跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2024/12/06 15:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王彥霖
研究生(外文):Yen-Lin Wang
論文名稱:循環式微波加熱輔助乙二醇合成奈米鈷粒子之研究
論文名稱(外文):The Study on Synthesizing Cobalt Nano-particles by Recycle Microwave-Polyol Process
指導教授:鄭文桐
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:91
中文關鍵詞:循環式微波乙二醇還原法奈米鈷粒子
外文關鍵詞:Recycle processMicrowave irradiationEthylene glycol reductionCobalt Nano-particles
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
奈米材料是指在三個維度之中至少有一維度在一百奈米以下,在結構上又可分為三種形式:顆粒狀、棒狀或線狀、層狀。在追求小尺寸、粒徑分佈均一的同時,如何去控制奈米粒子的形狀也成為另一個受重視的話題,不同形貌結構所呈現的特性亦不相同。本論文主要方向有二:(1)循環式微波加熱系統與裝置的建立;(2)探討保護劑對奈米鈷粒子大小、形貌的影響,包含單成份保護劑及雙成份保護劑混合。
本論文以醋酸鈷為金屬前驅物,氯化鈀做為成核劑,利用乙二醇做為還原劑並兼具溶劑,並加入polyvinyl pyrrolidone(PVP)、Dodecylamine (DDA)、Trioctylphosphine oxide (TOPO)做為粒子保護劑,以循環式微波加熱裝置進行反應。相較於批式製程,循環式可準確地控制溶液溫度在±2℃,可有效提昇粒徑分佈的均一性,另外,密閉式的管路空間可降低溶液過熱所造成的危險。
另外,從實驗結果顯示,個別加入PVP、TOPO、DDA為單成份保護劑,可有效控制粒子尺寸大小在3.1nm~24.9nm之間,形貌為顆粒狀。在雙成份保護劑系統方面,在一定比例下,混合PVP與DDA及TOPO與DDA,可以合成出奈米鈷纖維,長度約在50~120nm之間,寬度則在10~25nm之間,鈷纖維的長寬隨著保護劑的增加而減小;而混合PVP及TOPO則合成出形貌為顆粒狀的粒子。
綜合以上成果,本研究成功以循環式微波加熱裝置合成出奈米鈷粒子,並透過混合不同保護劑作用來到控制鈷粒子的形貌。
The definition of nano-materials is a characteristic length scale less than 100nm in one dimension at least. According to the structure, it can be divided into three types: particle-like, rod-like or wire-like, and layer-like. While focus on small size and narrow size distribution, how to control the shape of nano-particles is an important topic. The structures of different shape will display different properties. There are two subjects in this study: (1) set up the recycle microwave heating system and apparatus; and (2) discuss effect of the capping agent on particle size and shape, including the single and binary capping agent.
In this study, cobalt acetate is used as precursor and palladium chloride as nuclear agent, ethylene glycol is both employed as reduction agent and solvent, and polyvinyl pyrrolidone (PVP), dodecylamine (DDA), and trioctylphosphine oxide (TOPO) are used as capping agent by using recycle microwave heating apparatus. Comparing with batch process, recycle process can control temperature within ±2℃ precisely to improve the size distribution helpfully and reduce the danger of superheated solution in sealed pipe.
Additionally, as shown in the result, in single capping agent of PVP, TOPO and DDA, the particle size of cobalt can effective control within 3.1nm to 24.9nm, and the shape is particle-like. In the binary capping agent system, PVP and DDA, TOPO and DDA can synthesize cobalt nano-fiber in the suitable ratio, and the diameter is about 10nm to 25nm and the length is about 50nm to 120nm. The aspect ratio of the nano-fiber decreases with increasing the capping agent. The PVP and TOPO can only synthesize particle-like nano-particles of cobalt.
