跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/06 12:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張漢予
研究生(外文):Han-Yu Chang
論文名稱:以鍍金網版印刷碳電極探討汞離子在土壤中的移動性
論文名稱(外文):Study of Movement of Mercury Ions in Soils Using Gold Plated Screen-Printed Carbon Electrodes.
指導教授:陳鴻基陳鴻基引用關係
指導教授(外文):Horng-Ji Chen
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土壤環境科學系所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:94
中文關鍵詞:鍍金網版印刷碳電極土壤移動性
外文關鍵詞:mercurygold plated screen-printed carbon electrodessoilsmovement
相關次數:
  • 被引用被引用:1
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
汞是環境中最毒的元素之一,由於其高反應性、揮發性及溶解性,對土壤環境的汙染已構成人體健康上很大的威脅。探討快速有效偵測土壤汞離子的方法及了解不同淋洗液對汞離子在土壤中移動性的影響是為本試驗研究之主要目的。以鍍金網版印刷電極搭配方波陽極剝除伏安法,在選取 0.1 M HCl 為偵測背景電解質的電化學分析試驗結果中指出,汞的最佳分析參數分別為:預濃縮電位0 mV;預濃縮時間2分鐘;最佳振福及頻率為 25 mV 與 15 Hz;並且在20 - 100 μg/L 的汞濃度範圍中得到一良好的線性關係 ( R2 = 0.9997 );偵測極限為5 ppb。由土壤中汞的抽取試驗結果指出,0.1 M之HCl 與 HNO3 對於三種土壤之汞抽出百分率大小依序為:秀水系 ( 40.08 % 及37.02 % ) > 吳厝系 ( 27.20 % 及22.23 % ) > 大里系 ( 6.60 % 及4.63 % );0.05 M CaCl2、0.1 M NH4Cl 與 0.1 M KCl 對汞的抽出百分率則依序為吳厝系 ( 21.87 %、19.03 % 及 23.37 % ) > 秀水系( 8.87 %、5.62 % 及 9.16 % ) > 大里系 ( 皆小於1 % );0.05 M CaNO3、0.1 M NH4NO3 與0.1 M KNO3 對三種土壤中¬汞的抽出百分率皆小於1 %。顯示出酸類、氯鹽類與硝酸鹽類在抽取效率上明顯的差異。藉由土壤管柱淋洗來模擬土壤中汞的移動之試驗結果指出,以0.1 M HCl 與 0.5 M HCl 淋洗,Ca(H2PO4)2 的處理會增進大里系及秀水系土壤中汞的移動;而 CaCO3 處理會抑制吳厝系土壤中汞在兩種淋洗液中的移動;而腐植酸處理使三種土壤在0.1 M HCl 與 0.5 M HCl 淋洗下,土壤中汞的移動性未受到明顯的影響。
Mercury is one of the most toxic elements in the environment. The pollution of soil by mercury through its high reactivity, volitility and solubility, which will cause serious threat to the human health. The aims of this study are to search a quick and effective method of detecting mercury ions in soils and to understand the mobility of mercury ions in soils by the selected leaching solutions. The optimum conditions for mercury analysis using gold plated screen-printed electrode in electrolyte of 0.1 M HCl are 0 mV for plating potential, 2 min. for deposition time, 25 mV for amplitude of square-wave voltammetry and 15 Hz for frequency of square-wave voltammetry. The peak current of mercury is liner with concentration in the range of 0-100 μg/L (R2 = 0.9997), and detection limit is 5 μg/L. The results of the extracted experiments using 0.1 M HCl and 0.1 M HNO3 indicated the following sequence for extracted percentage of mercury from three selected soils : Shiushui series ( 40.08 %, 37.02 % ) > Wutso series ( 27.20 %, 22.23 % ) > Tali series ( 6.60 %, 4.63 % ) ; for using 0.05 M CaCl¬2 , 0.1 M NH4Cl and 0.1 M KCl : Wutso series ( 21.87 %, 19.03 % and 23.37 % ) > Shiushui series ( 8.87 %, 5.62 % and 9.16 % ) > Tali series ( all < 1 % ) ; and for 0.05 M CaNO3, 0.1 M NH4NO3 and 0.1 M KNO3 : all < 1.5 %. The results showed a a significant distinction of extracted effect among acid, chloride and nitrite solutions. The results of column leaching experiments indicated that Ca(H2PO4)2 enhances the mobility of mercury in Tali series and Wutso series leached by both 0.1 M HCl and 0.5 M KCl ; CaCO3 reduces the mobility of mercury in Wutso series leached by both 0.1 M HCl and 0.5 M HCl. In the presence of humic acid, no effect on transportation of mercury ions was observed in three soils leached by both 0.1 M HCl and 0.5 M KCl.
目錄
謝誌 I
摘要 II
Abstract III
目錄 IV
表次 VI
圖次 VII
第一章 緒論 1
一、前言 1
二、前人研究 3
(一) 環境中汞之來源 3
(二) 汞的毒理性質 5
(三) 汞於自然環境中之型態分佈與化學行為 7
(四) 汞的分析方法 10
(五) 電化學分析原理 13
第二章 材料與方法 17
一、金薄膜網版印刷電極對汞之偵測 17
二、不同抽取液對土壤中汞移除之探討 22
三、汞在土壤中移動行為之探討 28
第三章 結果與討論 30
一、金修飾網版印刷電極對汞之偵測 30
(一) 方波參數探討 30
(二) 預濃縮電位的探討 32
(三) 預濃縮時間的探討 35
(四) 電極再生、穩定度與濃度較正曲線 35
(五) 干擾物探討 40
二、不同抽取液對土壤中汞移除之探討 43
(一) 大里系土壤 47
(二) 吳厝系土壤 50
(三) 秀水系土壤 61
三、汞在土壤中移動行為之探討 65
(一) 空白處理 65
(二) Ca(H2PO4)2 處理 70
(三) CaCO3 處理 72
(四) 腐植酸處理 75
第四章 結論 79
參考文獻 80
附錄 89
莊木枝。1995。利用聚4-乙烯砒啶金(汞)薄膜修飾電極對水溶液中汞(鉍) 離子之偵測。國立中興大學化學研究所碩士論文。

