跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/03 11:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:池郁雯
研究生(外文):Yu-Wen Chih
論文名稱:超臨界流體輔助化學合成奈米銀材料之研究
論文名稱(外文):The study on supercritical fluid-assisted synthesis of silver nanostructures
指導教授:鄭文桐
學位類別:博士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:143
中文關鍵詞:超臨界流體多元醇奈米銀結構聚乙烯吡咯烷酮二氧化碳
外文關鍵詞:Supercritical fluidsPolyol processSilver nanostructuresPolyvinyl pyrrolidonCarbon dioxide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:396
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
銀不論在傳統工業、電子工業、光電科技及醫藥保健方面都有廣大的應用,銀尺寸愈小表面原子數愈多,化性活性大,可低溫燒結,電阻抗值低,表面電漿效應愈大,光吸收度及微波吸收度也大幅增加,也有更強的生化活性及殺菌能力。奈米銀的均勻性及形狀亦會影響熱電及光學性質,長寬比大的奈米銀具較低的表面電漿子共振頻率,會影響光波吸收與散射。而超臨界流體由於有良好的流動性、擴散性、質傳能力及高密度,能增加溶解度及反應速率,也能夠改變溶劑及界面活性劑尾部溶劑化的能力,可以用來控制奈米粒子的結構並加強分散效果。

目前文獻中尚未發現以超臨界流體輔助多元醇合成奈米結構,因此本研究將利用超臨界流體輔助多元醇方法合成銀奈米結構,使反應溶液迅速達到過飽和並提高溶解力,讓奈米銀快速成核,加強質傳效率,提高反應速率,並達到節能的效果。而由於奈米銀顆粒小表面能大,故加入聚乙烯吡咯烷酮(Polyvinyl pyrrolidone, PVP)保護避免團聚,不過PVP除了做穩定劑外,其在溶液中會形成末端氫氧基(-OH)可幫助還原,所以本研究另外在不添加還原劑的情況下,以去離子水做溶劑來證明其具備有還原能力。此外PVP也是一種面向選擇劑,會包覆在銀的(100)晶面上,本研究亦利用其吸附特性,加上調控超臨界流體的密度合成不同形狀的銀奈米結構。

本研究之原理類似反溶劑法,選用二氧化碳當作超臨界流體,以硝酸銀為前驅物,乙二醇或去離子水為還原劑及溶劑,並加入PVP做為保護劑,探討不同溫度、壓力、保護劑含量、保護劑分子量、前驅物濃度等變數對銀奈米粒子的影響,並改變進料程序以合成不同形狀的銀奈米結構,最後利用UV-Vis頻譜、XRD、TEM、FESEM及AFM來分析其特性。可歸納出以下重要成果:
(1) 不添加還原劑只以去離子水做溶劑的情況下,證明PVP本身具有還原能力,只是還原力較乙二醇弱,所以可做為促進劑。
(2) 在最適當的配方下,藉由變化超臨界二氧化碳的溫度及壓力,本研究成功合成面心立方之均勻分散的奈米銀粒子,粒徑約在5-25nm左右。
(3) 調整超臨界二氧化碳密度可以操控奈米銀粒子粒徑,增加溫度可以增加成長速率,使奈米銀粒徑增加;增加壓力可提升成核速率,合成較小之奈米銀粒子。
(4) 改變進料程序可以合成高長寬比的一維奈米銀線結構。改變超臨界二氧化碳密度可以操控奈米銀線直徑、長寬比及生成量。
(5) 增加操作溫度可以幫助奈米銀線成長,使直徑及長寬比增加;增加操作壓力可合成直徑較小的奈米銀線,並使生成量增多,長寬比增加。
Silver has been great interest in traditional industries, microelectronics, electronic and photonics technology, medicine and health care. The smaller size of silver structures have much surface atoms, higher chemical property and activity, low sintering temperature, and higher electrically conductivity. The surface plasmon resonance, light and microwave absorbency, biochemical activity, and bactericidal activity can be enhanced with decreasing diameter of silver. The dispersity and shape of silver nanostructures also affect thermal, electrically, and optical characteristic. The high aspect nanostructures which lower surface plasmon resonance frequency would influence light absorbency and scatter. In addition, the superior fluidity, diffusivity, mass transfer, and high density of supercritical fluids can increase solubility and reaction rate. The supercritical fluids which have changing the salvation of solvent and surfactant tails also can use to manipulate nano-structures and enhance the dispersive ability of nano-particles in liquid.

In the references, it is never been found the supercritical fluids-assisted synthesis of nanostructure in polyol process. Accordingly, this research will synthesize silver nanostructures by supercritical fluid assisted with polyol process to make reactive solution reaching supersaturation speedily to increase nucleation rate of silver, and promote mass transfer and reaction rate. Polyvinyl pyrrolidone (PVP) can protect silver to stable dispersions against agglomeration. Besides, the terminated ends with hydroxyl group would help reduce in the presence of aqueous solution. This study proves it is able to synthesize silver in de-ionic water without the addition of any reducing agent. Furthermore, PVP is a facet-selective capping agent to exhibit silver (100) plane. The different shape silver nanostructures can be synthesized by using the absorbability of PVP molecules and manipulating supercritical fluids density.