In summary, this research has successfully synthesized cobalt nano-particles by recycle microwave heating apparatus and control the shape of cobalt in binary capping agent system
目錄
中文摘要 -------------------------------------------------I
英文摘要 ------------------------------------------------II
致謝 ------------------------------------------------IV
目錄 -------------------------------------------------V
表目錄 -----------------------------------------------VII
圖目錄 ----------------------------------------------VIII
第一章 緒論---------------------------------------------1
1-1 前言-----------------------------------------1
1-2 研究動機及方法-------------------------------2
1-3 本論文架構-----------------------------------5
第二章 理論基楚-----------------------------------------6
2-1 奈米科學簡介---------------------------------6
2-2 鈷奈米粒子特性-------------------------------7
2-3 鈷奈米粒子應用-------------------------------8
2-4 多元醇還原法--------------------------------10
2-5 微波加熱------------------------------------11
2-6 微波多元醇法(Micorwave-polyol precess)------13
2-7 鈷奈米微結構形貌操控------------------------14
2-8 PVP、DDA及TOPO之特性介紹--------------------16
2-9 磁性理論------------------------------------19
2-9-1 磁區----------------------------------19
2-9-2 磁異向性------------------------------20
2-9-3 磁滯曲線------------------------------21
第三章 實驗方法----------------------------------------23
3-1 前言----------------------------------------23
3-2 實驗步驟------------------------------------25
3-2-1 批式製程-單成份保護劑-----------------25
3-2-2 循環式製程-單成份保護劑---------------25
3-2-3 循環式製程-雙成份保護劑---------------26
3-3 特性分析------------------------------------27
3-4 實驗藥品與儀器設備--------------------------30
3-4-1 實驗藥品------------------------------30
3-4-2 實驗裝置示意圖及設備規格--------------33
3-4-3 儀器設備------------------------------35
第四章 結果與討論--------------------------------------36
4-1 幫浦流速對溫度影響--------------------------36
4-2 循環式微波加熱系統建立----------------------38
4-2-1 單成分保護劑-PVP----------------------38
4-2-2 批式與循環式製程比較------------------42
4-2-3 不同反應溫度對粒子大小之影響----------44
4-2-4 不同循環時間對粒子大小之影響----------47
4-2-5 不同流速對粒子大小之影響--------------53
4-3 保護劑對粒子大小及形貌影響------------------57
4-3-1 單成分保護劑-TOPO---------------------58
4-3-2 單成分保護劑-DDA ---------------------64
4-3-3 雙成份保護劑-PVP/DDA------------------69
4-3-4 雙成份保護劑-TOPO/DDA-----------------75
4-3-5 雙成份保護劑-PVP/TOPO-----------------77
4-4 晶形結構與磁性分析--------------------------81
第五章 綜合結論及未來延續方向--------------------------85
5-1 綜合結論------------------------------------85
5-2未來延續方向---------------------------------86
參考文獻 ------------------------------------------------87
表目錄
表2-7-1 保護劑對鈷粒子形貌影響--------------------------15
表3-4-3-1 實驗儀器與設備明細------------------------------35
表4-1-1 幫浦轉速與溫度對應表(測試乙二醇)----------------37
表4-2-1-1 循環式微波合成奈米鈷粒子------------------------39
