗結果 90
表6-12 配比0.65板狀試體之波速量測與修正含水量預估強度結果 91
表7-1 各配比板狀試體粗骨材用量 92
表7-2 配比350-1板狀試體對接內部P波試驗結果 93
表7-3 配比350-1板狀試體表面P波試驗結果 93
表7-4 配比350-1板狀試體反射波走時法試驗結果 94
表7-5 配比350-1鑽心試體試驗結果 94
表7-6 配比350-1板狀試體之波速量測與修正含水量預估強度結果 95
表7-7 配比280-3板狀試體對接內部P波試驗結果 95
表7-8 配比280-3板狀試體表面P波試驗結果 96
表7-9 配比280-3板狀試體反射波走時法試驗結果 96
表7-10 配比280-3鑽心試體試驗結果 97
表7-11 配比280-3板狀試體之波速量測與修正含水量預估強度結果 97
表7-12 配比SCC2-5板狀試體對接內部P波試驗結果 98
表7-13 配比SCC2-5板狀試體表面P波試驗結果 98
表7-14 配比SCC2-5板狀試體反射波走時法試驗結果 99
表7-15 配比SCC2-5鑽心試體試驗結果 99
表7-16 配比SCC2-5板狀試體之波速量測與修正含水量預估強度結果 100
表7-17 配比175-8板狀試體對接內部P波試驗結果 100
表7-18 配比175-8板狀試體表面P波試驗結果 101
表7-19 配比175-8板狀試體反射波走時法試驗結果 101
表7-20 配比175-8鑽心試體試驗結果 102
表7-21 配比175-8板狀試體之波速量測與修正含水量預估強度結果 102
表7-22 各配比板狀試體波速比 103
表7-23 各配比板狀試體內部P波波速預估強度結果 104
表7-23(續) 各配比板狀試體內部P波波速預估強度結果 105
表7-23(續) 各配比板狀試體內部P波波速預估強度結果 106
表7-23(續) 各配比板狀試體內部P波波速預估強度結果 107

圖目錄
圖2-1 反彈錘--構造示意圖[17] 108
圖2-2 探頭貫入試驗--Windsor HP Probe 108
圖2-3 探頭貫入試驗--錐狀破裂區示意圖[19] 109
圖2-4 彎裂試驗法示意圖[20] 109
圖2-5 拉拔試驗[21] 110
圖2-6 直接拔出試驗示意圖[22] 111
圖2-7 超音波試驗儀器及配置簡圖[23] 111
圖2-8 敲擊回音法於混凝土版試驗示意圖 112
圖2-9 應力波動行為示意圖 112
圖2-10 Snell’s Law示意圖 113
圖2-11 混凝土版試體應力波路徑示意 114
圖2-12 場製圓柱試體模具[29] 114
圖2-13 水灰比與7天抗壓強度之關係[39] 115
圖2-14 水灰比與抗壓強度之關係[40] 115
圖2-15 溫度對抗壓強度之影響[42] 116
圖2-16 混凝土於不同水灰比在各材齡之強度成長[44] 116
圖2-17 輕質骨材之波速量測示意圖 117
圖2-18 混凝土之波速與動彈性模數關係[48] 117
圖2-19 混凝土波速與強度之關係曲線 [49] 118
圖2-20 不同探頭頻率下混凝土及砂漿試體之縱向波速與橫向波速比較圖[58] 119
圖2-21 混凝土及砂漿試體之波速與強度關係[58] 119
圖2-22 骨材種類對混凝土波速與強度關係之影響[24] 120
圖2-23 骨材量對混凝土波速與強度關係之影響[24] 120
圖2-24 水泥石、水泥砂漿及混凝土之波速與強度關係之影響[24] 121
圖2-25 不同水灰比之波速成長曲線[59] 121
圖2-26 孔隙含量對混凝土抗壓強度、撓曲強度、波速及動彈性模數之影響[61] 122
圖2-27 養護溫度對混凝土抗壓強度與波速關係之影響[53] 122
圖2-28 含水條件對混凝土抗壓強度與波速關係之影響[24] 123
圖2-29 單位重與波速之關係 123
圖2-30 混凝土試體承受荷重下波速之變化[58] 124
圖2-31 混合各配比之混凝土波速與強度關係[62] 124
圖2-32 硬固混凝土(28天齡期)在不同粗骨材含量情況下之波速與強度關係[62] 125
圖2-33 不同粗骨材含量之理論波速與強度關係曲線[62] 125
圖2-34 公式(2-9)對應在不同CAC下之係數a與b之值[62] 126