Silver nanostructures have been synthesized by the ethylene glycol with the assistance of supercritical carbon dioxide, with silver nitrate used as the base material, PVP as the stabilizer for the silver clusters, and ethylene glycol as the reducing agent and solvent. In this research, the effects of the temperature, pressure, molar ratio of PVP/AgNO3, molecular weight of PVP, and the concentration of AgNO3 on as-synthesized silver nano-structures in dispersion solution are characterized by UV-Visible spectroscopy, XRD, TEM, FESEM, and AFM. As shown in the results, the significant conclusions are summarized as below:
(1) PVP has reducing power in de-ionic water without the addition of any reducing agent, but the ability is weaker than ethylene glycol.
(2) The face-centered cubic structure and uniform dispersion silver nano-particles have been successfully prepared with the diameters between 5-25nm by manipulation temperature and pressure in most suitable condition.
(3) The size of silver nano-particles can be controlled by adjusting supercritical carbon dioxide density. Increasing temperature would raise growth rate to enlarge the particle size of silver, but increasing pressure promote nucleation rate to fabricate smaller particles.
(4) The two inlets process can synthesize high aspect ratio of silver nano-wires; and the size, aspect ratio, and yield can be controlled by varying density of supercritical carbon dioxide.
Increasing temperature would help growth to enlarge the size and aspect ratio of silver nano-wires, while increasing pressure can synthesize smaller size and higher aspect ratio and yield of silver nanowires.
目 錄

中文摘要 ..…………………………………………………………… I
Astract ..…………………………………………………………… III
目錄 …………..………………………………………………… V
表目錄 …..………………………………………………………… VIII
圖目錄 ……..……………………………………………………… IX
第一章 緒論…..…………………………………………………… 1
1-1 前言……..……………………………………………. 1
1-2 奈米科技簡介...…………..…………………….…….. 2
1-3 奈米銀的應用及製備.……………...…………..…….. 6
1-4 研究動機與方法…………………………………….... 11
1-5 本論文架構....................................................................... 17
第二章 理論基礎………………..………………………………… 18
2-1 奈米粒子的成核與成長…………………………….... 18
2-1-1 成核程序…...………………………...………….. 18
2-1-2 成長程序…...………………………...…..……… 21
2-1-3 Ostwald Ripening成長機制…...………………….. 22
2-1-4 成長動力學研究………………………………… 23
2-2多元醇法製備金屬奈米粒子……..………………...…. 26
2-3 PVP的簡介及保護作用……..………………...….…... 28
2-4 超臨界流體…………………...……………………..... 30
2-4-1 超臨界流體的簡介與特性…………...………….. 30
2-4-2 超臨界流體的歷史與應用…………………...….. 33
2-4-3 超臨界流體製備奈米粒子………………...…….. 36
2-5 儀器分析原理…...……………………...…………….. 41
2-5-1 紫外光-可見光光譜儀…...……………………… 41
2-5-2 穿透式電子顯微鏡…...…………………..…........ 41
2-5-3 場發射掃描式電子顯微鏡…..………………...… 43
2-5-4 原子力顯微鏡…...………………………………. 44
2-5-5 X光粉末繞射…………………………………... 45
第三章 超臨界二氧化碳輔助乙二醇合成奈米銀粒子………….... 47
3-1 研究目的與方法.…...….……………………………... 47
3-2 藥品與儀器……..……...…...….……………………... 48
3-2-1 實驗藥品……….…...….. …………………...…... 48
3-2-2 儀器設備..…………..………..………………….. 48
3-2-3 奈米銀粒子之製備步驟....……...…...….……….. 50
3-2-4 奈米銀粒子特性分析……..……...…...….……… 51
3-3 結果與討論…………………………………………... 53
3-3-1 超臨界二氧化碳的影響………………………… 53
3-3-2 溫度的影響……………………………………… 58
3-3-3 壓力的影響…..…………..…………..…….....….. 62