表4-2-2-1 批式與循環式製程比較----------------------------42
表4-2-3-1 不同反應溫度對平均粒徑影響----------------------44
表4-2-4-1 不同循環時間對平均粒徑影響----------------------47
表4-2-5-1 不同流速對平均粒徑影響--------------------------53
表4-3-1-1 TOPO含量對平均粒徑影響--------------------------60
表4-3-2-1 DDA含量對平均粒徑影響---------------------------65
表4-3-3-1 不同PVP與DDA含量對粒子形貌影響------------------69
表4-3-4-1 不同TOPO與DDA含量對粒子形貌影響-----------------75
表4-3-5-1 不同PVP與TOPO含量對粒子形貌影響-----------------77
表4-4-1 不同長寬之鈷纖維於300K所測得飽和磁化量----------83
圖目錄
圖1-2-1 研究流程示意圖-----------------------------------4
圖2-3-1 阻尼元件-----------------------------------------9
圖2-3-2 伽瑪射線攝影放射性磁顆粒液體分佈-----------------9
圖2-5-1 (a)微波加熱與(b)傳統加熱示意圖------------------11
圖2-5-2 (1)無微波場作用下由極性分子因熱引導效應所呈現的混亂現象;及(2)和(3)微波場作用下極性分子之排列方式--------------------------------------------------------------------12
圖2-8-1 PVP與鈷離子鍵結關係圖---------------------------16
圖2-8-2 PVP保護機制示意圖-------------------------------16
圖2-8-3 TOPO保護機制示意圖------------------------------17
圖2-8-4 DDA保護機制示意圖-------------------------------18
圖2-9-1-1 磁區與磁壁之示意圖------------------------------19
圖2-9-1-2 矯頑磁力(Hc)與磁粒粒徑(D)關係圖-----------------20
圖2-9-2-1 鈷單晶之磁化曲線--------------------------------21
圖2-9-3-1 磁滯曲線----------------------------------------22
圖3-1-1 循環式微波加熱輔助乙二醇還原法實驗流程圖--------24
圖3-4-2-1 批式裝置示意圖----------------------------------33
圖3-4-2-2 循環式裝置示意圖--------------------------------33
圖3-4-2-3 蛇形石英管內外徑及外觀示意圖--------------------34
圖4-1-1 不同流速下出口溫度紀錄 (測試乙二醇) (a) 96mL/min (b)84mL/min (c) 72 mL/min--------------------------------37
圖4-2-1-1 反應前醋酸鈷溶液、PVP溶液、及醋酸鈷與氯化鈀及PVP混合物溶液之UV-vis吸收光譜圖-------------------------------38
圖4-2-1-2 反應前後溶液之UV-vis吸收光譜圖(1/100稀釋)
實驗條件:Co(AC)2=0.075M,Co:Pd=300:1,Co:PVP= 1:12,flow rate=96mL/min,reacted temperature=190℃,recycle time=20min-----------------------------------------------39
圖4-2-1-3 不同流速下出口溫度紀錄(a) 96mL/min(b) 84mL/min (c)72 mL/min。測試溶液為:Co(AC)2=0.075M,Co:Pd= 300:1,Co:PVP=1:12,recycle time=20min--------------------------40
圖4-2-1-4 循環式反應製程(a) TEM image,(b)粒徑分佈圖
實驗條件:Co(AC)2=0.075M,Co:Pd=300:1,Co:PVP= 1:12,flow rate=96mL/min,reacted temperature=190℃,recycle time=20min,scale bar=20nm-------------------------------40
圖4-2-1-5 循環式反應製程(a) TEM image,(b)粒徑分佈圖
實驗條件:Co(AC)2=0.075M,Co:Pd=300:1,Co:PVP= 1:12,flow rate=84mL/min,reacted temperature=180℃,recycle time=20min;scale bar=20nm-------------------------------41
圖4-2-1-6 循環式反應製程(a) TEM image,(b)粒徑分佈圖
實驗條件:Co(AC)2=0.075M,Co:Pd=300:1,Co:PVP= 1:12,flow rate =72mL/min,reacted temperature=70℃,recycle time=20min;scale bar=20nm-------------------------------41
圖4-2-2-1 批式與循環式製程比較
(a)批式反應製程
實驗條件:Co(AC)2=0.075M,Co:Pd=300:1,Co:PVP=1: 12,reacted temperature=175 ± 10℃,reacted time=20mi n,scale bar=20nm
(b)循環式反應製程