圖3-1 超音波法操作原理示意圖 126
圖3-2 PUNDIT超音波試驗儀器 127
圖3-3 超音波之波速量測方式 128
圖3-4 敲擊回音法於混凝土版試驗示意圖 129
圖3-5 應力波動行為示意圖 129
圖3-6 Snell’s Law示意圖 130
圖3-7 混凝土版試體應力波路徑示意 131
圖3-8 可感測敲擊時間原點裝置: 131
圖3-9 利用可感測敲擊時間原點裝置量測混凝土圓柱試體P-波波速 132
圖3-10 敲擊回音試驗儀器設備 133
圖3-11 板狀試體近距離反射波走時試驗示意圖 133
圖3-12 板狀試體遠距離反射波走時試驗示意圖 134
圖4-1 實驗室澆製板狀試體量測點位示意圖 134
圖4-2 現場澆製板狀試體量測點位示意圖 135
圖5-1 配比0.35圓柱試體敲擊回音法試驗波型圖 136
圖5-2 配比0.5圓柱試體敲擊回音法試驗波型圖 137
圖5-3 配比0.65圓柱試體敲擊回音法試驗波型圖 137
圖5-4 圓柱試體超音波法波速損失百分比圖 138
圖5-5 圓柱試體敲擊回音法波速損失百分比圖 138
圖6-1 配比0.35板狀試體表面P波試驗波型圖 139
圖6-2 配比0.35板狀試體近距離反射波試驗波型圖 140
圖6-3 配比0.35板狀試體遠距離反射波試驗波型圖 140
圖6-4 配比0.35鑽心試體敲擊回音法試驗波型圖 141
圖6-5 配比0.5板狀試體表面P波試驗波型圖 141
圖6-6 配比0.5板狀試體近距離反射波試驗波型圖 142
圖6-7 配比0.5板狀試體遠距離反射波試驗波型圖 142
圖6-8 配比0.5鑽心試體敲擊回音法試驗波型圖 143
圖6-9 配比0.65板狀試體表面P波試驗波型圖 143
圖6-10 配比0.65板狀試體近距離反射波試驗波型圖 144
圖6-11 配比0.65板狀試體遠距離反射波試驗波型圖 144
圖6-12 配比0.65鑽心試體敲擊回音法試驗波型圖 145
圖7-1 配比350-1板狀試體對接內部P波試驗波型圖 145
圖7-2 配比350-1板狀試體表面P波試驗波型圖 146
圖7-3 配比350-1板狀試體遠距離反射波試驗波型圖 146
圖7-4 配比350-1板狀試體近距離反射波試驗波型圖 147
圖7-5 配比280-3板狀試體對接內部P波試驗波型圖 147
圖7-6 配比280-3板狀試體表面P波試驗波型圖 148
圖7-7 配比280-3板狀試體遠距離反射波試驗波型圖 148
圖7-8 配比280-3板狀試體近距離反射波試驗波型圖 149
圖7-9 配比SCC2-5板狀試體對接內部P波試驗波型圖 149
圖7-10 配比SCC2-5板狀試體表面P波試驗波型圖 150
圖7-11 配比SCC2-5板狀試體遠距離反射波試驗波型圖 150
圖7-12 配比SCC2-5板狀試體近距離反射波試驗波型圖 151
圖7-13 配比175-8板狀試體對接內部P波試驗波型圖 151
圖7-14 配比175-8板狀試體表面P波試驗波型圖 152
圖7-15 配比175-8板狀試體遠距離反射波試驗波型圖 152
圖7-16 配比175-8板狀試體近距離反射波試驗波型圖 153
圖7-17 各配比板狀試體預估差異結果圖 153
1.Koliasa, S., and Georgiou, C. (2005).“The effect of paste volume and of water content on the strength and water absorption of concrete, Cement & Concrete Composites 27, 2005, pp. 211–216.
2.Komloš, K., Popovics, S., Nürnbergerová, T., Babál, B. and Popovics, J.S. (1996).〝Ultrasonic Pulse Velocity Test of Concrete Properties as Specified in Various Standards,〞Cement and Concrete Composites Volume: 18, June, 1996, pp. 357-364.