鐘協訓。2002。網版印刷電極在分析化學上的應用及發展。國立中興大學化學研究所博士論文。

環保署網站。http://w3.epa.gov.tw/epalaw/index.aspx。

Adriano, D.C. 1986. Trace elements in the terrestrial environment. Springer-Verlag, New York.

Agraz, R., M.T. Sevilla, and L. Hernandez. 1995. Voltammetric quantification and speciation of mercury compounds. J. Electroanal.Chem. 390: 47-57.

Andersson, A. 1970. On the geochemical behaviour of mercury. Grundförbättring 23: 31-40.

Andersson, A. 1979. Chapter 4. In J. O. Nriagu (ed.) The biogeochemistry of mercury in the environment. Elsevier, Amsterdam.

Barrow, N. J., and V. C. Cox. 1992. The effects of pH and chloride concentration on mercury sorption. I. by goethite. J. Soil Sci. 43: 295-304.

Boaventura, G.R., A.C. Barbosa, and G.A. East. 1997. Multivessel system for cold-vapor mercury generation. Determination of mercury in hair and fish. Biological Trace Element Research 60: 153-161.

Bohn, H.L., B.L. McNeal, and G.A. O’connor. 1985. Soil chemistry. 2nd ed. John Wiley & Sons, New York.

Bonfil, Y., M. Brand, and E. Kirowa-Eisner. 2000. Trace determination of mercury by anodic stripping voltammetry at the rotating gold electrode. Anal. Chim. Acta 424: 65-76.

Bowen, H.J.M. 1979. Environmental chemistry of the elements. Academic Press, London.

Brigattia, M.F., S. Colonnab, D. Malferraria, L. Medicic, and L. Poppia. 2005. Mercury adsorption by montmorillonite and vermiculite:a combined XRD, TG-MS, and EXAFS study. Appl. Clay Sci. 28:1-8.

Chaney, R.L. 1984. Proc. pan american health organization workshop on the international transportation, utilization or diposal of sewage sludge.

Dudas, M.J., and S. Pawluk. 1976. The nature of mercury in chernozemic and luvisolic soils in Alberta. Can. J. Soil Sci. 56: 413-423.

Frear, D.E.H., and L.E. Dills. 1967. Mechanism of the insecticidal action of mercury and mercury salts. J. Econ. Entomol. 60: 970-974

Gilmour, J.T., and M.S. Miller. 1973. Fate of a mercuric-mercurous chloride fungicide added to turfgrass. J. Environ. Qual. 2: 145-148.