實驗條件:Co(AC)2=0.075M,Co:Pd=300:1,Co:PVP=1: 12,flow rate=84mL/min,reacted temperature=180℃,recycle time=20min;scale bar=20nm-------------------------------43
圖4-2-3-1 不同反應溫度下之UV-vis吸收光譜圖(1/100稀釋)
實驗條件:Co(AC)2=0.05M,Co:Pd=300:1,Co:PVP=1: 3,recycle time=20min-----------------------------------------------45
圖4-2-3-2 不同反應溫度對粒子的影響(a) 190℃(b) 180℃(c)170℃實驗條件:Co(AC)2=0.05M,Co:Pd =300:1,Co:PVP=1: 3,flow rate=96mL/min,recycle time=20min,scale bar= 20nm-------46
圖4-2-4-1 不同反應時間下之UV-vis吸收光譜圖(1/100稀釋)
實驗條件:Co(AC)2=0.05M,Co:Pd=300:1,Co:PVP= 1:3,flow rate=96mL/min,reacted temperature=190℃-----------------48
圖4-2-4-2 不同循環時間對粒子大小影響(a)10min(b)15min(c)20 min。實驗條件:Co(AC)2=0.05M;Co:Pd=300:1,Co: PVP=1:3,flow rate=96mL/min,reacted temperature= 190 ℃,recycle time=20mins;scale bar=20nm------------------------------49
圖4-2-4-3 鍛燒前的XRD分析圖譜
實驗條件:Co(AC)2=0.05M,Co:PVP =1:3,Co:Pd =300: 1,flow rate = 96mL/min,reacted temperature=190℃,re cycle time=20min-----------------------------------------------51
圖4-2-4-4 鍛燒至500℃並持溫一小時後的不同循環時間下XRD分析圖譜(a)10min(b)15min(c)20min。實驗條件:Co(AC)2 =0.05M,Co:PVP=1:3,Co:Pd=300:1,flow rate=96mL/ min,reacted temperature=190℃----------------------------------------51

圖4-2-4-5 不同循環時間下SQUID分析(a)10min(b)15min(c)20 min。實驗條件:Co(AC)2=0.05M,Co:PVP=1:3,Co:Pd= 300:1,flow rate=96mL/min,reacted temperature=190℃-----------------52
圖4-2-5-1 不同循環流速對粒子大小的影響(a)96mL/min(b)84mL/ min(c)72mL/min。實驗條件:Co(Ac)2=0.05M,Co:Pd= 300:1,Co:PVP=1:3,reacted temperature=170℃,recycle time=20 min,scale bar=20nm--------------------------------------54
圖4-2-5-2 不同循環流速對粒子大小的影響(a)96mL/min(b)84mL/ min實驗條件:Co(Ac)2=0.05M,Co:Pd=300:1,Co:PVP= 1:3,reacted temperature=180℃,recycle time=20min,scale bar=20nm-------------------------------------------------55
圖4-3-1 (a)單成份保護劑與(b)雙成份保護劑對粒子生長影響示意圖-------------------------------------------------------58
圖4-3-1-1 反應前TOPO溶液、及醋酸鈷、氯化鈀和TOPO混合物溶液之UV-vis吸收光譜圖-----------------------------------------59
圖4-3-1-2 反應前後溶液之UV-vis吸收光譜圖(1/100稀釋)
實驗條件:Co(AC)2=0.05M,Co:Pd=300:1,Co:TOPO= 1:1,flow rate=96mL/min,reacted temperature=180℃,recycle time=20min-----------------------------------------------59
圖4-3-1-3 不同Co/TOPO比例對粒子大小的影響(a) Co:TOPO=1: 0.5 (b) Co:TOPO =1:1(c) Co:TOPO =1:3,實驗條件:Co(A C)2= 0.05M,Co:Pd=300:1,flow rate=96mL/min,reacted temperature=180℃,recycle time=20min,scale bar=20nm----61
圖4-3-1-4 鍛燒前的XRD分析圖譜
實驗條件:Co(AC)2=0.05M,Co:TOPO=1:1,Co:Pd=300: 1,flow rate=96mL/min,reacted temperature = 180℃,re cycle time=20min-----------------------------------------------63
圖4-3-1-5 鍛燒至500℃並持溫一小時後的不同Co/TOPO比例之XRD分析圖譜(a)Co:TOPO =1:3(b)Co:TOPO=1: 1(c) Co: TOPO =1:0.5,實驗條件:Co(A C)2= 0.05M,Co:Pd=300: 1,flow rate=96mL/min,reacted temperature=180℃,recy cle time=20min-----------63
圖4-3-2-1 反應前DDA溶液、及醋酸鈷、氯化鈀和DDA混合物溶液之UV-vis吸收光譜圖-----------------------------------------64