3.Lai, Chao-Peng, Lin, Yiching, and Yen, Tsong (2001).“Behavior and Estimation of Ultrasonic Pulse Velocity in Concrete,” The International Conference on Structural Engineering ,Mechanics and Computation, Cape Town South Africa, 2001, pp. 1365-1372.
4.Lama, R.D., and Vutukuri, V.S. (1978). Handbook on Mechanical Properties of Rocks, Trans Tech. Publications Clausthal, Germany, Vol.2 and Vol.4. (1978)
5.Leif Berntsson, Satish Chandra, and Tomas Kutti (1990). “Principles and Factors Influencing High-Strength Concrete Production”, Concrete International, Vol.12, No.12, December 1990, pp.59-62.
6.Lin, Y., Chang, fan H., and Hsiao, C. (1998).“Estimation of High-Performance Concrete Strength by Pulse Velocity,” Journal of the Chinese Institute of Engineers, Vol. 20, No. 6, 1998, pp. 661-668.
7.Malhotra, V.M., /Editor et al. (1984).“In Situ/Nondestructive Testing of Concrete”, ACI SP-82, 1984.
8.Malhotra, V.M. (1976).“Testing Hardened Concrete : Nondestructive Methods,” ACI Monograph, No. 9, American Concrete Institute/Iowa State University Press, Detroit, 1976, pp. 204.
9.Mehta Kumar (1986a).“Concrete Structure, Properties, and Materials”, Prentice–hall, INC., Englewood Cliffs, New Jersey, USA ,1986.
10.Mehta, P. K. (1986b).“Concrete Structure, Properties, and Materials”, Prentice–hall, INC., Englewood Cliffs, New Jersey, USA ,1986.
11.Meyer, A. (1963). Uber den Einfluss des Wasserzementwertes auf die Fruhfestigkeit von Beton (On the Effect of the Water-Cement Ratio on the Early strength of Concrete), Betonstein Zeitung, Vol.29,No.8, Aug. 1963, PP. 391-394.
12.Mindess, S., and Young, J. F. (1981).“Concrete”, Prentic-Hall, Inc., Englewood Cliffs, New Jersey,1981, pp24-25.
13.Műller-Rochholz, J. (1979). Determination of the Elastic Properties of Lightweight Aggregate by Ultrasonic Pulse Velocity”, The International Journal of Lightweight Concrete, Vol.1, No.2, 1979, pp.87-90.
14.Naik, T.R., and Malhotra, V.M. (1991).“The Ultrasonic Pulse Velocity Method”, Chapter 7 in CRC Handbook on Nondestructive Testing of Concrete, V.M. Malhotra and N.J. carino, Eds., CRC Press, Boca raton, FL,1991, pp.169-188.
15.Naik, T.R. (1979).“The Ultrasonic Testing of Concrete”, Published by ACI in Experimental Methods in Concrete Structure for Practitioners, G.M. Sabnis and N. Fitzsimons, Eds, October 1979.
16.Ohdaira Etsuzo, Masuzawa Nobuyoshi (2000).〝Water content and its effect on ultrasound propagation in concrete —the possibility of NDE,〞Ultrasonics 38, 2000, pp. 546–552.
17.ASTM C 805 (1992). "Standard Test Method for Rebound Number of Hardened Concrete," Annual Book of ASTM Standards, Vol. 04.02., 1992.
18.Chan, H.J., Yen, T., Lai, T.P. and Huang, Y.L. (1999).“Determination of dividing strength and its relation to the concrete strength in lightweight aggregate concrete”, Cement and Concrete Composites, Vol.21, No.1, 1999, pp.29-37.
19.ASTM C 803 (1992). "Standard Test Method for Penetration Resistance of Hardened Concrete," Annual Book of ASTM Standards, Vol. 04.02., 1992.
20.ASTM C 1150 (1992). "Standard Test Method for the Break-Off Number of Concrete," Annual Book of ASTM Standards, Vol. 04.02., 1992.
21.ASTM C 900 (1992). "Standard Test Method for Pullout Strength of Hardened Concrete," Annual Book of ASTM Standards, Vol. 04.02., 1999.
22.BSI 1881-203 (1992).“Recommendations for the Assessment of Concrete Strength by Near-to-Surface Tests,” BS 1881, Part 207, British Standards Institution.
23.ASTM C 597 (1992). "Standard Test Method for Pulse Velocity Through Concrete," Annual Book of ASTM Standards, Vol. 04.02., 1992.
