跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/01 20:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳英韶
研究生(外文):yin-saung Chen
論文名稱:在密度泛函理論的基礎下建立有機黏粒吸附揮發性有機化合物之線性溶合能量關係
論文名稱(外文):Establishing DFT-based Linear Solvation Energy Relationships for the Sorption Mechanisms of Volatile Organic Compounds with Organo-Clays
指導教授:張家銘張家銘引用關係
指導教授(外文):Chia-Ming Chang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:土壤環境科學系所
學門:農業科學學門
學類:農業化學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:94
中文關鍵詞:有機黏粒揮發性有機物密度泛函理論
外文關鍵詞:organo-clayVOCsDFT
相關次數:
  • 被引用被引用:0
  • 點閱點閱:98
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
揮發性有機化合物(VOCs)散逸至大氣會對環境造成很大的危害,而黏土礦物可藉由有機陽離子交換黏土礦物表面的無機陽離子,轉變為表面具有疏水性的有機黏粒,能有效移除有機污染物的能力。天然而如此獨特的吸附能力,使得有機黏粒在環境應用方面被廣泛研究。有機膨土對揮發性有機物的吸附行為比一般吸附劑複雜許多,以線性溶合能量關係(LSER)來說明吸附劑與揮發性有機物的吸附機制的相對貢獻是有益的。
研究以密度泛函理論(DFT)結合軟硬酸鹼(HSAB)為理論基礎,由分子模型計算所得的描述參數,與吸附常數作迴歸分析,建立有機膨土對VOCs的LSER預測模式,並探討其吸附機制。有機分子的化學反應分為非特異性影響與特異性影響來討論。非特異性為溶合化反應(solvation)。特異性分為整體性(global)與局域性(local),又再細分為電荷控制與軌域控制兩個部分。
複因子迴歸分析顯示影響吸附反應的主要參數包含溶劑化作用參數中的極性表面積(PSA)、分子整體性參數中的硬度(η)、局域性電荷控制參數中的最正及最負電荷(電勢)原子,及局域性軌域控制參數中的局域性親電性軟度(s-max)。而有機黏粒(HDTMA-膨土)吸附揮發性有機分子的機制,主要是以分配作用(疏水性)、凡得瓦力及氫鍵等較弱作用力為主。而層間的負電荷仍影響對有機分子的吸附。最後得到的最佳預測方程式,雖然預測性較低,但可以由分子內局域電荷的變化來解釋反應機制,也可以快速的了解複雜系統中的反應機制及解釋反應現象,甚至可用來作為實驗預測,使化學不再只是純粹的實驗科學。
The volatile organic compound (VOCs) can cause great damage to the environment by emission into the atmosphere. By the exchange of organic cations for inorganic cations in the surfaces, the clay minerals can be converted into organo-clays. The mineral surfaces of resulting orgno-clays become hydrophobe, capable of effectively removing organic pollutants. Because of their natural and unique sorption powers, the organo-clays have been investigated for a wide variety of environmental applications. The VOCs sorption behaviors of organobentonites are much more complex than those of common adsorbents. Therefore, there would be practically useful to explain the relative contributions of the sorption mechanisms, between adsorbents and VOCs, via linear solvation energy relationships (LSER).
The aims of the study is to establish a LSER predictive equation , and also to discuss the sorption mechanisms of VOCs with organobentonites. The reactivity descriptors calculated by molecular model, and were based on the density functional theory (DFT) combined with the hard-soft acid-base (HSAB) principle. Calculated parameters will carry on the multi-regression analysis with sorption constant (log Kc). The chemical reaction of organic molecule divided into non-specific effect and specific effect two major parts. Non-specific effect is solvation interaction. Specific effect divided into global and local two parts, and both they subdivided into charge controlled and orbital controlled two parts.
The result of multi-regression analysis indicated that the sorption reactions of organobentonites with VOCs are mainly effected by several parameters. these parameters include the polar surface area (PSA) in salvation interaction, the hardness (η) in molecular global interaction, the maximum positive charge (ρ+max(H)) and maximum electrostatic potential (Vmax(H)) in the local charge controlled interaction, and the maximum nucleophilic condensed local softness (s+max) in the local frontier controlled interaction.
The sorption mechanism of organobentonite (HDTMA-bentonite) with the volatile organic compounds mainly are partition (hydrophobe), the Van der Waals force, and the hydrogen bond. Negative charges in the mineral interlayer would infect the sorption of organic compounds. Finally the optimum prediction equation was obtained. Although the square of correlation coefficient (R2) is lower, the equation can analyse the reaction mechanism by electrons redistribution in molecule structure.
目錄
摘要 I
Abstract II
圖目錄 VI
表目錄 VII
第一章 緒論 1
1-1 研究動機 1
1-2研究目的 1
第二章 背景簡介與文獻回顧 3
2-1揮發性有機物 (Volatile Organic Compounds, VOCs) 3
2-2黏土礦物-膨土 3
2-3界面活性劑 (surfactant) 4
2-4黏粒之修飾 5
2-5有機黏粒 (Organo-clay) 5
2-6吸附行為 11
2-6-1物理吸附 11
2-6-2化學吸附 12
2-6-3吸附平衡常數(equilibrium adsorption coefficient) 12
2-7線性溶合能量關係方程式 13
2-8 計算化學 (Computational chemistry) 16
2-9 從頭算方法 (Ab initio methods) 17
2-9-1 Hartree-Fock方程式 17
2-9-2 HFR方程 18
2-9-3 RHF方程 19
2-9-4 UHF方程 19
2-9-5密度泛函理論 (Density functional theory) 20
2-10 計算軟體 21
2-11 軟硬酸鹼理論(Hard-Soft-Acid-Base theory) 22
2-12 密度泛函理論與軟硬酸鹼(HSAB)結合 23
2-13 福井函數 (fukui function) 24
第三章 計算方法 26
3-1分子結構計算 26
3-2得失電子計算 29
第四章 結果與討論 31
4-1 建立以密度泛函為基礎的線性自由能關係 31
4-1-1 溶劑化作用參數 (solvation parameter) 32
4-1-2 整體性參數 (global parameter) 32
4-1-3 局域性參數 (local paratemer) 33
4-2 以HF法計算之參數進行線性溶合能量關係的複因子迴歸結果 40
4-2-1 單一參數迴歸 40
4-2-2 二參數迴歸 42
4-2-3 三參數迴歸 53
4-2-4 四參數迴歸 58
4-3 以DFT法計算之參數進行線性溶合能量關係的複因子迴歸結果 61
4-3-1 單一參數迴歸 61
4-3-2 二參數迴歸 62
4-3-3 三參數迴歸 75
4-3-4 四參數迴歸 80
4-4 最佳線性溶合能量關係方程式 83
第五章 結論 86
參考文獻 87
李益民,朱利中,王玨,1997,有機膨土的吸附性能研究,高等學校化學學報。18:723-725。