圖4-3-2-2 反應前後溶液之UV-vis吸收光譜圖(1/100稀釋)
實驗條件:Co(AC)2=0.05M,Co:Pd=300:1,Co:DDA=1: 1,flow rate= 96mL/min,reacted temperature=180℃,re cycle time=20min-----------------------------------------------65
圖4-3-2-3 不同Co/DDA比例對粒子大小的影響(a)Co:DDA=1:0.25
(b) Co:DDA=1:0.5 (c)Co:DDA=1:1,實驗條件:Co(AC)2= 0.05M;Co:Pd=300:1,flow rate=96mL/min,reacted temper ature=180℃,recycle time=20min,scale bar=100nm---------66
圖4-3-2-4 未鍛燒前的XRD分析圖譜
實驗條件:Co(AC)2=0.05M,Co:DDA=1:1,Co:Pd=300: 1,flow rate = 96mL/min,reacted temperature=180℃,recy cle time=20min-----------------------------------------------68
圖4-3-2-5 鍛燒至500℃並持溫一小時後的不同Co/DDA比例之XRD分析圖譜(a)Co:DDA=1:0.25(b)Co:DDA=1:0.5(c) Co:DDA=1:1,實驗條件:Co(AC)2 =0.05M,Co:Pd=300: 1,flow rate = 96mL/min,reacted temperature=180℃,recy cle time=20min-----------68
圖4-3-3-1 TEM image
實驗條件:Co(AC)2=0.05M,Co:Pd=300:1,Co:PVP=1: 0.5,Co:DDA =1:1,flow rate=96mL/min,reacted temperat ure=190℃,recycle time=30min,scale bar=100nm-----------71
圖4-3-3-2 TEM image
實驗條件:Co(AC)2=0.05M,Co:Pd=300:1,Co:PVP=1: 0.6,Co:DDA =1:1,flow rate=96mL/min,reacted temperat ure=190℃,recycle time=30min,scale bar=100nm-----------71
圖4-3-3-3 TEM image
實驗條件:Co(AC)2=0.05M,Co:Pd=300:1,Co:PVP=1: 0.75,Co:DDA=1:1,flow rate=96mL/min,reacted temperat ure=190℃,recycle time=30min,scale bar=100nm-----------72
圖4-3-3-4 TEM image
實驗條件:Co(AC)2=0.05M,Co:Pd=300:1,Co:PVP=1: 0.9,Co:DDA =1:1,flow rate=96mL/min,reacted temperat ure= 190℃,recycle time =30min,scale bar=100nm--------------72
圖4-3-3-5 TEM image
實驗條件:Co(AC)2=0.05M,Co:Pd=300:1,Co:PVP=1: 1,Co:DDA =1:1,flow rate=96mL/min,reacted temperat ure=190℃,recycle time=30min,scale bar=100nm----------------------73
圖4-3-3-6 TEM image
實驗條件:Co(AC)2=0.05M,Co:Pd=300:1,Co:PVP=1: 3,Co:DDA =1:1,flow rate=96mL/min,reacted temperat ure= 190℃,recycle time=30min,scale bar=100nm----------------------73
圖4-3-3-7 TEM image
實驗條件:Co(AC)2=0.05M,Co:Pd=300:1,Co:PVP=1: 0.5,Co:DDA =1:0.5,flow rate=96mL/min,reacted temper ature=190℃,recycle time=30min,scale bar=100nm---------74
圖4-3-3-8 TEM image
實驗條件:Co(AC)2=0.05M,Co:Pd=300:1,Co:PVP=1: 1,Co:DDA =1:0.5,flow rate=96mL/min,reacted temper ature= 190℃,recycle time=30min,scale bar=100nm----------------------74
圖4-3-4-1 TEM image
實驗條件:Co(AC)2=0.05M,Co:Pd=300:1,Co:TOPO=1: 1,Co:DDA =1:1,flow rate=96mL/min,reacted temperatu re=190℃,recycle time =30min,scale bar=100nm---------------------76
圖4-3-4-2 TEM image
實驗條件:Co(AC)2=0.05M,Co:Pd=300:1,Co:TOPO=1: 3,Co:DDA =1:1,flow rate=96mL/min,reacted temperatu re=190℃,recycle time=30min,scale bar=50nm-----------------------76
圖4-3-4-3 TEM image
實驗條件:Co(AC)2=0.05M,Co:Pd=300:1,Co:TOPO=1: 6,Co:DDA =1:1,flow rate=96mL/min,reacted temperatu re=190℃,recycle time =30min,scale bar=50nm----------------------77
圖4-3-5-1 TEM image