24.Sturrup, V.R., Vecchio, F.J., and Caratin, H. (1984).“Pulse Velocity as a Measure of Concrete Compressive Strength”, In Situ/Nondestructive Testing of Concrete, ACI SP-82, 1984; pp. 201-227.
25.Bungey, J.H. (1982). "Testing of Concrete in Structures," Surrey University Press, Glasgow, 1982, pp. 207.
26.Popovics, S. (1987).“A Hypothesis Concrete the Effects of Macro-Porosity on Mechanical Properties of Concrete”, Fracture of Concrete and Rock, SEM-RILEM International Conference, June 1987,Houston Texas, pp.170-174.
27.ASTM C 1383 (1998). "Standard Test Method for Measuring the P-Wave Speed and the Thickness of Concrete Plates Using the Impact-Echo Method" Annual Book of ASTM Standards, Vol. 04.02., 1998.
28.ASTM C 1074 (1992). "Standard Practice for Estimating Concrete Strength by the Maturity Method," Annual Book of ASTM Standards, Vol. 04.02., 1992.
29.ASTM C 873 (1992). "Test Method for Compressive Strength of Concrete Cylinders Cast in Place in Cylindrical Molds," Annual Book of ASTM Standards, Vol. 04.02., 1992.
30.Tanigawa, Y., Baba, K., and Mori, H. (1984).“Estimation of Concrete Strength by Combined Nondestructive Testing Method”, In Situ/Nondestructive Testing of Concrete, ACI SP-82, 1984; pp. 57-76.
31.邱欽賢 (2002)“水工結構混凝土之抗沖蝕性”,國立中興大學土木工程學系碩士論文,2002年6月。
32.劉玉雯 (2006)“應用於水工結構表層之高性能混凝土磨損行為”,國立中興大學土木工程學系博士論文,2006年1月。
33.楊仲家、黃然、葉為忠 (1996)“以微觀力學探討粗骨材對高性能混凝土之影響”,第三屆結構工程研討會,pp.1785-1793,1996。
34.Brian, B. Hope and Paul, M. Hewitt (1985).“Progressive Concrete Mix Proportioning”, ACI Materials Journal, Vol82, No.3, May-June 1985, pp.350-356.
35.Charles, T. Kennedy (1940).“The Design of Concrete Mixes”, ACI Materials Journal, Vol36, 1940, pp.373-400.
36.Leif Berntsson, Satish Chandra, and Tomas Kutti (1990). “Principles and Factors Influencing High-Strength Concrete Production”, Concrete International, Vol.12, No.12, December 1990, pp.59-62.
37.Yang, C.C. and Huang, R. (1996).“ A Two-Phase Model for Predicting the Compressive Strength of Concrete”, Cement and Concrete Research, Vol.26, No.10, 1996, pp.1567-1577.
38.Chan, H.J., Yen, T., Lai, T.P. and Huang, Y.L. (1999).“Determination of dividing strength and its relation to the concrete strength in lightweight aggregate concrete”, Cement and Concrete Composites, Vol.21, No.1, 1999, pp.29-37.
39.Popovics, S. (1990a). ”Analysis of Concrete Strength versus water-cement ratio relationshop”ACI Materials Journal,Sep.-Oct.1990,PP.517-529.
40.沈進發 (1983)“混凝土品質控制”,第三版,pp. 7-351983年9月。
41.林炳炎 (1993)“飛灰與飛灰混凝土”,現代營建,1993年7月
42.Price, W.F. and Hynes, J.P. (1996).“In-Situ Strength Testing of High Strength Concrete”, Magazine of Concrete Reseach, Vol.48, No.176, Sept. 1996,pp.189-197.
43.Dan, E.Branson (1978).”Deformation of Concrete Structure” , 1978, pp. 2
44.Meyer, A. (1963). Uber den Einfluss des Wasserzementwertes auf die Fruhfestigkeit von Beton (On the Effect of the Water-Cement Ratio on the Early strength of Concrete), Betonstein Zeitung, Vol.29,No.8, Aug. 1963, PP. 391-394
45.Popovics, S. (1976).“Strength and Related Properties of Concrete:A Quantative Approach”, JOHN WILEY & SONS, INC., USA ,1976, pp. 240-241.
