跳到主要內容

臺灣博碩士論文加值系統

(3.238.135.174) 您好!臺灣時間:2021/08/05 06:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蕭毓玲
研究生(外文):Yu-Ling Hsiao
論文名稱:以波速評估硬固自充填及高強度混凝土強度之應用
論文名稱(外文):Use of Pulse Velocity for Evaluating the In-Place Strength of Hardened High-Strength and Self-Compacting Concrete
指導教授:林宜清林宜清引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土木工程學系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:147
中文關鍵詞:硬固自充填及高強度混凝土強度
外文關鍵詞:Pulse Velocity Hardened High-Strength and Self-Compacting Concrete
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究目的在以波速評估自充填混凝土及高強度混凝土之波速與強度關係曲線,並應用於現地混凝土之強度驗證,以增進非破壞性檢測於現在實務上應用之可信度。整體試驗之主要目的有以下三項:(1)建立自充填及早強混凝土之波速-強度關係曲線;(2)粗骨材(CAC)含量波速-強度關係曲線及自行建立波速-強度關係曲線之強度驗證 (3)波速-強度關係曲線於板狀結構物之驗證。本次研究選擇強度皆為350 kgf/cm2的自充填及早強混凝土2種配比進行波速-強度之驗證,於現地灌製圓柱試體並製作版試體,對其量測波速後,套入波速-強度關係曲線及粗骨材含量波速-強度關係式,最後以抗壓強度作為驗證。
實驗結果顯示,350 kgf/cm2自充填混凝土及早強混凝土之圓柱試體及版試體所進行波速-強度關係曲線驗證結果良好;而將圓柱試體及版試體套入粗骨材(CAC)含量波速-強度關係式所得結果,其圓柱試體28天超音波強度預估差異約10%,顯示試體28天處於面乾內飽和(SSD)狀態,以粗骨材含量配合波速量測來預估強度之結果良好。而現場版試體之量測,直接以量測之波速進行預測強度,其中表面P波波速所預估之結果皆偏低,而以反射波走時法量測之波速經含水量及量測法差異之修正後,以CAC公式預估之強度與鑽心抗壓強度差異在10%以內,驗證敲擊回音法經修正後可適用CAC公式來預估強度,並且適合於現地施作。
The objective of this thesis is to establish the UPV-strength relationship of high-strength and self-compacting concrete and its application to evaluation of the in-place concrete strength. The main working items include: (1) to establish UPV-strength relationship curve for high-strength and self-compacting concrete; (2) to verity the applicability of the previously established UPV-strength relationship based on coarse aggregate content (CAC) and self-established UPV-strength relationship ; and (3) to apply the UPV to nondestructive evaluation of the in-place strength of concrete plates. Two different mixture proportions of concrete were adopted to make high-strength and self-compacting concrete with a target compressive strength of 350 kgf/cm2. The specimens include cylindrical specimens and plate-like specimens on site. The measured pulse velocity was used to estimate the compressive strength of hardened concrete through the UPV-strength relationship and the estimated strength was compared with the strength obtained from compressive test.
The experimental results show that the estimated strength of cylindrical specimens and core specimens taken from plate-like specimens under the condition of saturated surface-dry (SSD) were good and the difference between the estimated strength and the measured strength is within 10%. For the plate-like specimens used in this study, measured the surface P-wave and internal P-wave, and investigate the difference between surface P-wave and internal P-wave velocities. Firstly, the internal P-wave velocity was recovered to the saturated surface-dry condition. Secondly, a modification factor to the internal P-wave velocity of plate-like specimen measured by the impact-echo method was suggested. Finally, the strength was estimated by the use of the established UPV-strength relationship based on coarse aggregate content (CAC) and the difference between the estimated strength and the core strength was within ±10%. It is concluded that the impact-echo measurement with modification could be used to estimate the in-place strength of hardened concrete.
