跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/30 14:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖昶陵
研究生(外文):Chang-Ling Liao
論文名稱:卜作嵐摻料對硬固混凝土超音波波速與抗壓強度關係性之影響
論文名稱(外文):The Influence of Pozzolanic Materials on the Relationship between the Ultrasonic Pulse Velocity and Compressive Strength of Hardened Concrete
指導教授:林宜清林宜清引用關係劉宗豪劉宗豪引用關係
指導教授(外文):Yi-Cing LinJhong-Hao Liou
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土木工程學系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:39
中文關鍵詞:卜作嵐超音波抗壓強度
外文關鍵詞:pozzolanicultrasonic pulse velocitycompressive strength
相關次數:
  • 被引用被引用:1
  • 點閱點閱:276
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本文之目的在於探討卜作嵐摻料(Pozzolans)對硬固混凝土超音波波速與抗壓強度之影響,由先前之研究發現,當得知混凝土的粗骨材用量及量測其超音波波速,可利用公式推估混凝土硬固後之抗壓強度,但其論文只有探討純水泥材料,並無添加卜作嵐掺料,所以本文將其延伸至添加卜作嵐摻料後,利用公式推估混凝土硬固後抗壓強度之可行性。
首先選用混凝土配比為粗骨材含量為36%與40%,水灰比為0.4與0.6,漿體量為30%與35%,製作混凝土圓柱試體,分別在齡期為1、3、7、14、28及56天時對混凝土圓柱試體進行超音波波速量測及抗壓強度試驗,利用粗骨材含量及超音波波速代入公式可得混凝土硬固後之預估強度,將其與實際抗壓強度做比較。
實驗結果顯示,選用配比之56天硬固預估強度與實際抗壓強度間的誤差有99%在±15以內,所以混凝土添加卜作嵐摻料後,利用先前針對普通混凝土建立之公式推估卜作嵐混凝土硬固後抗壓強度是可行的。
The purpose of this thesis is to investigate the influence of pozzolanic materials on the relationship between the ultrasonic pulse velocity and compressive strength of hardened concrete. According to previous studies, it is found that when the coarse aggregate content is known, with the measured ultrasonic pulse velocity (UPV) of concrete, the compressive strength of hardened concrete can be estimated by using the established UPV-strength relationship. However, only cement material was considered in the previous studies. In this thesis, the pozzolanic materials were added in concrete to investigate the feasibility of using the same UPV-strength relationship to estimate the compressive strength of hardened concrete containing pozzolanic materials.
First, the specimens used in the studies were made of concrete with coarse aggregate content of 36% and 40%, and water/cement ratios of 0.4 and 0.6, and paste content of 30% and 35%. These specimens were tested at 1, 3, 7, 14, 28 and 56 days. The measured UPV values were used to estimate the compressive strengths of concrete with various mixture proportions through the previously established UPV-strength relationship curves. The estimated strengths were compared with the actual compression strengths obtained from compression tests on concrete cylinders.
The experimental results show that these curves were verified to be suitable for prediction of hardened pozzolanic concrete strength with a measured UPV value. Almost all the estimated values just have a relative error within ±15% compared to the actual strength of the concrete cylinders with an age of 56 days. Therefore, the UPV-strength relationship originally established for normal concrete can be also applicable to the concrete containing pozzolanic materials.