Abraham, M. H., R. M.Doherty, M. J. Kamlet, and R. W. Taft. 1986. A new look at acids and bases. Chem. Britain. 22:551-554.

Barrer, R. M., and D. M. Macleod. 1955. Activation of montmorillonite by ion exchange and sorption complexes of tetra-alkyl ammonium montmorillonites. Trans. Faraday Soc. 51:1290-1300.

Barrer, R. M., and A. D. Millington. 1967. Sorption and intracrystalline porosity in organo-clays. J. Colloid Interface Sci. 25:359-372.

Barrer, R. M. 1989. Shape-selective sorbents based on clay minerals: a review. Clays Clay Miner. 37:385-395.

Boyd, S. A., J. F. Lee, and M. M. Mortland. 1988. Attenuating organic contaminant mobility by soil modification. Nature. 333:345-347.

Boyd, S. A., M. M. Mortland, and C. T. Chiou. 1988. Sorption characteristics of organic compounds on hexadecyltrimethylammonium-smectite. Soil Sci. Soc. Am. J. 52:652-675.


Brixie, J.M., and S.A. Boyd. 1994. Treatment of contaminated soils with organoclays to reduce leachable pentachlorophenol. J. Environ. Qual. 23:1283-1290.

Brune, B. J., G. F. Payne, and M. V. Chaubal. 1997. Linear solvation energy relationships to explain interactions responsible for solute adsorption onto a polar polymeric sorbent. Langmuir. 13:5766-5769.

Callihan, B. K., and D. S. J. Ballantine. 1999. Characterization of olefinic gas chromatographic stationary phases by linear solvation energy relationships. J. Chromatogr. A. 836:261-270.