3-3-4 濃度的影響..………..…………..……...….……... 67
3-3-5 保護劑的影響……….....…………..…………….. 70
3-4 結論…………………………………………………... 77
第四章 超臨界二氧化碳輔助水系統合成奈米銀粒子………..….. 78
4-1 研究目的與方法.…...….……………………………... 78
4-2 藥品與儀器……..……...…...….……………………... 79
4-2-1 實驗藥品……….…...….. …………………...…... 79
4-2-2 儀器設備..…………..………..………………….. 79
4-2-3 奈米銀粒子之製備步驟....……...…...….……….. 80
4-2-4 奈米銀粒子特性分析……..……...…...….……… 80
4-3 結果與討論…………………………………………... 81
4-3-1 溫度的影響…………………………………….... 81
4-3-2 壓力的影響…..…………..…………..……...…… 84
4-3-3 保護劑的影響……….....…………..………..…… 87
4-3-4 成長動力探討….…………………...…………..... 93
4-4 結論……………………………………………..……. 102
第五章 超臨界二氧化碳輔助操控奈米銀結構…………………... 103
5-1 研究目的與方法.…...….……………………………... 103
5-2 藥品與儀器……..……...…...…………………...……. 104
5-2-1 實驗藥品……….…...….. ………………………. 104
5-2-2 儀器設備..…………..………..………………..… 104
5-2-3 奈米銀結構之製備步驟....……....................…….. 105
5-2-3-1單進料程序..……..……....................…...….… 105
5-2-3-2雙進料程序..……..……....................…...….… 106
5-2-4 奈米銀結構特性分析…….....……...….................. 107
5-3 結果與討論……………………………………..……. 109
5-3-1 單進料程序之保護劑與壓力的影響……………. 109
5-3-2 雙進料程序之保護劑的影響…………………..... 113
5-3-3 雙進料程序之溫度及壓力的影響………………. 120
5-3-4 成長機制的探討及結構特性分析……………..... 124
5-4 結論…………………………………..………………. 130
第六章 綜合結論與未來延續方向……………...…..…………..… 131
6-1 綜合結論……………...…..….………………………. 131
6-2 未來延續方向……………...…..……………………... 132
參考文獻 …………………………………………………………..… 133


















表目錄

表1-1 球形粒子之顆粒直徑與表面原子數之關係……………..….. 3
表2-1 乙二醇還原奈米金屬粒子的種類和條件………………….... 27
表2-2 氣體、液體及超臨界狀態的物性比較...................................... 32
表3-1 本章需要的實驗藥品..................................... ............................ 48
表3-2 本章實驗儀器與設備..................................... ............................ 49
表4-1 本章需要的實驗藥品..................................... ............................ 79
表5-1 本章實驗儀器與設備..................................... ............................ 104





















圖目錄

圖1-1 不同維度之奈米結構的能階狀態密度與能量變化關係…... 5
圖1-2 正逆微胞系統示意圖……………………………………….. 10
圖1-3 超臨界二氧化碳輔助乙二醇合成奈米銀粒子示意圖……... 13
圖1-4 超臨界二氧化碳輔助水系統合成奈米銀粒子示意圖……... 14
圖1-5 超臨界二氧化碳輔助操控奈米銀結構示意圖…………….. 15
圖1-6 研究架構示意圖……………………………………………. 16
圖2-1 自由能與成核粒徑大小的關係圖………………………….. 20
圖2-2 單分散顆粒形成的LaMer模型示意圖…………………….. 25
圖2-3 PVP的分子結構式..................................................................... 28
圖2-4 PVP與銀離子之反應機制示意圖.…………………...….. 29
圖2-5 PVP與銀成核之保護機制示意圖………………………….. 30
圖2-6 純物質的相圖………………………………………………. 31
圖2-7 超臨界溶液快速膨脹法............................................................. 38
圖2-8 超臨界反溶劑法......................................................................... 39
圖2-9 氣體飽和溶液法......................................................................... 39
圖2-10 超臨界逆微胞法......................................................................... 40
圖2-11 TEM光學構造示意圖................................................................ 42
圖2-12 入射電子作用示意圖................................................................. 43
圖2-13 FESEM工作原理示意與實體之對照圖.................................. 44
圖2-14 AFM的成像原理示意圖............................................................ 45
圖2-15 Bragg’s law繞射示意圖............................................................. 46