總目錄
中文摘要 I
英文摘要 II
目錄 III
表目錄 V
圖目錄 VIII


目錄
第一章 緒論 1
第二章 文獻回顧與研究方向 4
2-1 混凝土強度之非破壞檢測技術介紹 4
2-2 混凝土之特性與材料組成 13
2-2-1 混凝土之材料組成 14
2-2-2 混凝土強度之影響因素 15
2-3 混凝土之波傳行為特性 18
2-3-1 波速檢測於混凝土性質之研究 18
2-3-2 影響混凝土波速之主要因素 20
2-4 卜作嵐材料 23
2-5 研究方向 24
第三章 試驗儀器、原理與方法 25
3-1 超音波法 25
3-1-1 試驗原理與方法 25
3-1-2 試驗儀器 27
3-1-3 試驗步驟 27
3-2 抗壓強度試驗 28
第四章 試驗規劃 29
4-1 研究內容 29
4-2 試驗材料與性質 29
4-3 試驗配比 30
第五章 試驗結果分析與討論 32
5-1 普通混凝土UPV與抗壓強度之成長 32
5-2 卜作嵐混凝土UPV與抗壓強度之成長 32
5-2-1 飛灰取代水泥10% 32
5-2-2 飛灰取代水泥30% 33
5-2-3 爐石粉取代水泥20% 34
5-2-4 爐石粉取代水泥60% 34
5-3 預估強度與抗壓強度之比較 35
第六章 結論與建議 37
6-1 結論 37
6-2 建議 38
參考文獻 39

表目錄
表2-1 量測混凝土超音波波速之相關規範 41
表2-2 各種混凝土強度現場試驗法之原理與優缺點 42
表2-3 混凝土材料組成與性質之相關研究文獻 44
表2-3(續) 混凝土材料組成與性質之相關研究文獻 45
表2-4 混凝土材料波傳速度之相關研究文獻 46
表2-4(續) 混凝土材料波傳速度之相關研究文獻 47
表2-4(續) 混凝土材料波傳速度之相關研究文獻 48
表2-4(續) 混凝土材料波傳速度之相關研究文獻 49
表4-1 水泥(Cement)之物理化學性質 50
表4-2 天然骨材之比重與單位重 51
表4-3 天然砂之篩分析結果 51
表4-4 混凝土之試驗配比 52
表4-4(續) 混凝土之試驗配比 53
表4-5 飛灰之物理化學性質 54
表4-6 爐石粉之物理化學性質 55
表5-1 普通混凝土試體之UPV與抗壓強度量測結果(粗骨材含量CAC = 1044 kg/m3 ) 56
表5-1(續) 普通混凝土試體之UPV與抗壓強度量測結果(粗骨材含量CAC = 1044 kg/m3 ) 57
表5-2 普通混凝土試體之UPV與抗壓強度量測結果(粗骨材含量CAC = 914 kg/m3 ) 58
表5-2(續) 普通混凝土試體之UPV與抗壓強度量測結果(粗骨材含量CAC = 914 kg/m3 ) 59
表5-3 卜作嵐混凝土試體(飛灰取代水泥10%)之UPV與抗壓強度量測結果(粗骨材含量CAC = 1044 kg/m3 ) 60
表5-3(續) 卜作嵐混凝土試體(飛灰取代水泥10%)之UPV與抗壓強度量測結果(粗骨材含量CAC = 1044 kg/m3 ) 61
表5-4 卜作嵐混凝土試體(飛灰取代水泥10%)之UPV與抗壓強度量測結果(粗骨材含量CAC = 914 kg/m3 ) 62
表5-4(續) 卜作嵐混凝土試體(飛灰取代水泥10%)之UPV與抗壓強度量測結果(粗骨材含量CAC = 914 kg/m3 ) 63
表5-5 卜作嵐混凝土試體(飛灰取代水泥30%)之UPV與抗壓強度量測結果(粗骨材含量CAC = 1044 kg/m3 ) 64
表5-5(續) 卜作嵐混凝土試體(飛灰取代水泥30%)之UPV與抗壓強度量測結果(粗骨材含量CAC = 1044 kg/m3 ) 65
表5-6 卜作嵐混凝土試體(飛灰取代水泥30%)之UPV與抗壓強度量測結果(粗骨材含量CAC = 914 kg/m3 ) 66
表5-6(續) 卜作嵐混凝土試體(飛灰取代水泥30%)之UPV與抗壓強度量測結果(粗骨材含量CAC = 914 kg/m3 ) 67
表5-7 卜作嵐混凝土試體(爐石粉取代水泥20%)之UPV與抗壓強度量測結果(粗骨材含量CAC = 1044 kg/m3 ) 68
表5-7(續) 卜作嵐混凝土試體(爐石粉取代水泥20%)之UPV與抗壓強度量測結果(粗骨材含量CAC = 1044 kg/m3 ) 69