Greenwood, M.R., and R. Von Burg. 1984. Chapter II, 18. In E. Merian (ed.) Metalle der Umwelt. Verlag Chemie, Weinheim.

Hassan, M.Z., D.F. Untereker, and S. Brukenstein. 1973. Ring-disk study of thin mercury films on platinum. J. Electroanal. Chem. 42: 161-181.

Hatch, W.R., and W.L. Ott. 1968. Determination of submicrogram quantities of mercury by atomic absorption spectrophotometry. Anal. Chem. 40: 2085-2087.

Henke, K.R. et al. 1993. Critical review of mercury contamination issues relevant to manometers at natural gas industry sites. Gas Research Institute Topical Report.

Henriques, A., unpublish work cited in R. Ferm, and J.E. Larsson. 1973. Kvicksilver-användning, kontroll och miljöeffekter. National Swedish Environment Protection Board, Report SNV PM 421.

Hesterberg, D., J.W. Chou, K.J. Hutchison, and D.E. Sayers. 2001. Bonding of Hg(II) to reduced organic sulfur in humic acid as affected by S/Hg ratio. Environ. Sci. Technol. 35: 2741-2745.

Hingston, F.J., R.J. Atkinson, A.M. Posner, and J.P. Quirk. 1967. Specific adsorption of anions. Nature 215: 1459-1461.

Hirst, D. 1962. The geochemistry of modern sediments from the gulf of Paria. Geochim. Cosmochim. Acta 26: 1147-1187.

Hogg, T.J., J.W.B. Stewart, and J. R. Battany. 1978. Influence of the chemical form of mercury on its adsorption and ability to leach through soils. J. Environ. Qual. 7: 440-445.

http://www.minersoc.org/pages/gallery/claypix/chlorite/mtblanc2.jpg

http://www.minersoc.org/pages/gallery/claypix/kaolinite/q00.jpg

http://www.minersoc.org/pages/gallery/claypix/smectite/YM01.jpg.

Joensuu, O.I. 1971. Fossil fuels as a source of mercury pollution. Science 172: 1027-1028.

Kim, C.S., J. J. Rytuba, and G.E. Brown Jr. 2004. EXAFS study of mercury(II) sorption to Fe- and Al-(hydr)oxides II. effects of chloride and sulfate. 270: 9-20.

Landa, E.R.. 1978. The retention of metallic mercury vapor by soils. Geochim. Cosmochim. Acta 42: 1407-1411.

Lester, J.N., R.M. Sterritt, and P.W.W. Kirk. 1983. Significance and behavior of heavy metals in waste water treament processes II. Sludge treament and disposal. Sci. Total Environ. 30: 45-83.

Li, X., W. Dietze, F. Nyasulu, and B.A.F. Mibeck. 2006. Ultramicroband array electrode. 1. Analysis of mercury in contaminated soils and flue gas exposed samples using a gold-plated iridium portable system by anodic stripping voltammetry. Anal. Chem. 78: 5172-5178.

Lindquist, O., A. Jernelov, K. Johansson, and H. Rodhe. 1984. Mercury in the swedish environment. National Swedish Environment Protection Report SNV PM 1816.

Lo, J.M., J.C. Wei, and S.J. Yeh. 1978. Determination of mercury in human urine by neutron activation analysis, with lead diethyldithiocarbamate as a preconcentration agent. Anal. Chim. Acta 97: 311-316.

Lodenius, M., A. Seppänen, and S. Autio. 1987. Leaching of mercury from peat soil. Chemosphere 16: 1215-1220.

Mac Naughton, M.G., and R.O. James. 1973. Adsorption of aqueous mercury (II) complexes at the oxide/water interface. J. Colloid Interf. Sci. 47: 431-440.

Meyer, S., F. Scholz, and R. Trittler. 1996. Determination of inorganic ionic mercury down to 5 X 10-14 mol L-1 by differential-pulse anodic stripping voltammetry. Fresenius J. Anal. Chem. 356: 247-252.

Morita, H., M. Sugimoto, and S. Shimomura. 1990. Selective determination of inorganic and total mercury by cold vapor atomic fluorescence spectrometry coupled with flow injection analysis. Anal. Sci. 6: 91-95.

Nriagu, J.O. 1979. Chapter 2. In J.O. Nriagu (ed.) The biogeochemistry of mercury in the environment. Elsevier, Amsterdam.