圖3-1 超臨界流體裝置圖..................................................................... 51
圖3-2 不同超臨界CO2壓力下,35℃乙二醇的UV-Vis吸收光譜 54
圖3-3 100℃、PVP (MW=10,000)/AgNO3莫耳比為1的條件下,傳統加熱程序與超臨界CO2輔助程序的TEM影像圖。
(小圖為選區電子繞射SAED圖).......................................... 55
圖3-4 100℃、PVP (MW=10,000)/AgNO3莫耳比為1的條件下,傳統加熱程序與超臨界CO2輔助程序的FESEM影像圖。 56

圖3-5 100℃、PVP (MW=10,000)/AgNO3莫耳比為1的條件下,傳統加熱程序與超臨界CO2輔助程序的UV-Vis吸收光譜。 57
圖3-6 溫度50-100℃下,超臨界CO2輔助合成奈米銀粒子之UV-Vis吸收光譜(25 MPa, PVP (MW=10,000)/AgNO3 =1)………................................................................................... 59
圖3-7 溫度50-100℃下,超臨界CO2輔助合成奈米銀粒子之TEM影像圖(25 MPa, PVP (MW=10,000)/AgNO3 =1)………........ .......................................................................... 60
圖3-8 溫度50-100℃下,超臨界CO2輔助合成奈米銀粒子之FESEM影像圖(25 MPa, PVP (MW=10,000)/AgNO3 =1)………....... ........................................................................... 61
圖3-9 變化不同壓力下之超臨界CO2輔助合成奈米銀粒子UV-Vis吸收光譜(100℃, PVP (MW=10,000)/AgNO3 =1)………................................................................................... 64
圖3-10 變化不同壓力下之超臨界CO2輔助合成奈米銀粒子TEM影像圖(100℃, PVP (MW=10,000)/AgNO3 =1)………................................................................................... 65
圖3-11 變化不同壓力下之超臨界CO2輔助合成奈米銀粒子FESEM影像圖(100℃, PVP (MW=10,000) / AgNO3 =1)………... ………………………………………………... 66
圖3-12 各種硝酸銀濃度下,超臨界CO2輔助合成奈米銀粒子之UV-Vis吸收光譜(25 MPa, 100℃, PVP (MW=10,000) /AgNO3 =1)………... ………... ………... ………... . ……… 68
圖3-13 各種硝酸銀濃度下,超臨界CO2輔助合成奈米銀粒子之TEM影像圖(25 MPa, 100℃, PVP (MW=10,000)/AgNO3 =1)………... ………... ………... ………... ………................ 69
圖3-14 PVP與銀離子的反應機制………... ………... ………........... 70
圖3-15 改變PVP/ AgNO3分子莫耳比之超臨界CO2輔助合成奈米銀粒子TEM影像圖(25 MPa, 100℃, PVP MW=10,000)………... ………... ………... ………... ……... 72


圖3-16 改變PVP/ AgNO3分子莫耳比之超臨界CO2輔助合成奈米銀粒子UV-Vis吸收光譜(25 MPa, 100℃, PVP MW=10,000)………... ………... ………... ………... ……... 73
圖3-17 不同PVP分子量下,超臨界CO2輔助合成奈米銀粒子之TEM影像圖(25 MPa, 100℃, PVP/AgNO3 =1)……….......... 75
圖3-18 不同PVP分子量下,超臨界CO2輔助合成奈米銀粒子之UV-Vis吸收光譜(25 MPa, 100℃, PVP/AgNO3 =1)………................................................................................... 76
圖4-1 三種溫度下,PVP為還原劑之超臨界CO2輔助合成奈米銀粒子UV-Vis吸收光譜(25 MPa, PVP (MW=10,000)/AgNO3 = 5)………... ………... ………... ………... ………... …….. 82
圖4-2 三種溫度下,PVP為還原劑之超臨界CO2輔助合成奈米銀粒子TEM影像圖(25 MPa, PVP (MW=10,000)/AgNO3 = 5)……………………………………………………………. 83
圖4-3 壓力8, 15及25 MPa下,PVP為還原劑之超臨界CO2輔助合成奈米銀粒子UV-Vis吸收光譜(100℃, PVP (MW=10,000)/AgNO3=15)………... ………... ………......... 85
圖4-4 壓力8, 15及25 MPa下,PVP為還原劑之超臨界CO2輔助合成奈米銀粒子TEM影像圖(100℃, PVP (MW=10,000)/AgNO3 = 15)………………………………... 86
圖4-5 不同PVP/AgNO3莫耳比下,PVP做還原劑之超臨界CO2輔助合成奈米銀粒子UV-Vis吸收光譜(25 MPa, 100℃, PVP MW=10,000)………... ………... ………... ………........ 88
圖4-6 不同PVP/AgNO3莫耳比下,PVP做還原劑之超臨界CO2輔助合成奈米銀粒子TEM影像圖(25 MPa, 100℃, PVP MW=10,000)………... ………... ………... ………... …….. 89
圖4-7 三種分子量PVP做還原劑之超臨界CO2輔助合成奈米銀粒子UV-Vis吸收光譜(25 MPa, 100℃, PVP/AgNO3 =1)…………………………………………………………... 91
圖4-8 三種分子量PVP做還原劑之超臨界CO2輔助合成奈米銀粒子TEM影像圖(25 MPa, 100℃, PVP/AgNO3 =1)…………………………………………………………. 92
圖4-9 隨時間變化之SC-CO2輔助乙二醇系統合成奈米銀粒子吸收光譜圖(25 MPa, 100℃, PVP (MW=10,000)/AgNO3 = 5)………..................................................................................... 94