表5-8 卜作嵐混凝土試體(爐石粉取代水泥20%)之UPV與抗壓強度量測結果(粗骨材含量CAC = 914 kg/m3 ) 70
表5-8(續) 卜作嵐混凝土試體(爐石粉取代水泥20%)之UPV與抗壓強度量測結果(粗骨材含量CAC = 914 kg/m3 ) 71
表5-9 卜作嵐混凝土試體(爐石粉取代水泥60%)之UPV與抗壓強度量測結果(粗骨材含量CAC = 1044 kg/m3 ) 72
表5-9(續) 卜作嵐混凝土試體(爐石粉取代水泥60%)之UPV與抗壓強度量測結果(粗骨材含量CAC = 1044 kg/m3 ) 73
表5-10 卜作嵐混凝土試體(爐石粉取代水泥60%)之UPV與抗壓強度量測結果(粗骨材含量CAC = 914 kg/m3 ) 74
表5-10(續) 卜作嵐混凝土試體(爐石粉取代水泥60%)之UPV與抗壓強度量測結果(粗骨材含量CAC = 914 kg/m3 ) 75
表5-11 預測強度與實測強度之比較 (CAC = 1044 kg/m3,28天) 76
表5-11(續) 預測強度與實測強度之比較 (CAC = 1044 kg/m3,28天) 77
表5-12 預測強度與實測強度之比較 (CAC = 914 kg/m3,28天) 78
表5-12(續) 預測強度與實測強度之比較 (CAC = 914 kg/m3,28天) 79
表5-13 預測強度與實測強度之比較 (CAC = 1044 kg/m3,56天) 80
表5-13(續) 預測強度與實測強度之比較 (CAC = 1044 kg/m3,56天) 81
表5-14 預測強度與實測強度之比較 (CAC = 914 kg/m3,56天) 82
表5-14(續) 預測強度與實測強度之比較 (CAC = 914 kg/m3,56天) 83
干裕成 (2003) “劣化混凝土材料應力波傳速度與E值、老化時程及抗壓強度之關係”行政院原子能委員會委託研究計畫研究報告,2003年12月。
沈得縣、黃兆龍 (1991) “高爐熟料與飛灰對新拌水泥漿體水化機理影響之研究”,中國土木水利工程學刊,第三卷,第四期, pp. 333-338。
沈進發 (1983)“混凝土品質控制”,第三版,pp. 7-351983年9月。
林炳炎 (1993)“飛灰與飛灰混凝土”,現代營建,1993年7月
邱欽賢 (2002)“水工結構混凝土之抗沖蝕性”,國立中興大學土木工程學系碩士論文,2002年6月。
苗伯霖 (1996)“高性能混凝土配比施工及品檢應注意問題”,高性能混凝土研討會論文集,pp.1-34,台北,1996年4月。
島川正憲 著,賴迪陽 譯 (1982)“超音波工學理論實務”,復漢出版社,1982年。
陳建旭 (1986)“大理石之微觀結構對工程性質之影響”,碩士論文,國立中興大學土木研究所,台中,1986年。
黃兆龍 (1997)“混凝土性質與行為”,詹氏書局,1997年8月。
黃兆龍,蘇南 (1990)“台灣中北部主要河川粗骨材巨觀工程性質之研究”,土木水利,第十七卷,第一期,pp. 43-59,1990。
黃啟貞 (1980)“超音波檢測試驗法”,中華民國非破壞檢測協會(上冊),1980年。
楊仲家、黃然、葉為忠 (1996)“以微觀力學探討粗骨材對高性能混凝土之影響”,第三屆結構工程研討會,pp.1785-1793,1996。
劉玉雯 (2006)“應用於水工結構表層之高性能混凝土磨損行為”,國立中興大學土木工程學系博士論文,2006年1月。
劉賢淋、洪如江 (1984)“風化作用對岩石材料強度性質影響之研究”,碩士論文,國立台灣大學土木工程研究所,台北,1984年。
賴朝鵬 (1999)“混凝土材料組成對其流動性質與波傳行為之影響”,國立中興大學土木工程學系博士論文,1999年6月。
郭世芳 (2007)“探討超音波速度與混凝土抗壓強度之關係與其應用”,國立中興大學土木工程學系博士論文,2007年7月。
陳建材 (2005)“建立飛灰爐石粉混凝土波速與強度關係曲線並評估其及應用”,國立中興大學土木工程學系碩士論文,2005年7月。
ACI Committee 228 Report (1996). In-Place Methods to Estimate Concrete Strength, ACI Standard ACI 228.1R-95, 1996.