實驗條件:Co(AC)2=0.05M,Co:Pd=300:1,Co:PVP=1: 1,Co:TOPO =1:1,flow rate=96mL/min,reacted temperatu re= 190℃,recycle time=30min,scale bar=100nm----------------------78
圖4-3-5-2 TEM image
實驗條件:Co(AC)2=0.05M,Co:Pd=300:1,Co:PVP=1: 2,Co:TOPO =1:1,flow rate=96mL/min,reacted temperatu re= 190℃,recycle time =30min,scale bar=100nm---------------------78
圖4-3-5-3 TEM image
實驗條件:Co(AC)2=0.05M,Co:Pd=300:1,Co:PVP=1: 3,Co:TOPO =1:1,flow rate=96mL/min,reacted temperatu re= 190℃,recycle time =30min,scale bar=100nm---------------------79
圖4-3-5-4 以PVP與DDA混合保護劑合成奈米纖維示意圖----------80
圖4-4-1 未鍛燒前的XRD分析圖譜(a)Co:PVP=1:1,Co:DDA=1: 1,(b)Co:TOPO=1:1,Co:DDA =1:1,(c)Co:PVP=1:1,Co:TOPO=1:1。實驗條件:Co(AC)2=0.05M,Co:Pd=300: 1,flow rate=96 mL/min,reacted temperature=190℃,recy cle time=30 min----------81
圖4-4-2 鍛燒至500℃並持溫一小時後的XRD分析圖譜(a)Co: PVP=1:1,Co:DDA=1: 1(b)Co:TOPO =1:1,Co:DDA=1:1 (c)Co:PVP=1:1,Co:TOPO=1:1。實驗條件:Co(AC)2= 0.05M,Co:Pd=300:1,flow rate=96 mL/min,reacted tempe rature=190℃,recycle time=30min-------------------------82
圖4-4-3 SQUID分析
實驗條件:Co(AC)2=0.05M,Co:Pd=300:1,Co:PVP=1: 0.75,Co:DDA=1:1,flow rate=96mL/min,reacted temperat ure=190℃,recycle time=30min----------------------------83
圖4-44 SQUID分析
實驗條件:Co(AC)2=0.05M,Co:Pd=300:1,Co:PVP=1: 0.9,Co:DDA=1:1,flow rate=96mL/min,reacted temperat ure=190℃,recycle time=30min----------------------------84
圖4-4-5 SQUID分析
實驗條件:Co(AC)2=0.05M,Co:Pd=300:1,Co:PVP=1: 1,Co:DDA=1:1,flow rate=96mL/min,reacted temperat ure=190℃,recycle time=30min----------------------------84
參考文獻
1 S. Komarneni, H. Katsuki, D. Li, A. S. Bhalla, “Microwave-polyol process for metal nanophases”, Journal of Physics: Condensed Matter, 16 , S1305, 2004
2 F. Bensebaa, F. Zavaliche, P. L’Ecuyer, R.W. Cochrane, T. Veres, “Microwave synthesis and characterization of Co-ferrite nanoparticles”, Journal of Colloid and Interface Science, 277, 104, 2004
3 鄭惠文, “奈米鈷磁性流體製備研究”, 國立中興大學化學工程研究所碩士論文, 2004
4 金重勳, “磁性技術手冊”, 中華民國磁性技術協會, 2000
5 N. Shukla, E. B. Svedberg , J. Ell , A.J. Roy, “Surfactant effects on the shapes of cobalt nanoparticles” , Materials Letters, 60, 1950, 2006
6 V. F. Puntes, K. M. Krishnan, A. P. Alivisatos, “Colloidal nanocrystal shape and size control--the case of cobalt”, Science, 291, 2115, 2001
7 張立德, “奈米材料”, 五南圖書出版, 2002
8 張立德, 牟季美, “奈米材料和奈米結構”, 滄海書局, 2002
9 羅吉宗, 戴明鳳, 林鴻明, 鄭振宗, 蘇程裕, 吳育民, “奈米科技導論”, 全華科技圖書股份有限公司, 2003
10 高逢時, “奈米科技”, 科學發展, 386期, 2005
11 戴道生, 錢昆明, “鐵磁學”,科學出版社, 2001
12 傳昭銘, 王昱豐, “奈米磁顆粒之放射性標化及應用簡介”, 物理雙月刊, 25卷3期, 2006
13 Y. Huh, M. L. H. Green, Y. H. Kim, J. Y. Lee, C. J. Lee, “Control of carbon nanotube growth using cobalt nanoparticles as catalyst”, Applied Surface Science, 249, 145, 2005
14 K. Raj, B. Moskowitz, R. Casciari, “Advances in ferrofluid technology”, Journal of Magnetism and Magnetic Materials, 149, 174, 1995