總目錄
中文摘要 I
英文摘要 Ⅱ
目錄 Ⅲ
表目錄 Ⅴ
圖目錄 Ⅸ

目錄
第一章 緒論 1
第二章 文獻回顧 3
2-1 混凝土強度之非破壞檢測技術介紹 3
2-2 自充填與早強混凝土之使用特性 8
2-3 混凝土之波傳行為特性 9
2-3-1 波速檢測於混凝土性質之研究 9
2-3-2 影響混凝土波速之主要因素 10
2-4 波速與混凝土強度之關係 12
第三章 檢測原理 13
3-1 超音波法 13
3-1-1 試驗原理與方法 13
3-1-2 試驗儀器 14
3-1-3 試驗步驟 15
3-2 敲擊回音法 16
3-2-1 P-波速量測(頻率域分析) 17
3-2-2 P-波速量測(時間域分析) 18
3-2-3 試驗儀器 19
3-2-4 試驗步驟 20
3-3 反射波走時法 20
3-3-1 板厚頻率及遠距離反射推算厚度(方法二)試驗方法 21
3-3-2 近距離及遠距離反射推算厚度(方法三)試驗方法 21
3-3-3 試驗步驟 22
3-4 抗壓強度試驗 23
第四章 試體規劃 24
4-1 材料性質及來源 24
4-2 自充填與早強混凝土配比 25
4-3 試體製作 25
第五章 試驗結果分析與討論 27
5-1 各配比設計與實際骨材用量差異檢討 27
5-2 圓柱試體波速與強度試驗結果討論 27
5-2-1 早強混凝土圓柱試體結果討論 27
5-2-2 自充填混凝土圓柱試體結果討論 30
5-2-3 圓柱試體結果綜合討論 33
5-3 板狀試體波速與強度試驗結果討論 34
5-3-1 早強350板狀試體波速量測及鑽心試體試驗結果討論 34
5-3-2 SCC-350(A)板狀試體波速量測及鑽心試體試驗結果討論 35
5-3-3 SCC-350(B)板狀試體波速量測及鑽心試體試驗結果討論 35
5-3-4 S板狀試體之鑽心試驗結果綜合討論 36
5-4 板試體含水量及量測法差異波速修正之預估強度結果 37
第六章 結論與建議 38
參考文獻 39

表目錄
表2-1 各種混凝土強度現場試驗法之原理與優缺點 44
表4-1 水泥性質規範要求比較表 45
表4-2 爐石粉化學性質與規範比較表 46
表4-3 自充填混凝土附加劑(旭巨PX-2024SF) 47
表4-4 早強混凝土附加劑(旭巨-206) 47
表4-5 粗粒料篩分析 48
表4-6 粗粒料比重及吸水率(石2cm) 48
表4-7 粗粒料比重及吸水率(石1cm) 49
表4-8 細粒料篩分析 50
表4- 9 細粒料比重及吸水率 50
表4-10 拌和水與規範要求比較表 51
表4-11 自充填混凝土用粒料MAX 52
表4-12 早強混凝土用粒料MAX 53
表4-13 試驗用混凝土之配比 54
表5-1 實際粗骨材用量與設計粗骨材用量比較 55
表5-2a 早強350圓柱試體材齡1天敲擊回音法波速(IEV)試驗結果 56
表5-2b 早強350圓柱試體材齡1天敲擊回音頻譜法波速(IEF)試驗結果 57
表5-2c 早強350圓柱試體材齡1天超音波波速法(UPV)試驗結果 58
表5-3a 早強350圓柱試體材齡2天敲擊回音法波速(IEV)試驗結果 59
表5-3b 早強350圓柱試體材齡2天敲擊回音頻譜法波速(IEF)試驗結果 60
表5-3c 早強350圓柱試體材齡2天超音波波速法(UPV)試驗結果 61
表5-4a 早強350圓柱試體材齡3天敲擊回音法波速(IEV)試驗結果 62
表5-4b 早強350圓柱試體材齡3天敲擊回音頻譜法波速(IEF)試驗結果 63
表5-4c 早強350圓柱試體材齡3天超音波波速法(UPV)試驗結果 64
表5-5a 早強350圓柱試體材齡7天敲擊回音法波速(IEV)試驗結果 65
表5-5b 早強350圓柱試體材齡7天敲擊回音頻譜法波速(IEF)試驗結果 66
表5-5c 早強350圓柱試體材齡7天超音波波速法(UPV)試驗結果 67
表5-6a 早強350圓柱試體材齡14天敲擊回音法波速(IEV)試驗結果 68
表5-6b 早強350圓柱試體材齡14天敲擊回音頻譜法波速(IEF)試驗結果 69