Aïtcin, Pierre-Claude and Neville, Adam (1993).“High-Performance Concrete Demystified”, Concrete International, Vol.15, No.1, January 1993, pp.21-26.
Andersen Johannes and Nerenst Poul (1952). Wave Velocity in Concrete, ACI Journal, Proc. Vol.48, Apr. 1952, pp. 613-636.
Anderson David, A. and Seals Roger, K. (1981).“Pulse Velocity as a Predictor of 28- and 90-Day Strength”, ACI Materials Journal, Vol.78, No.2, March-April 1981, pp.116-122.
ASTM C 1074 (1992). "Standard Practice for Estimating Concrete Strength by the Maturity Method," Annual Book of ASTM Standards, Vol. 04.02., 1992
ASTM C 1150 (1992). "Standard Test Method for the Break-Off Number of Concrete," Annual Book of ASTM Standards, Vol. 04.02., 1992
ASTM C 42 (1992). "Standard Method of Obtaining and Testing Drilled Cores and Sawed Beams of Concrete," Annual Book of ASTM Standards, Vol. 04.02., 1992
ASTM C 597 (1992). "Standard Test Method for Pulse Velocity Through Concrete," Annual Book of ASTM Standards, Vol. 04.02., 1992
ASTM C 803 (1992). "Standard Test Method for Penetration Resistance of Hardened Concrete," Annual Book of ASTM Standards, Vol. 04.02., 1992
ASTM C 805 (1992). "Standard Test Method for Rebound Number of Hardened Concrete," Annual Book of ASTM Standards, Vol. 04.02., 1992
ASTM C 873 (1992). "Test Method for Compressive Strength of Concrete Cylinders Cast in Place in Cylindrical Molds," Annual Book of ASTM Standards, Vol. 04.02., 1992
ASTM C 900 (1992). "Standard Test Method for Pullout Strength of Hardened Concrete," Annual Book of ASTM Standards, Vol. 04.02., 1999
Berntsson eif, Chandra Satish, and Kutti Tomas (1990).“Principles and Factors Influencing High-Strength Concrete Production”, Concrete International, Vol.12, No.12, December 1990, pp.59-62.
Berriman, J., Purnell, P., Hutchinsm D.A., Neild, A. (2005).〝Humidity and aggregate content correction factors for air-coupled ultrasonic evaluation of concrete,〞Ultrasonics 43, August, 2005, pp. 211–217.
Brian, B. Hope and Paul, M. Hewitt (1985).“Progressive Concrete Mix Proportioning”, ACI Materials Journal, Vol82, No.3, May-June 1985, pp.350-356.
BSI 1881-203 (1992).“Recommendations for the Assessment of Concrete Strength by Near-to-Surface Tests,” BS 1881, Part 207, British Standards Institution.
Bungey, J.H. (1982). "Testing of Concrete in Structures," Surrey University Press, Glasgow, 1982, pp. 207
Chan, H.J., Yen, T., Lai, T.P. and Huang, Y.L. (1999).“Determination of dividing strength and its relation to the concrete strength in lightweight aggregate concrete”, Cement and Concrete Composites, Vol.21, No.1, 1999, pp.29-37.
Charles, T. Kennedy (1940).“The Design of Concrete Mixes”, ACI Materials Journal, Vol36, 1940, pp.373-400.
Chung, H. W. and Law, K.S. (1983).“Diagnosing in Situ Concrete by Ultrasonic Pulse Technique”, Concrete International, Vol.13, No.10,1983, pp.42-49.
Dan, E.Branson (1978).”Deformation of Concrete Structure” , 1978, pp. 2
Galan Andrej (1967). “Estimate of Concrete Strength by Ultrasonic Pulse Velocity and Damping Constant,” ACI Journal, Vol. 64, No. 10, 1967, pp. 678-684.
Jones, R. (1954).“Testing of Concrete by an Ultrasonic Pulse Technique”, RILEM Int. Symp. On Nondestructive Testing of Materials and Structures, Paris. Vol.1, Paper No.A-17, January 1954, pp.137, RILEM Bull. No.19, 2nd part, November 1954.