圖4-10 不同PVP/AgNO3莫耳比之SC-CO2輔助乙二醇系統合成奈米銀粒子在波長410 nm的UV-Vis特徵吸收峰值………... ………………………………………………..... 95
圖4-11 成核階段線性迴歸圖(圖4-10後續處理)………................. 96
圖4-12 隨時間變化之SC-CO2輔助水系統合成奈米銀粒子吸收光譜圖(25 MPa, 100℃, PVP (MW=10,000)/AgNO3 = 20)………... ………... ………... ………... ………... ……… 98
圖4-13 不同PVP/AgNO3莫耳比之SC-CO2輔助水系統合成奈米銀粒子在波長410 nm的UV-Vis特徵吸收峰值………............... 99
圖4-14 圖4-14 成核階段線性迴歸圖(圖4-13後續處理)……….... 100
圖4-15 不同PVP/AgNO3莫耳比之SC-CO2輔助合成奈米銀粒子之動力學研究(25 MPa, 100℃, PVP MW=10,000)……….... 101
圖5-1 超臨界CO2輔助合成一維奈米銀結構示意圖………........... 103
圖5-2 雙進料程序實驗裝置圖………... ………... ………... …….. 107
圖5-3 PVP分子量10000, 40000及55000之SC-CO2輔助合成銀奈米結構TEM影像圖([AgNO3]=0.1M, 25 MPa, 100℃, PVP/AgNO3 = 0.1)…………………………………………. 110
圖5-4 變化PVP/AgNO3莫耳比之SC-CO2輔助合成銀奈米結構TEM影像圖([AgNO3]=0.1M, 100℃, 25 MPa, PVP MW = 55,000)………... ………... ………... ………... ………......... 111
圖5-5 不同超臨界壓力之SC-CO2輔助合成銀奈米結構TEM影像圖([AgNO3]=0.1M, 100℃, PVP(MW=55000)/AgNO3 = 0.005)………....... ………... ………... ………... ………........ 112
圖5-6 變化PVP/AgNO3莫耳比之SC-CO2輔助合成銀奈米結構TEM影像圖([AgNO3]=0.1M, 25 MPa, 100℃, PVP MW = 55,000)………... ………... ………... ………... ………... …. 114
圖5-7 不同PVP/AgNO3莫耳比之SC-CO2輔助合成銀奈米結構FESEM影像圖([AgNO3]=0.1M, 25 MPa, 100℃, PVP MW =55,000)………... ………. ………... ………... ………......... 115
圖5-8 SC-CO2輔助合成銀奈米結構之AFM影像圖([AgNO3]=0.1M, 25 MPa, 100℃, PVP MW = 55,000)……. 116
圖5-9 PVP分子量10000, 40000及55000之SC-CO2輔助合成銀奈米結構TEM影像圖([AgNO3]=0.1M, 25 MPa, 100℃, PVP/AgNO3 = 0.003)…... ………... …... ………... ………... 117
圖5-10 PVP分子量10000, 40000及55000SC-CO2輔助合成銀奈米結構FESEM影像圖([AgNO3]=0.1M, 25 MPa, 100℃, PVP/AgNO3 = 0.003)……………………………………….. 118
圖5-11 三種溫度之SC-CO2輔助合成銀奈米結構FESEM影像圖
([AgNO3]=0.1M, 25 MPa, PVP(MW=55000)/AgNO3 = 0.003)………... ………... ………... ………... ………... …... 121
圖5-12 改變不同壓力下之SC-CO2輔助合成奈米銀粒子TEM影像圖([AgNO3]=0.1M, 100℃, PVP (MW=55,000)/AgNO3 =0.003)………... ………... ………... ………... ………......... 122
圖5-13 改變不同壓力下之SC-CO2輔助合成奈米銀粒子FESEM影像圖([AgNO3]=0.1M, 100℃, PVP (MW=55,000)/AgNO3 = 0.003)………... ………... ………... ………... ………... ….. 123
圖5-14 不同時間之SC-CO2輔助合成銀奈米結構TEM影像圖(25 MPa, 100℃, PVP(MW=55,000)/AgNO3 = 0.003)………….. 126
圖5-15 奈米銀線結構FESEM圖(上方為十面體銀粒子TEM圖) 127
圖5-16 SC-CO2輔助合成之奈米銀結構XRD圖譜(a) PVP(MW=10000)/AgNO3 = 1; (b) PVP (MW=55000) / AgNO3 = 0.003 (100℃, 25 MPa) ………... ………... ……… 128


圖5-17 SC-CO2輔助合成銀奈米結構UV-Vis吸收光譜圖
(25 MPa, 100℃, PVP(MW = 55,000)/AgNO3 = 0.003)…… 129
[1]尹邦躍, “奈米時代,” 五南圖書出版公司, 2002.
[2]N. Ichinose, Y. Ozaki, and S. Kashu, “Superfine Particle Technology,”
Springer-Verlag, 1992.
[3]G. Schimid, “Clusters and Colloids : From Theory to Applications,”
VCH, 1994.
[4]莊萬發, “超微粒子理論應用,” 復漢出版社, 1995.
[5]羅吉宗, 戴明鳳, 林鴻明, 鄭振宗, 蘇程裕, 吳育民, “奈米科技導論,” 全華科技圖書股份有限公司, 2003.
[6]蘇品書, “超微粒子材料技術,” 復漢出版社, 1989.
[7]M. L. Steigerwald and L. E. Brus, Acc. Chem. Res., 23, 183, 1990.
[8]Y. Wang and N. Herron, J. Phys. Chem., 95, 525, 1991.
[9]J. Z. Zhang, Acc. Chem. Res., 30, 423, 1997.
[10]J. H. Fendler, Chem. Rev., 87, 877, 1987.
[11]Al. L. Efros and A. L. Efros, Sov. Phys. Semicond., 16, 772, 1982.
[12]M. P. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Science, 281, 2013, 1998.
[13]C. F. Bohren and D. R. Huffman, “Absorption and Scattering of Light by Small Particles,” Wiley-Interscience, 1998.