表5-6c 早強350圓柱試體材齡14天超音波波速法(UPV)試驗結果 70
表5-7a 早強350圓柱試體材齡28天敲擊回音法波速(IEV)試驗結果 71
表5-7b 早強350圓柱試體材齡28天敲擊回音頻譜法波速(IEF)試驗結果 72
表5-7c 早強350圓柱試體材齡28天超音波波速法(UPV)試驗結果 73
表5-8a 自充填350圓柱試體材齡1天敲擊回音法波速(IEV)試驗結果 74
表5-8b 自充填350圓柱試體材齡1天敲擊回音頻譜法波速(IEF)試驗結果 75
表5-8c 自充填350圓柱試體材齡1天超音波波速法(UPV)試驗結果 76
表5-9a 自充填350圓柱試體材齡3天敲擊回音法波速(IEV)試驗結果 77
表5-9b 自充填350圓柱試體材齡3天敲擊回音頻譜法波速(IEF)試驗結果 78
表5-9c 自充填350圓柱試體材齡3天超音波波速法(UPV)試驗結果 79
表5-10a 自充填350圓柱試體材齡7天敲擊回音法波速(IEV)試驗結果 80
表5-10b 自充填350圓柱試體材齡7天敲擊回音頻譜法波速(IEF)試驗結果 81
表5-10c 自充填350圓柱試體材齡7天超音波波速法(UPV)試驗結果 82
表5-11a 自充填350圓柱試體材齡14天敲擊回音法波速(IEV)試驗結果 83
表5-11b 自充填350圓柱試體材齡14天敲擊回音頻譜法波速(IEF)試驗結果 84
表5-11c 自充填350圓柱試體材齡14天超音波波速法(UPV)試驗結果 85
表5-12a 自充填350圓柱試體材齡28天敲擊回音法波速(IEV)試驗結果 86
表5-12b 自充填350圓柱試體材齡28天敲擊回音頻譜法波速(IEF)試驗結果 87
表5-12c 自充填350圓柱試體材齡28天超音波波速法(UPV)試驗結果 88
表5-13a 自充填350圓柱試體材齡56天敲擊回音法波速(IEV)試驗結果 89

表5-13b 自充填350圓柱試體材齡56天敲擊回音頻譜法波速(IEF)試驗結果 90
表5-13c 自充填350圓柱試體材齡56天超音波波速法(UPV)試驗結果 91
表5-14a 自充填350圓柱試體材齡90天敲擊回音法波速(IEV)試驗結果 92
表5-14b 自充填350圓柱試體材齡90天敲擊回音頻譜法波速(IEF)試驗結果 93
表5-14c 自充填350圓柱試體材齡90天超音波波速法(UPV)試驗結果 94
表5-15 各配比硬固圓柱試體敲擊回音法(IEV及IEF)與超音波法平均波速比較表 95
表5-16 圓柱試體硬固後各齡期硬固波速修正之強度預估 96
表5-17a 早強350板試體表面及內部P波波速試驗結果 97
表5-17b 早強350板試體反射走時波波速試驗結果 98
表5-18a 早強350板試體鑽心試體敲擊回音法波速(IEV)試驗結果 99
表5-18b 早強350板試體鑽心試體敲擊回音頻譜法波速(IEF)試驗結果 100
表5-18c 早強350板試體鑽心試體超音波波速法(UPV)試驗結果 101
表5-19a SCC-350(A)板試體表面及內部P波波速試驗結果 102
表5-19b SCC-350(A)板試體反射波走時法波速試驗結果 103
表5-20a SCC-350(A)鑽心試體敲擊回音法波速(IEV)試驗結果 104
表5-20b SCC-350(A)鑽心試體敲擊回音頻譜法(IEF)試驗結果 105
表5-20c SCC-350(A)鑽心試體超音波波速法試驗結果 106
表5-21a SCC-350(B)板狀試體表面及內部P波波速試驗結果 107
表5-21b SCC-350(B)板狀試體反射波走時法波速試驗結果 108
表5-22a SCC-350(B)鑽心試體敲擊回音法波速(IEV)試驗結果 109
表5-22b SCC-350(B)鑽心試體敲擊回音頻譜法(IEF)試驗結果 110
表5-22c SCC-350(B)鑽心試體材齡超音波波速法試驗結果 111
表5-23 板試體鑽心試體波速修正之強度預估 112