Kaplan, M.F. (1958).“Compressive Strength and Ultrasonic Pulse Velocity Relationships for Concrete in Columns”, Journal of ACI, Vol.54, No.8, February 1958, pp. 675-688.
Kaplan, M.F. (1952).“Effects of Incomplete Consolidation on Compressive and Flexural Strength, Ultrasonic Pulse Velocity, and Dynamic Modulus of Elasticity of Concrete”, Journal of ACI, Vol.56, No.9, March, 1952, pp. 853-867.
Kennedy, harles T. (1940).“The Design of Concrete Mixes”, ACI Materials Journal, Vol36, 1940, pp.373-400.
Klieger Paul (1957). “Long-Time Study of Cement Performance in Concrete, Chapter 10-Progress Report on Strength and Elastic Properties of Concrete”, Journal of ACI, Vol.54, No.6, December, 1957, pp. 481-503.
Knab, L.J., Blessing, G.V., and Clifton, J.R. (1983). "Laboratory Evaluation of Ultrasonics for Crack Detection in Concrete," ACI J., 80, 17, 1983.
Koliasa, S., and Georgiou, C. (2005).“The effect of paste volume and of water content on the strength and water absorption of concrete, Cement & Concrete Composites 27, 2005, pp. 211–216.
Komloš, K., Popovics, S., Nürnbergerová, T., Babál, B. and Popovics, J.S. (1996).〝Ultrasonic Pulse Velocity Test of Concrete Properties as Specified in Various Standards,〞Cement and Concrete Composites Volume: 18, June, 1996, pp. 357-364.
Lai, Chao-Peng, Lin, Yiching, and Yen, Tsong (2001).“Behavior and Estimation of Ultrasonic Pulse Velocity in Concrete,” The International Conference on Structural Engineering ,Mechanics and Computation, Cape Town South Africa, 2001, pp. 1365-1372.
Lama, R.D., and Vutukuri, V.S. (1978). Handbook on Mechanical Properties of Rocks, Trans Tech. Publications Clausthal, Germany, Vol.2 and Vol.4. (1978)
Leif Berntsson, Satish Chandra, and Tomas Kutti (1990). “Principles and Factors Influencing High-Strength Concrete Production”, Concrete International, Vol.12, No.12, December 1990, pp.59-62.
Lin, Y., Chang, fan H., and Hsiao, C. (1998).“Estimation of High-Performance Concrete Strength by Pulse Velocity,” Journal of the Chinese Institute of Engineers, Vol. 20, No. 6, 1998, pp. 661-668.
Malhotra, V.M., /Editor et al. (1984).“In Situ/Nondestructive Testing of Concrete”, ACI SP-82, 1984
Malhotra, V.M. (1976).“Testing Hardened Concrete : Nondestructive Methods,” ACI Monograph, No. 9, American Concrete Institute/Iowa State University Press, Detroit, 1976, pp. 204.
Mehta Kumar (1986a).“CONCRETE Structure, Properties, and Materials”, Prentice–hall, INC., Englewood Cliffs, New Jersey, USA ,1986.
Mehta, P. K. (1986b).“CONCRETE Structure, Properties, and Materials”, Prentice–hall, INC., Englewood Cliffs, New Jersey, USA ,1986.
Meyer, A. (1963). Uber den Einfluss des Wasserzementwertes auf die Fruhfestigkeit von Beton (On the Effect of the Water-Cement Ratio on the Early strength of Concrete), Betonstein Zeitung, Vol.29,No.8, Aug. 1963, PP. 391-394
Mindess, S., and Young, J. F. (1981).“concrete”, Prentic-Hall, Inc., Englewood Cliffs, New Jersey,1981, pp24-25.
Műller-Rochholz, J. (1979). Determination of the Elastic Properties of Lightweight Aggregate by Ultrasonic Pulse Velocity”, The International Journal of Lightweight Concrete, Vol.1, No.2, 1979, pp.87-90.
Naik, T.R., and Malhotra, V.M. (1991).“The Ultrasonic Pulse Velocity Method”, Chapter 7 in CRC Handbook on Nondestructive Testing of Concrete, V.M. Malhotra and N.J. carino, Eds., CRC Press, Boca raton, FL,1991, pp.169-188.