Okçu, F., F.N. Ertas, H.Ì.Gökçel, and H. Tural. 2005. Anodic stripping voltammetric behavior of mercury in chloride medium and its determination at a gold film electrode. Turk. J. Chem. 29: 355-366.

Pascale, B.G., M. Alnot, J.P. Lickes, J.J. Ehrhardt, and P. Behra. 1999. Modeling the adsorption of mercury(II) on (hydr)oxides II:α-FeOOH (goethite) and amorphous silica. J. Colloid Interf. Sci. 215: 313-322.

Perone, S. P., and W. J. Kretlow. 1965. Anodic stripping voltammetry of mercury(II) at the graphite electrode. Anal. Chem. 37: 968-970.

Robbins, G.D., and C.G. Enke. 1969. Investigation of the compound formed at a platinum-mercury interface. J. Electroanal. Chem. 23: 343-349.

Rogers, R.D., and J.C. McFarlane. 1979. Factors influencing the volatilization of mercury from soil. J. Environ. Qual. 8: 255-260.

Rook, H.L., T.E. Gills, and P.D. LaFleur. 1972. Method for determination of mercury in biological materials by neutron activation analysis. Anal. Chem. 44: 1114-1117.

Sarkar, D., M.E. Essington, and K.C. Misra. 1999. Adsorption of mercury(II) by variable charge surfaces of quartz and gibbsite. Soil Sci. Soc. Am. J. 63: 1626-1636.

Sarkar, D., M.E. Essington, and K.C. Misra. 2000. Adsorption of mercury(II) by kaolinite. Soil Sci. Soc. Am. J. 64: 1968-1975.

Schinder, P.W., and W. Stumm. 1987. The surface chemistry of oxides, hydroxides, and oxide mineral. p. 83-110. In W. Stumm (ed.) Aquatic surface chemistry. John Wiley and Sons, New York.

Steinnes, E. 1990. Mercury. In B.J. Alloway (ed.) Heavy metals in soils. Blackie, Glasgow.

Stojko, N. Yu., Kh. Z. Brainina, C. Faller, and G. Henze. 1998. Stripping voltammetric determination of mercury at modified solid electrodes I. Development of modified electrodes. Anal. Chim. Acta 371: 145-253.

Stumm, E. 1992. Chemistry of the solid-water interface. Processes at the mineral-water and particle-water interface in natural systems. John Wiley & Sons, New York.

Švancara, I., M. Matoušek, E. Sikora, K. Shachl, K. Kalcher, and K. Vytřas. 1997. Carbon paste electrodes plated with a gold film for the voltammetric determination of mercury(II). Electroanalysis 9: 827-833.

Tiffreau, C., J. Lützenkirchen, and P. Behra. 1995. Modeling the adsorption of mercury(II) on (hydr)oxides: I. Amorphous iron oxide and α-quartz. J. Colloid Interf. Sci. 172: 82-93.

Turner, R.R. 1992. Elemental mercury in soil and the subsurface – transformations and environmental transport: arsenic and mercury: workshop on removal, recovery, treatment, and disposal. U.S. Environmental Protection Agency, EPA/600/R-92/105. p. 69.

Ugo, P., L.M. Moretto, and G.A. Mazzocchin. 1995. Voltammetric determination of trace mercury in chloride media at glassy carbon electrodes modified with polycationic ionomers. Anal. Chim. Acta 305: 74-82.

U.S. EPA. 1997. Mercury Study Report to Congress. EAP-452/R-97-010.

Wimmer, J.. 1974. Mercury in the environment. Bodenkultur. 25: 272-290.

Yoon, S.J., L.M. Diener, P.R. Bloom, E.A. Nater, and W.F. Bleam. 2005. X-ray absorption studies of CH3Hg+-binding sites in humic substances. Geochim. Cosmochim. Ac. 69: 1111-1121.

Yu, J.C., J.M. Lo, and C.M. Wai. 1983. Extraction of gold and mercury from sea water with bismuth diethyldithiocarbamate prior to neutron activation−γ-spectrometry. Anal. Chim. Acta 154: 307-312.

Zen, J.M., and M.J. Chung. 1995. Square-wave voltammetric stripping analysis of mercury( II) at a pol(4=vinylpyridine)/gold film electrode. Anal. Chem. 67: 3571-3577.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