表5-24 早強350板試體波速整理 113
表5-25 SCC-350(A)板試體波速整理 114
表5-26 SCC-350(B)板試體波速整理 115
表5-27 板試體含水量及波速試驗結果 116
表5-28 板試體現地試驗修正含水量及波速之強度預估 117
圖目錄
圖2-1 反彈錘--構造示意圖 118
圖2-2 探頭貫入試驗示意圖 118
圖2-3 彎裂試驗法示意圖 119
圖2-4 拉拔試驗原理示意圖 119
圖2-5 直接拔出試驗示意圖 120
圖2-6 超音波試驗儀器及配置簡圖 120
圖2-7 敲擊回音法示意圖 121
圖2-8 場製圓柱試體 121
圖2-9 SCC用坍流度試驗 122
圖2-10 SCCV型漏斗流出時間試驗 122
圖2-11 SCC間隙通過試驗 123
圖2-12 混凝土波速與強度之關係曲線(a)圓柱試體之波速與強度;(b)鑽心試體強度與版之波速;(c)鑽心試體之波速與強度 123
圖2-13 混凝土及砂漿試體之波速與強度關係 124
圖2-14 骨材種類對混凝土波速與強度關係之影響 124
圖2-15 骨材量對混凝土波速與強度關係之影響 125
圖2-16 水泥石、水泥砂漿及混凝土之波速與強度關係之影響 125
圖2-17 不同水灰比之波速成長曲線 126
圖2-18 養護溫度對混凝土抗壓強度與波速關係之影響 126
圖2-19 含水條件對混凝土抗壓強度與波速關係之影響 127
圖2-20 單位重與波速之關係 127
圖2-21 混凝土試體承受荷重下波速之變化 127
圖2-22 硬固混凝土(28天齡期)在不同粗骨材含量情況下之波速與強度關係 128
圖2-23 不同粗骨材含量之理論波速與強度關係曲線 129
圖3-1 超音波法操作原理示意圖 130
圖3-2 PUNDIT超音波試驗儀器 130
圖3-3 超音波之波速量測方式-直接傳遞法(Direct Transmission) 131
圖3-4 圓柱試體超音波波速試驗 131
圖3-5 應力波動行為示意圖 132
圖3-6 Snell’s Law示意圖 133
圖3-7 混凝土板試體應力波路徑示意圖 134
圖3-8 壓力波及張力波之示意圖 134
圖3-9 混凝土圓柱試體ψ15×30cm敲擊回音試驗施作照片 135
圖3-10 利用可感測敲擊時間原點設置裝置量測混凝土圓柱試體P-波波速 135
圖3-11 敲擊回音試驗儀器 136
圖3-12 板狀試體頻率分析試驗示意圖 136
圖3-13 板狀試體遠距離反射波走時試驗示意圖 137
圖3-14 板狀試體近距離反射波走時試驗示意圖 137
圖3-15 現場板試體測量點規畫 138
圖3-16 板試體內部P波檢測 138
圖3-17 板試體內部反射波檢測 138
圖3-18 ELE D0001型抗壓試驗機 139
圖4-1 混凝土圓柱試體現場製作 140
圖4-2 混凝土圓柱試體製作完成(ψ15×30cm×23顆) 140
圖4-3 混凝土圓柱試體粗粒料清洗 140
圖4-4 板試體模組(1M×1M×0.25M) 141
圖4-5 板試體澆置完成 141
圖4-6 板試體以不織布養護 141
圖4-7 板試體表面予以磨平 141
圖4-8 板試體之鑽心試體(ψ12.5cm) 142
圖4-9 所有板試體之鑽心試體 142
圖4-10 板試體方型試體切割 142
圖4-11 板試體之鑽心試體及方型試體 142
圖5-1 早強350混凝土28天圓柱試體敲擊回音法試驗波形圖
(a)可感敲擊器位移波形(b)訊號接受器位移波形 143
圖5-2 早強350混凝土圓柱試體波速-強度回歸曲線 143
圖5-3 SCC-350混凝土28天圓柱試體敲擊回音法試驗波形圖
(a)可感敲擊器位移波形(b)訊號接受器位移波形 144
圖5-4 SCC-350混凝土圓柱試體波速-強度回歸曲線 144
圖5-5 早強350板試體內部P波試驗波形圖
(a)可感敲擊器位移波形(b)訊號接受器位移波形 145
圖5-6 早強350板試體表面P波試驗波形圖