46.黃兆龍 (1997)“混凝土性質與行為”,詹氏書局,1997年8月。
47.Philleo, R. E. (1955).“Comparison of Results of Three Methods for Determining Young’s Modulus of Elasticity of Concrete”, Journal of ACI, Vol.51, No.5, January 1955,pp.461-469.
48.Klieger Paul (1957). “Long-Time Study of Cement Performance in Concrete, Chapter 10-Progress Report on Strength and Elastic Properties of Concrete”, Journal of ACI, Vol.54, No.6, December, 1957, pp. 481-503.
49.Pessiki, Stephen and Johnson, Matthew R. (1996).“Nondestructive Evaluation of Early-age Concrete Strength In Plate Structures by the Impact-Echo Method,” ACI Materials Journal, Vol. 93, No.3, 1996, pp.260-271.
50.Anderson David, A. and Seals Roger, K. (1981).“Pulse Velocity as a Predictor of 28- and 90-Day Strength”, ACI Materials Journal, Vol.78, No.2, March-April 1981, pp.116-122.
51.Kaplan, M.F. (1958).“Compressive Strength and Ultrasonic Pulse Velocity Relationships for Concrete in Columns”, Journal of ACI, Vol.54, No.8, February 1958, pp. 675-688.
52.沈得縣、黃兆龍 (1991) “高爐熟料與飛灰對新拌水泥漿體水化機理影響之研究”,中國土木水利工程學刊,第三卷,第四期, pp. 333-338。
53.Pessiki, P. S., and Carino, N.J. (1988).“Setting Time and Strength of Concrete Using the Impact-Echo Method”, ACI Materials Journal, 1988; Vol.85, No.5, pp.389-399.
54.Chung, H. W. and Law, K.S. (1983).“Diagnosing in Situ Concrete by Ultrasonic Pulse Technique”, Concrete International, Vol.13, No.10,1983, pp.42-49.
55.Sellect Scott, F., Landis Eric, N., Peterson Michael, L. , Shah Surendra, P. and Achenbach Jan, D. (1998).“Ultrasonic Investigation of Concrete with Distributed Damage”, ACI Materials Journal, Vol.95, No.1, January-February 1998, pp.27-36.
56.Suaris Wimal and Fernando Viraj (1987).“Ultrasonic Pulse Attenuation as a Measure of Damage Growth during Cyclic Loading of Concrete”, ACI Materials Journal, May-June 1987, Vol.84, pp.185-193.
57.Wu, T.T., and Lin, T. F. (1998).“The Stress Effect on the Ultrasonic Velocity Variation of Concrete under Repeated Loading”, ACI Materials Journal, Vol.95, No.5, September-October 1998, pp.519-524.
58.Popovics, S., Rose, L. Joseph, and Popovics, John S. (1990b).“The Behavior of Ultrasonic Pulses in Concrete,” Cement and Concrete Reaserch, Vol. 20, No.2, 1990, pp.259-270.
59.Andersen Johannes and Nerenst Poul (1952). Wave Velocity in Concrete, ACI Journal, Proc. Vol.48, Apr. 1952, pp. 613-636.
60.Jones, R. (1954).“Testing of Concrete by an Ultrasonic Pulse Technique”, RILEM Int. Symp. On Nondestructive Testing of Materials and Structures, Paris. Vol.1, Paper No.A-17, January 1954, pp.137, RILEM Bull. No.19, 2nd part, November 1954.
61.Kaplan, M.F. (1952).“Effects of Incomplete Consolidation on Compressive and Flexural Strength, Ultrasonic Pulse Velocity, and Dynamic Modulus of Elasticity of Concrete”, Journal of ACI, Vol.56, No.9, March, 1952, pp. 853-867.
62.郭世芳 (2007)“探討超音波速度與混凝土抗壓強度之關係與其應用”,國立中興大學土木工程學系博士論文,2007年7月。
63.Lin, Y., Kuo, S.F., Hsiao, C., and Lai, C.P., 2007, “Investigation of Pulse Velocity-Strength Relationship of Hardened Concrete,” ACI Materials Journal, Vol. 104, No. 4, pp. 303-309.
64.胡盟宗 (2006)“反射波走時法應用在混凝土構件之厚度量測”,國立中興大學土木工程學系博士論文,2006年1月。
65.干裕成 (2003) “劣化混凝土材料應力波傳速度與E值、老化時程及抗壓強度之關係”行政院原子能委員會委託研究計畫研究報告,2003年12月。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top