[14]A. Henglein, Chem. Rev., 89, 1861, 1989.
[15]A. P. Alivisatos, Science, 271, 933, 1996.
[16]N. Toshima and T. Yonezawa, New J. Chem., 1179, 1998.
[17]F, Mafuné, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, J. Phys. Chem. B, 105, 5114, 2001.
[18]R. W. Siegel, Ann. Rev. Mater. Sci., 21, 559, 1991.
[19]R. Uyeda, Prog. Mater. Sci., 35, 1, 1991.
[20]K. Santra, C. K. Sarkar, M. K. Mukherjee, and B. Ghosh, Thin Solid Films, 213, 226, 1992.
[21]S. Raoux, D. Cheung, M. Fodor, W. N. Taylor, and K. Fairbairn, Plasma Sources Sci. Technol., 6, 405, 1997.
[22]T. Mahalingam, J. S. P. Chitra, S. Rajendran, M. Jayachandran, and C. M. Juliana, J. Cryst. Growth., 216, 304, 2000.
[23]R. A. Powell, “PVD for Microelectronics: Sputter Deposition Applied to Semiconductor Manufacturing,” Academic Press, 1998.
[24]G. M. Chow and A. S. Edelstein, Nanostruct. Mater., 1, 107, 1992.
[25]A. S. Edelstein and R. C. Cammarata, “Nanomaterials: Synthesis, Properties and Applications,” Bristol (Philadelphia : Institute of Physics Pub.), 1998.
[26]R. Janot and D. Gu´erard, Prog. Mater. Sci., 50,1, 2005.
[27]C. N. Chen, Y. L, Chen, and W. J. Tseng, J. Mater. Process. Technol., 190, 61, 2007.
[28]J. H. Schulman and T. P. Hoar, Nature, 152, 102, 1943.
[29]K. P. Bidyut and M. Satya, J. Dispersion Sci. Technol., 18, 301, 1997.
[30]Frahataziz and M. A. J. Rodgers, “Radiation chemistry:principles and applications”, VCH, 1987.
[31]M. Ji, X. Chen, C. M. Wai, and J. L. Fulton, J. Am. Chem. Soc., 121, 2631, 1999.
[32]J. P. Cason, K. Khambaswadkar, and C. B. Roberts, Ind. Eng. Chem. Res., 39, 4749, 2000.
[33]P. S. Shah, J. D. Holmes, R. C. Doty, K. P. Johnston, and B. A. Korgel, J. Am. Chem. Soc., 122, 4245, 2000.
[34]H. Ohde, F. Hunt, and C. M. Wai, Chem. Mater., 13, 4130, 2001.
[35]A. Kameo, T. Yoshimura, and K. Esumi, Colloids Surf. A: Physicochem. Eng. Aspects, 215, 181, 2003.
[36]M. C. McLeod, R. S. McHenry, E. J. Beckman, and C. B. Roberts, J. Phys. Chem. B, 107, 2693, 2003.
[37]M. C. McLeod, W. F. Gale, and C. B. Roberts, Langmuir, 20, 7078, 2004.
[38]J. Liu, P. Raveendran, Z. Shervani, Y. Ikushima, Y. Hakuta, Chem. Eur. J., 11, 1854, 2005.
[39]P. W. Bell, M. Anand, X. Fan, R. M. Enick, and C. B. Roberts, Langmuir, 21, 11608, 2005.
[40]Y. P. Sun, P. Atorngitjawat, and M. J. Meziani, Langmuir, 17, 5707, 2001.
[41]M. J. Meziani, P. Pathak, F. Beacham, L. F. Allard, and Y. P. Sun, J. Supercrit. Fluids, 34, 91, 2005.
[42]Y. Xia and N. J. Halas, MRS Bulltin, 30, 338, 2005.
[43]J. W. P. Schmelzer, “Nucleation Theory and Application,” Wiley-VCH, 2005.
[44]陳進成, 科學發展, 377, 26, 2004.
[45]J. W. Mullin, “Crystallization,” Butterworth-Heinemann, 1993.
[46]賈紹義, 柴誠敬, “化工傳質與分離過程,” 化學工業出版社, 中國, 2001.
[47]王振中, 張利鋒, “化工原理,” 化學工業出版社, 中國, 2006.
[48]C. B. Murray, C. R. Kagan, and M. G. Bawendi, Annu. Rev. Mater. Sci., 30, 545, 2000.
[49]V. K. LarMer and R. H. Dinegar, J. Am. Chem. Soc., 72, 4847, 1950.
[50]R. Boistelle and J. P. Astier, J. Cryst. Growth, 90, 14, 1988.
[51]W. A. Tiller, “The Science of Crystallization: Macroscopic Phenomena and Defect Generation,” Cambridge University Press, 1992.
[52]J.W. Mullin, “Crystallization,” Butterworth-Heinemann, 1993.
[53]A. E. Nielsen, “Kinetics of Precipitation,” Pergamon Press, 1964.
[54]張仕欣及王崇人, 化學, 56, 209,1998.
[55]G. Carotenuto, S. DeNicola, and L. Nicolais, J. Nanoparticle Res., 3, 469, 2001.