(a)可感敲擊器位移波形(b)訊號接受器位移波形 145
圖5-7 早強350板試體遠距離反射波試驗波形圖
(a)可感敲擊器位移波形(b)訊號接受器位移波形 146
圖5-8 早強350板試體頻率試驗波形圖
(a)可感敲擊器位移波形(b)訊號接受器位移波形 146
圖5-9 早強350板試體近距離試驗波形圖
(a)可感敲擊器位移波形(b)訊號接受器位移波形 147
1.ASTM C 805 (1992). "Standard Test Method for Rebound Number of Hardened Concrete," Annual Book of ASTM Standards, Vol. 04.02., 1992.
2.Chan, H.J., Yen, T., Lai, T.P. and Huang, Y.L. (1999).“Determination of dividing strength and its relation to the concrete strength in lightweight aggregate concrete”, Cement and Concrete Composites, Vol.21, No.1, 1999, pp.29-37.
3.ASTM C 803 (1992). "Standard Test Method for Penetration Resistance of Hardened Concrete," Annual Book of ASTM Standards, Vol. 04.02., 1992.
4.ASTM C 1150 (1992). "Standard Test Method for the Break-Off Number of Concrete," Annual Book of ASTM Standards, Vol. 04.02., 1992.
5.ASTM C 900 (1992). "Standard Test Method for Pullout Strength of Hardened Concrete," Annual Book of ASTM Standards, Vol. 04.02., 1999.
6.BSI 1881-203 (1992).“Recommendations for the Assessment of Concrete Strength by Near-to-Surface Tests,” BS 1881, Part 207, British Standards Institution.
7.ASTM C 597 (1992). "Standard Test Method for Pulse Velocity Through Concrete," Annual Book of ASTM Standards, Vol. 04.02., 1992.
8.Bungey, J.H. (1982). "Testing of Concrete in Structures," Surrey University Press, Glasgow, 1982, pp. 207.
9.Malhotra, V.M. (1976).“Testing Hardened Concrete : Nondestructive Methods,” ACI Monograph, No. 9, American Concrete Institute/Iowa State University Press, Detroit, 1976, pp. 204.
10.ASTM C 1383 (1998). "Standard Test Method for Measuring the P-Wave Speed and the Thickness of Concrete Plates Using the Impact-Echo Method" Annual Book of ASTM Standards, Vol. 04.02., 1998.