15 G. Carotenuto, G. P. Pepe, L. Nicolais, “Preparation and characterization of nano-size Ag/PVP composites for optical applications”, The European Physical Journal B, 16, 11, 2000
16 L. K. Kurihara, G. M. Chow, P. E. Schoen, “Nonocrystalline metallic powders and films produced by the polyol method”, Nanostructured Materials, 5, 607, 1995
17 D. Poondi, T. Dobbins, J. Singh, “A novel laser-liquid-solid interaction technique for synthesis of silver, nickel and immiscible silver-nickel alloys from liquid precursors”, Journal of Materials Science, 35, 6237, 2000
18 I. Pastoriza-Sanots, L. M. Liz-Marzán, “Formation of PVP-protected metal nanoparticles in DMF”, Langmuir, 18, 2888, 2002
19 H.M. Kingston and Lois B. Jassie,” Introduction to microwave sample preparation.” American Chemical Society, Washington, DC 1988
20 陳熹棣, “高週波基礎理論與應用”, 全華科技圖書股份有限公司, 1995
21 B. L. Cushing, V. L. Kolesnichenko, C. J. O’Connor, “Recent advances in the liquid-phase syntheses of inorganic nanoparticles”, Chemical Reviews, 104, 3893, 2004
22 W. Tu, H. Liu, “Continuous synthesis of colloidal metal nanoclusters by microwave irradiation”, Chemistry of Materials, 12, 564, 2000
23 H. Shao, Y. Huang, H. S. Lee, Y. J. Suh, C. O. Kim, “Effect of surfactants on the size and shape of cobalt nanoparticles synthesized by thermal decomposition”, Journal of Applied Physics, 99, 08N702, 2006
24 V. F. Puntes, K. Krishnan, A. P. Alivisatosa, “Synthesis of colloidal cobalt nanoparticles with controlled size and shapes”, Topics in Catalysis, 19, 145, 2002
25 V. F. Puntes, D. Zanchet, C. K. Erdonmez, A. P. Alivisatos, “Synthesis of hcp-Co nanodisks”, Journal of the American Chemical Society, 124, 12874, 2002
26 F. Dumestre, B. Chaudret, C. Amiens, M. C. Fromen, M. J. Casanove, P. Renaud, P. Zurcher, “Shape control of thermodynamically stable cobalt nanorods through organometallic chemistry”, Angewandte Chemie International Edition, 41, 4286, 2002
27 F. Dumestre, B. Chaudret, C. Amiens, M. Respaud, P. Fejes, P. Renaud, P. Zurcher, “Unprecedented crystalline super-lattices of monodisperse cobalt nanorods”, Angewandte. Chemie International Edition, 42, 5213, 2003
28 W. Liu, W. Zhong, X. L. Wu, N. J. Tang, Y. W. Dua, “Hydrothermal microemulsion synthesis of cobalt nanorods and self-assembly into square-shaped nanostructures”, Journal of Crystal Growth, 284, 446, 2005
29 Y. Xiong, Q. Chen, N. Tao, J. Ye, Y. Tang, J. Feng, X. Gu, “The formation of legume-like structures of Co nanoparticles through a polymer-assisted magnetic-field-induced assembly”, Nanotechnology, 18, 345301, 2007
30 T. F. Chang, S. Musikhin, L. Bakueva, L. Levina, M. A. Hines, P. W. Cyr, E. H. Sargent, “Efficient excitation transfer from polymer to nanocrystals”, Applied Physics Letters, 84, 4295 , 2004