Naik, T.R. (1979).“The Ultrasonic Testing of Concrete”, Published by ACI in Experimental Methods in Concrete Structure for Practitioners, G.M. Sabnis and N. Fitzsimons, Eds, October 1979.
Ohdaira Etsuzo, Masuzawa Nobuyoshi (2000).〝Water content and its effect on ultrasound propagation in concrete —the possibility of NDE,〞Ultrasonics 38, 2000, pp. 546–552.
Pessiki Stephen and Johnson, Matthew R. (1996).“Nondestructive Evaluation of Early-age Concrete Strength In Plate Structures by the Impact-Echo Method,” ACI Materials Journal, Vol. 93, No.3, 1996, pp.260-271.
Pessiki, P. S., and Carino, N.J. (1988).“Setting Time and Strength of Concrete Using the Impact-Echo Method”, ACI Materials Journal, 1988; Vol.85, No.5, pp.389-399.
Philleo, R. E. (1955).“Comparison of Results of Three Methods for Determining Young’s Modulus of Elasticity of Concrete”, Journal of ACI, Vol.51, No.5, January 1955,pp.461-469.
Popovics, S. (1976).“Strength and Related Properties of Concrete:A Quantative Approach”, JOHN WILEY & SONS, INC., USA ,1976, pp. 62-71.
Popovics, S. (1987).“A Hypothesis Concrete the Effects of Macro-Porosity on Mechanical Properties of Concrete”, Fracture of Concrete and Rock, SEM-RILEM International Conference, June 1987,Houston Texas, pp.170-174.
Popovics, S. (1990a). ”Analysis of Concrete Strength versus water-cement ratio relationshop”ACI Materials Journal,Sep.-Oct.1990,PP.517-529.
Popovics, S., Rose, L. Joseph, and Popovics, John S. (1990b).“The Behavior of Ultrasonic Pulses in Concrete,” Cement and Concrete Reaserch, Vol. 20, No.2, 1990, pp.259-270.
Price, W.F. and Hynes, J.P. (1996).“In-Situ Strength Testing of High Strength Concrete”, Magazine of Concrete Reseach, Vol.48, No.176, Sept. 1996,pp.189-197.
Price, W.H. (1951). Journal of the ACI,Vol.47,No.6,1951,PP.417-432
RILEM Recommendations NDT 1 (1972). "Testing of Concrete by the Ultrasonic Pulse Method," Paris, 1972, December.
Sansalone, Mary J., and Streett, William B. (1997a).“Impact-Echo: Nondestructive Evaluation of Concrete and Masonry”, BULLBRIER Press, ITHACA, N.Y., 1997a, pp29-74
Sansalone, Mary J., and Streett, William B. (1997b).“Impact-Echo: Nondestructive Evaluation of Concrete and Masonry”, BULLBRIER Press, ITHACA, N.Y., 1997, 339 pages.
Sellect Scott, F., Landis Eric, N., Peterson Michael, L. , Shah Surendra, P. and Achenbach Jan, D. (1998).“Ultrasonic Investigation of Concrete with Distributed Damage”, ACI Materials Journal, Vol.95, No.1, January-February 1998, pp.27-36.
Sturrup, V.R., Vecchio, F.J., and Caratin, H. (1984).“Pulse Velocity as a Measure of Concrete Compressive Strength”, In Situ/Nondestructive Testing of Concrete, ACI SP-82, 1984; pp. 201-227
Suaris Wimal and Fernando Viraj (1987).“Ultrasonic Pulse Attenuation as a Measure of Damage Growth during Cyclic Loading of Concrete”, ACI Materials Journal, May-June 1987, Vol.84, pp.185-193.
Tanigawa, Y., Baba, K., and Mori, H. (1984).“Estimation of Concrete Strength by Combined Nondestructive Testing Method”, In Situ/Nondestructive Testing of Concrete, ACI SP-82, 1984; pp. 57-76.
Wu, T.T., and Lin, T. F. (1998).“The Stress Effect on the Ultrasonic Velocity Variation of Concrete under Repeated Loading”, ACI Materials Journal, Vol.95, No.5, September-October 1998, pp.519-524.
Yang, C.C. and Huang, R. (1996).“ A Two-Phase Model for Predicting the Compressive Strength of Concrete”, Cement and Concrete Research, Vol.26, No.10, 1996, pp.1567-1577.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top