11.Sansalone, M.,and Carino,N.J., "Impact-Echo: A Method for Flaw Detection in Concrete Using Transinent Stress Waves "NBSIR 86-3452,National Bureau of Standards,Gaithersbrug ,Maryland ,Sept.,1986,222pp.(1986)
12.Sansalone, M.,and Carino,N.J., "Laboratory and Field Study of the Impact-Echo Method for Flaw Detection in Concere" ,in Nondestructive Testing of Concrete ,Special Publication of thee American Concrete Institute ,pp.1-20.(1988)
13.Sansalone, M.,and Carino,N.J., "Detecting Honeycombing ,the Depth of Surface-Opening Cracks, and Ungrouted Ducts Using the Impact-Echo Method",Concrete International , April ,pp.38-46(1988)
14.Sansalone, M.,and Carino,N.J., "Detecing Voids in Metal Tendon Ducts Using the Impact-Echo Method",Materials Journal of the American Concrete Institute ,Vol.89,No.3,pp.296-303,May-June(1992)
15.林宜清,許有智, "以敲擊回音法檢測鋼腱套管之灌漿品質",中國土木水利工程學刊,第九卷,第三期,pp.517-523.(1997)
16.Sansalone, M.,and Carino,N.J., "Detecting Delaminations in Reinforced Concrete Slabs with and without Asphalt Concrete Overlays Using the Impact-Echo Method",Materials Journal of the American Concrete Institute,Vol.86,No.2,pp.175-184.(1989)
17.Cheng, C. and Sananlone ,M. , "The Impact-Echo Response of Concrete Plates Containing Delaminations-Numeriacl,Experimental,and Field studies, "Materials and Structures, RILEM,Vol.26,pp.274-285(1993)
18.Lin , Y. and Sananlone,M., "Detecting Flaws in Concrete Beams and Columns Using the Impact-Echo Method, "Materials Journal of the American Concrete Insititute ,July-August ,pp.394-405.(1992)
19.Sansalone, M.,and Carino,N.J., "Impact-Echo Response of Concrete Shafts ",ASTM Geotechical Testing Journal,Vol.14.No.2,pp.121-137.(1991)
20.Lin , Y. and Sananlone,M., "Impact-Echo Response of Hollow Cylindrical Concrete Structures Surrounded by Soil or Rock ,Park I-Numerical Studies ",ASTM Geotechical Testing Journal,Vol.17.No.2,June,pp.207-219.(1994)
21.Lin , Y. and Sananlone,M., "Impact-Echo Response of Hollow Cylindrical Concrete Structures Surrounded by Rock ,Part Π-Experimental Studies", ASTM Geotechical Testing Journal,Vol.17.No.2,June,pp.220-226.(1994)
22.林宜清,陳真芳, "敲擊回音法在隧道混凝土襯砌結構非破壞試驗之應用",中國土木水利工程學刊,第八卷,第二期,pp.173-183.(1996)
23.Lin , Y. and Sananlone,M., "Impact-Echo Studies of Interfacial Bond Quality in Concrete : Effects of Unbonded Fraction of Area , "Materials Journal of the American Concrete Institute ,Vol.93,No.3,pp.223-232(1996)
24.林宜清,蔡利恩, ;"以應力波動技術檢測混凝土介面之粘結品質"中土木水利工程學刊,第九卷,第二期,pp.335-341(1997)
25.Cheng, C. and Sananlone ,M. , "Determining the Minimum Crack Width That Can Be Detected Using the Impact-Echo Method Part I : Experimental Study , "RILEM :Meterial and Structures Vol.28,pp.74-82.(1995)
26.Lin ,Y.,Yen,J.Y.R,and chen ,C.F., "Tracing Initiation and Propagation of Cracksin Composite Slabs, "Journal of Structural Engineering ,ASCE,Vol.122,No.7,pp.756-761.(1996)
27.Lin, Y.,and Su,W.C., "The Use of Stress Waves for Determing the Depth of Surface-Opening Cracks in Concrete Structures",
28.ASTM C 1074 (1992). "Standard Practice for Estimating Concrete Strength by the Maturity Method," Annual Book of ASTM Standards, Vol. 04.02., 1992.
29.ASTM C 873 (1992). "Test Method for Compressive Strength of Concrete Cylinders Cast in Place in Cylindrical Molds," Annual Book of ASTM Standards, Vol. 04.02., 1992.
30.陳松堂,林建宏, "自充填混凝土適用性介紹",臺灣公路工程,第三十卷,第五期,pp.2-14(Nov.2003)
31.黃兆龍 (1997)“混凝土性質與行為”,詹氏書局,1997年8月。
32.Naik, T.R. (1979).“The Ultrasonic Testing of Concrete”, Published by ACI in Experimental Methods in Concrete Structure for Practitioners, G.M. Sabnis and N. Fitzsimons, Eds, October 1979.