31 Y. Hou, H. Kondoh, T. Ohta, S. Gao, “Size-controlled synthesis of nickel nanoparticles”, Applied Surface Science, 241, 218, 2005
32 D. Li, S. Komarneni, “Microwave-assisted polyol Process for synthesis of Ni nanoparticles”, Journal of American Ceramic Society, 89, 1510, 2006
33 Y. Bao, M. Beerman, A. B. Pakhomov, K. M. Krishnan, “Controlled crystalline structure and surface stability of cobalt nanocrystals”, Journal of Physical Chemistry. B, 109, 7220, 2005
34 S. S. Kim, S. T. Kim, J. M. Ahn, K. H. Kim, “Magnetic and microwave absorbing properties of Co-Fe thin films plated on hollow ceramic microspheres of low density”, Journal of Magnetism and Magnetic Materials, 271, 39, 2004
35 鄭振東, “實用磁性材料”, 全華科技圖書, 1999
36 P. W. Atkins, “Physical chemistry”, 6th ed., Oxford university press, 1998
37 張仕欣, 王崇人, “金屬奈米粒子的吸收光譜”, 化學, 56, 209, 1998
38 馬振基, “奈米材料科技原理與應用”, 全華科技圖書股份有限公司, 2003,
39 許樹恩, 吳泰柏, “X光繞射原理及材料結構分析”, 中國材料科學學會, 1996
40 楊鴻昌, “超導量子干涉磁量儀”, 科儀新知, 6期, 1991
41 A. B. R. Mayer, J. E. Mark, “Poly(2-hydroxyalkyl methacrylates) as stabilizers for colloidal noble metal nanoparticles”, Polymer, 41, 1627, 2000
42 C. Petit, M. P. Pileni, “Nanosize cobalt boride particles control of the size and properties”, Journal of Magnetism and Magnetic Materials, 166, 82, 1997
43 C. Luna, M.P. Morales, C.J. Serna, M. Vázquez, “Effects of surfactants on the particle morphology and self-organization of Co nanocrystals”, Materials Science and Engineering C, 23, 1129, 2003
44 F. K. Liu, P. W. Huang, Y. C. Chang, F. H. Ko, T. C. Chu, “Microwave assisted synthesis of silver nanorod”, Journal of Materials Research, 19, 469, 2004
45 H. Shao, Y. Huang, H. Lee, Y. J. Suh, C. O. Kim, “Cobalt nanoparticles synthesis from Co(CH3COO)2 by thermal decomposition”, Journal of Magnetism and Magnetic Materials, 304, e28, 2006
46 D. P. Dinega, M. G. Bawendi, “A solution-phase chemical approach to a new crystal structure of cobalt”, Angewandte Chemie International Edition, 38, 1788, 1999
47 H. T. Yang, C. M. Shen, Y. G. Wang, Y. K. Su, T. Z. Yang, H. J. Gao, “Stable cobalt nanoparticles passivaated with oleic acid and triphenylphosphine, Nanotechnology, 15, 70, 2004
48 G. A. Held, G. Grinstein, H. Doyle, S. Sun, C. B. Murray, “Competing interactions in dispersions of superparamagnetic nanoparticles”, Physical Review B, 64, 012408-1, 2001
49 Y. K. Su, C. M. Shen, T. Z. Yang, H. T. Yang, H. J. Gao, H. L. Li, “The dependence of Co nanoparticle sizes on the ratio of surfactants and the influence of different crystal sizes on magnetic properties”, Applied Physics A, 81, 569, 2005
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top