Campagnolo, J.F., and A. Akgerman. 1996. A prediction method for gas-phase VOC isotherms onto soils and soil constituents. J. Hazard. Mater. 49:231-245.

Carmody, O., R. Frost, Y. Xi, and S. Kokot. 2007. Adsorption of hydrocarbons on organo-clays—Implications for oil spill remediation. J. Colloid Interface Sci. 305:17–24.

Chandrakumar, K. R. S., and S. Pal. 2002. A systematic study on the reactivity of Lewis acid - base complexes through the local hard-soft acid - base principle. J. Phys. Chem. A. 106:11775-11781.

Chiou, C. T., L. J. Peters, and V. H. Freed. 1979. A physical concept of soil-water equilibriums for nonionic organic compounds. Science. 206:831-832.


Chun, Y., G. Sheng, and S. A. Boyd. 2003. Sorptive characteristics of tetraalkylammonium-exchanged smectite clays. Clays Clay Miner. 51:415-420.

Dachs, J., and J. M. Bayona. 1997. Langmuir-derived model for diffusion- and reaction-limited adsorption of organic compounds on fractal aggregates. Environ. Sci. Technol. 31:2754-2760.

Dachs, J., and S. J. Eisenreich. 2001. Adsorption and partitioning of organic compounds onto/into fractal sorbents. Langmuir. 17:2533-2537.

Dean, K. M., S. A. Bateman, and R. Simons. 2007. A comparative study of UV active silane-grafted and ion-exchanged organo-clay for application in photocurable urethane acrylate nano- and micro-composites. Polymer. 48:2231-2240.

Dural, N. H., and C. H. Chen. 1997. Anaylsis of vapor phase adsorption equilibrium of 1,1,1-trichloroethane on dry soils. J. Hazard. Mater. 53:75-92.

Emerson, W. W. 1957. Organoclay complexes. Nature. 180:48-49.

Frisch, M. J., G. W. Trucks, and H. B. Schlegel et al. 2003. Gaussian 03 [M]. Pittsburgh: Gaussian Inc.

Fukui, K. 1975. Theory of orientation and stereoselection. Berlin: Springer-Verlag.

Gregg, S. J., and K. S. W. Sing. 1967. Adsorption, surface area and porosity. Academi press. London and New York.
Gullick, R. W., and W. J. Weber. 2001. Evaluation of shale and organoclays as sorbent additives for low-permeability soil containment barriers. Environ. Sci. Technol. 35:1523-1530.

Hehre, W. J., L. Radom, P. V. R. Schleyer, and J. A. Pople. 1986. Ab initio molecular orbital theory. John Wiley & Sons.

Hohenberg, P., and W. Kohn. 1964. Inhomogeneous Electron Gas. Phys. Rev. 136:B864 - B871.

Jaynes, W. F., and S. A.Boyd. 1991. Clay mineral type and organic compound sorption by hexadecyltrimethylammonium-exchanged clays. Soil Sci. Soc. Am. J. 55:43-48.

Jordan, J. W. 1949. Organophilic bentonites. I. Swelling in organic liquids. J. Phys. Chem. 53:294-306.

Kim, J. H., W. S. Shin, D. I. Song, and S. J. Choi. 2005. Muti-step competitive sorption and desorption of chlorophenols in surfactant modified montmorillonitem. Water, Air, and Soil Pollution. 166:367-380.

Klopman, G. 1968. Chemical reactivity and the concept of charge-and frontier-controlled reactions. J. Am. Chem. Soc. 90:223-234.

Kohn, W. 1999. Electronic structure of matter-wave functions and density functional. Rev. Mod. Phys. 71:1253-1266.

Koopmans, T. 1934. Über die zuordnung von wellenfunktionen und eigenwerten zu den einzelnen elektronen eines atoms. Physica(in German)(Amsterdam). 1:104-113.

Lee, J. F., M. M. Mortland, S. A. Boyd, and C. T. Chiou. 1989. Shape-selective adsorption of aromatic molecules from water by tetramethylammonium-smectite. Trans. Faraday Soc. 85:2953-2962.

Lee, J. F., M. M. Mortland, and C. T. Chiou. 1990. Adsorption of benzene, toluene, and xylene by two tetramethylammonium-semectites having different charge densities. Clays Clay Miner. 38:113-120.