33.Pessiki, Stephen and Johnson, Matthew R. (1996).“Nondestructive Evaluation of Early-age Concrete Strength In Plate Structures by the Impact-Echo Method,” ACI Materials Journal, Vol. 93, No.3, 1996, pp.260-271.
34.Price, W.F. and Hynes, J.P. (1996).“In-Situ Strength Testing of High Strength Concrete”, Magazine of Concrete Reseach, Vol.48, No.176, Sept. 1996,pp.189-197.
35.Anderson David, A. and Seals Roger, K. (1981).“Pulse Velocity as a Predictor of 28- and 90-Day Strength”, ACI Materials Journal, Vol.78, No.2, March-April 1981, pp.116-122.
36.沈得縣、黃兆龍 (1991) “高爐熟料與飛灰對新拌水泥漿體水化機理影響之研究”,中國土木水利工程學刊,第三卷,第四期, pp. 333-338。
37.Pessiki, P. S., and Carino, N.J. (1988).“Setting Time and Strength of Concrete Using the Impact-Echo Method”, ACI Materials Journal, 1988; Vol.85, No.5, pp.389-399.
38.Naik, T.R., and Malhotra, V.M. (1991).“The Ultrasonic Pulse Velocity Method”, Chapter 7 in CRC Handbook on Nondestructive Testing of Concrete, V.M. Malhotra and N.J. carino, Eds., CRC Press, Boca raton, FL,1991, pp.169-188.
39.Sellect Scott, F., Landis Eric, N., Peterson Michael, L. , Shah Surendra, P. and Achenbach Jan, D. (1998).“Ultrasonic Investigation of Concrete with Distributed Damage”, ACI Materials Journal, Vol.95, No.1, January-February 1998, pp.27-36.
40.Suaris Wimal and Fernando Viraj (1987).“Ultrasonic Pulse Attenuation as a Measure of Damage Growth during Cyclic Loading of Concrete”, ACI Materials Journal, May-June 1987, Vol.84, pp.185-193.
41.Wu, T.T., and Lin, T. F. (1998).“The Stress Effect on the Ultrasonic Velocity Variation of Concrete under Repeated Loading”, ACI Materials Journal, Vol.95, No.5, September-October 1998, pp.519-524.
42.Popovics, S., Rose, L. Joseph, and Popovics, John S. (1990b).“The Behavior of Ultrasonic Pulses in Concrete,” Cement and Concrete Reaserch, Vol. 20, No.2, 1990, pp.259-270.
43.Sturrup, V.R., Vecchio, F.J., and Caratin, H. (1984).“Pulse Velocity as a Measure of Concrete Compressive Strength”, In Situ/Nondestructive Testing of Concrete, ACI SP-82, 1984; pp. 201-227.
44.Andersen Johannes and Nerenst Poul (1952). Wave Velocity in Concrete, ACI Journal, Proc. Vol.48, Apr. 1952, pp. 613-636.
45.Kaplan, M.F. (1958).“Compressive Strength and Ultrasonic Pulse Velocity Relationships for Concrete in Columns”, Journal of ACI, Vol.54, No.8, February 1958, pp. 675-688.
46.Jones, R. (1954).“Testing of Concrete by an Ultrasonic Pulse Technique”, RILEM Int. Symp. On Nondestructive Testing of Materials and Structures, Paris. Vol.1, Paper No.A-17, January 1954, pp.137, RILEM Bull. No.19, 2nd part, November 1954.
47.郭世芳 (2007)“探討超音波速度與混凝土抗壓強度之關係與其應用”,國立中興大學土木工程學系博士論文,2007年7月。
48.Lin, Y., Kuo, S.F., Hsiao, C., and Lai, C.P., 2007, “Investigation of Pulse Velocity-Strength Relationship of Hardened Concrete,” ACI Materials Journal, Vol. 104, No. 4, pp. 303-309.
49.胡盟宗 (2006)“反射波走時法應用在混凝土構件之厚度量測”,國立中興大學土木工程學系博士論文,2006年1月。
50.ACI committee 228,ACI 228.1 R03,In-Place Methods to Estimate Concrete Strength ,Chapter 4 Development of strength relationship,4.2.3 Number of replications ,pp22(2003)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top