[56]R. Salvati, A. Longo, G. Carotenuto, L. Nicolais, S. De Nicola, and G. P. Pepe, Eur. Phys. J. B, 41, 43, 2004.
[57]M. L. Rodríguez-Sánchez, M. J. Rodríguez, M. C. Blanco, J. Rivas, and M. A. López-Quintela, J. Phys. Chem. B, 109, 1183, 2005.
[58]P. Y. Silvert, H. U. Ronaldo, and T. E. Kamar, J. Mater. Chem., 7, 293, 1997.
[59]C. Kan, W. Cai, C. Li, and L. Zhang, J. Mater. Res., 20, 320, 2005.
[60]R. Patakfalvi, Z. Virányi, and I. Dékány, Colloid Polym. Sci., 283, 299, 2004.
[61]Y. Gao, P. Jiang, L. Song, L. Liu, X. Yan, Z. Zhou, D. Liu, J. Wang, H. Yuan, Z. Zhang, X. Zhao, X. Dou, W. Zhou, G. Wang, and S. Xie, J. Phys. D: Appl. Phys., 38, 1061, 2005.
[62]H. Hirai, Y. Nakao, and N. Toshima, J. Macromol. Sci.-Chem. A, 13, 727, 1979.
[63]L. K. Kurihara, G. M. Chow, and P. E.Schoen, Nanostructured Mater., 5, 607, 1995.
[64]C. Wang, M. Chen, G. Zhu, Z. Liu, J. Colloid Interface Sci., 243, 362, 2001.
[65]Y. Sun and Y. Xia, Science, 298, 2176, 2002.
[66]Y. Zhu, Y. Qian, M. Xhang, and Z. Chen, Mater. Lett., 17, 314, 1993.
[67]Y. Zhu, Y. Qian, M. Zhang, Z. Chen, B. Lu, and G. Zhou, Mater. Sci. Eng. B, 23, 116, 1994.
[68]黃偉鎮, “紫外光輔助乙二醇合成奈米銀粒子之研究,” 國立中興大學碩士論文, 2006.
[69]K. Mallick, M. J. Witcomb, and M. S. Scurrell, Appl. Phys. A, 80, 395, 2005.
[70]馬振基, “奈米材料科技原理與應用,” 全華科技圖書股份有限公司, 2003
[71]方明發, “化妝品製造學,” 人光出版社, 1991.
[72]中國上海勝浦新材料有限公司(http://www.chinapvp.com)
[73]Z. Zhang, B. Zhao, and L. Hu, J. Solid State Chem., 121, 105, 1996.
[74]http://en.wikipedia.org/wiki/Image:Phase-diag.svg
[75]P. G. Jessop and W. Leitner, “Chemical Synthesis Using Supercritical Fluids,” Wiley-VCH, 1999.
[76]Y. Arai, T. Sako and Y. Takebayashi, “Supercritical Fluids: Molecular Interactions, Physical Properties, and New Applications,” Springer, 2002.
[77]M. Saharay and S. Balasubramanian, ChemPhysChem, 5, 1442, 2004.
[78]A O’Neil and J. J. Watkins, MRS Bulletin, 30, 967, 2005.
[79]A. S. Geopalan, C. M. Wai, and H. K. Jacobs, “Supercritical Carbon Dioxide: Separations and Process,” ACS Symposium Series 860, American Chemical Society, 2003.
[80]A. I. Cooper, Adv. Mater., 13, 1111, 2001.
[81]Y. Wang, D. Wei, R. Dave, R. Pfeffer, M. Sauceau, J. J. Letourneau, and J. Fages, Powder Technol., 127 , 32, 2002.
[82]R. R. Gupta, V. S. RamachandraRao, and J. J. Watkins, Macromolecules, 36, 1295, 2003.
[83]H. Wakayama and Y. Fukushima, Ind. Eng. Chem. Res., 45, 3328, 2006.
[84]M. Bahrami and A. Ranjbarian, J. Supercrit. Fluids, 40 , 263, 2007.
[85]T. A. Hoefling, R. R. Beitle, R. M. Enick, and E. J. Beckman, Fluid Phase Equilibr., 83, 203, 1993.
[86]M. J. Clarke, K. L. Harrison, K. P. Johnston, and S. M. Howdle, J. Am. Chem. Soc., 119, 6399, 1997.
[87]M. M. Jiménez-Carmona and M. D. Luque de Castro, Anal. Chim. Acta., 358, 1, 1998.
[88]B. H. Hutton, J. M. Perera, F. Grieser, and G. W. Stevens, Coll. Surf. A Physicochem. Eng. Aspects, 146, 227, 1999.
[89]H. M. Woods, M. M. C. G. Silva, C. Nouvel, K. M. Shakesheff, and S. T. Howdle, J. Mater. Chem., 14, 1663, 2004.
[90]K. A. Consani and R. D. Smith, J. Supercrit. Fluids, 3, 51, 1990.