Liang, C., J. F. Pankow, J. R. Odum, J. H. Seinfeld. 1997. Gas/particle partitioning of semivolatile organic compounds to model inorganic, organic, and ambient smog aerosols. Environ. Sci. Technol. 31:3086-3092.

Nir, S., T. Undabeytia, D. Yaron-Marcovich, Y. El-Nahhal, T. Polubesova, C. Serban, G. Rytwo, G. Lagaly, and B. Rubin. 2000. Optimization of adsorption of hydrophobic herbicides on montmorillonite preadsorbed by monovalent organic cations: interaction between phenyl rings. Environ. Sci. Technol. 34:1269-1274.

Park, S. J., Y. B. Kim, and S.D. Yeo. 2008. Vapor adsorption of volatile organic
compounds using organically modified clay. Separation Sci. Technol. 43:1174–1190.


Parr, R. G.., and R. G. Pearson. 1983. Absolute hardness: companion parameter to absolute electronegativity. J. Am. Chem. Soc. 105: 7512 - 7516.

Parr, R. G., and W. Yang. 1989. Density-functional theory of atoms and molecules [M]. New York : Oxford University Press:87-104.

Pearson, R. G. 1963. Hard and Soft Acids and Bases. J. Am. Chem. Soc. 85: 3533 - 3539.

Pearson, R. G. 1986. Absolute electronegativity and hardness correlated with molecular orbital theory. Proc. Natl. Acad. Sci. USA. 83:8440-8441.

Pearson, R. G. 2005. Chemical hardness and density functional theory. J. Chem. Sci. 117:369–377.

Schwarzenbach, R. P., P. M. Gschwend, and D. M. Imboden. 2003. Sorption I: generally introduction and sorption process involving organic matter. p. 275-330. In Schwarzenbach et al. (ed.) Environmental organic chemistry. John Wiley & Sons, New Jersey.

Sharmasarkar, S., W. F. Jaynes, and G. F. Vance. 2000. BTEX sorption by montmorillonite organo-clays: TMPA, ADAM, HDTMA. Water, Air, and Soil Pollution. 119: 257–2730.



Singh, N., M. Megharaj, W. P. Gates, G. J. Churchman, J. Anderson, R. S. Kookana, R. Naidu, Z. Chen, P. G. Slade, and N. Sethunathan. 2003. Bioavailability of an organophosphorus pesticide, Fenamiphos, sorbed on an organo clay. J. Agric. Food Chem. 51:2653-2658.

Smith, J. A., and A. Galán. 1995. Sorption of nonionic organic contaminants to single and dual organic cation bentonites from water. Environ. Sci. Technol. 29:685-692.

Smith, J. A., and P. R. Jaffé. 1991. Comparison of tetrachloromethane sorption to an alkylammonium-clay and an alkyldiammonium-clay. Environ. Sci. Technol. 25:2054-2058.

Taylor, H. S. 1931. The activation energy of adsorption processes. J. Am. Chem. Soc. 53:578-597.

Thlbaud, C., C. Erkey, and A. Akgerman. 1992. Investigation of adsorption equilibria of volatile organics on soil by frontal analysis chromatography. Environ. Sci. Technol. 26:1159-1164.

Tian, S., L. Zhu, and Y. Shi. 2004. Characterization of sorption mechanisms of VOCs with organobentonites using a LSER approach. Environ. Sci. Technol. 38:489-495.

Vignale, G., and M. Rasolt. 1987. Density-functional theory in strong magnetic fields. Phys. Rev. Lett. 59: 2360 – 2363.

Xing, B., and J. J.Pignatello. 1997. Dual-mode sorption of low-polarity compounds in glassy poly(vinyl chloride) and soil organic matter. Environ. Sci. Technol. 31:792-799.

Yan, L. G., J. Wang, H. Q. Yu, Q. Wei, B. Du, and X. Q. Shan. 2007. Adsorption of benzoic acid by CTAB exchanged montmorillonite. Applied Clay Sci. 37:226-230.

Zhu, L., and B. Chen. 2000. Sorption behavior of p-nitrophenol on the interface between anion-cation organobentonite and water. Environ. Sci. Technol. 34:2997-3002.

Zhu, L., and Y.Su. 2002. Benzene vapor sorption by organobentonites from ambient air. Clays Clay Miner. 50:421-427.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top