[91]M. L. O’Neill, Q. Cao, M. Fang, K. P. Johnston, S. P. Wilkinson, C. D. Smith, J. L. Kerschner, and S. H. Jureller, Ind. Eng. Chem. Res., 37, 3067, 1998.
[92]E. G. Ghenciu, A. J. Russell, E. J. Beckman, L. Steele, and N. T. Becker, Biotechnol. Bioeng., 58, 572, 1998.
[93]N. Chennamsetty, H. Bock, L. F. Scanu, F. R. Siperstein, and K. E. Gubbins, J. Chem. Phys., 122, 094710, 2005.
[94]M. C. McLeod, C. L. Kitchens, and C. B. Roberts, Langmuir, 21, 2414, 2005.
[95]V. M. Shah, B. J. Hardy, and S. A. Stern, J. Polym. Sci. B, 31, 313, 1993
[96]A. V. Yazdi and E. J. Beckman, J. Mater. Res., 10, 530, 1995.
[97]K. A. Shaffer, T. A. Jones, D. A. Canelas, J. M. Desimone, and S. P. Wilkinson, Macromolecules, 29, 2704, 1996.
[98]H. Hu, M. Chen, and R. Cheng, Polymer, 44, 341, 2003.
[99]E. Loste, J. Fraile, M. A. Fanovich, G. F. Woerlee, and C. Domingo, Adv. Mater., 16, 739, 2004.
[100]C. C. de la Tour, Ann. Chim. Phys., 21, 178, 1822.
[101]J. B. Hannay and J. Hogarth, Proc. Roy. Soc., 29, 324, 1879.
[102]J. B. Hannay, Proc. Roy. Soc., 30, 484, 1880.
[103]N. C. Francis and K. M. Watson, Phys. Rev., 93, 313, 1954.
[104]H. Berg, C. Turner, L. Dahlberg, and L. Mathiasson, J. Biochem. Bioph. Methods, 43, 391, 2000.
[105]Hansen, B. N., A. H. Harvey, J. A. P. Coelho, A. M. F. Palavra, and T. J. Bruno, J. Chem. Eng. Data, 46, 1054, 2001.
[106]J. M. Wong, N. Y. Kado, P. A., Kuzmicky, H. S. Ning, J. E. Woodrow, D. P. H. Hsien, and J. N. Seiber, Anal. Chem., 63, 644, 1991.

[107]F. W. Jones, B. O. Bateup, D. R. Dixon, and S. R. Gray, J. Supercriti. Fluids, 10, 105, 1997.
[108]S. B. Hawthome and D. J. Miller, Anal. Chem., 59, 1750, 1987.
[109]J. J. Yu, Water Res., 36, 1095, 2002.
[110]C. M. Wai, F. Hunt, M. Ji, and X. Chen, J. Chem. Educ., 75, 1641, 1998.
[111]O. Kajimoto, Chem. Rev., 99, 355, 1999.
[112]Z. K. Lopez-Castillo, R. Flores, I. Kani, J. P.. Fackler, and A. Akgerman, Ind. Eng. Chem. Res., 42, 3893, 2003.
[113]D. Guha, H. Jin, M. P. Dudukovic, P. A. Ramachandran, and B. Subramaniam, Chem. Eng. Sci., 62, 4967, 2007.
[114]J. F. Martins, I. B. de Carvalho, T. C. de Sampaio, and S. Barreiros, Enzyme. Microb. Technol., 16, 785, 1994
[115]T. Mori and Y. Okahata, Chem. Commun., 2215, 1998.
[116]N. Harper and S. Barreiros, Biotechnol. Prog., 18, 1451, 2002.
[117]T. Matsuda, T. Harada, and K. Nakamura, Green Chem., 6, 440, 2004.
[118]H. S. Lee, W. G. Lee, S. W. Park, H. Lee, and H. N. Chang, Biotechnol. Tech., 7, 267, 1993.
[119]J. McHardy and S. P. Sawan, “Supercritical fluid cleaning: fundamentals, technology, and applications,” Noyes Publications, 1998.
[120]J. W. King and L. L. Williams, Current. Opin. Solid State Mater. Sci., 7, 413, 2003.
[121]G. D. Porta, M. C. Volpe, and E. Reverchon, J. Supercrit. Fluids., 37, 409, 2006.
[122]C. C. Tsai, H. M. Lin, M. J. Lee, “Solubility of Disperse Dyes of Blue 56, Violet 1, and Yellow 54 in Supercritical Carbon Dioxide with or without Cosolvent,” The 4th International Symposium on Supercritical Fluid Technology for Energy, Environment and Electronics Application, Taipei, 2005.
[123]D. Knittel, W. Saus, and E. Schollmeyer, J. Textile Res., 84, 534, 1993.
[124]T. Koga, Y. S. Seo, K. Shin, Y. Zhang, M. H. Rafailovich, J. C. Sokolov, B. Chu, and S. K. Satija, Macromolecules, 36, 5236, 2003.
[125]B. Barbara, S. Giuseppe, M. Massimo, R. Arvind, and M. Marco, J. Polym. Sci. B, 44, 1531, 2006.
[126]K. P. Johnston and P. S. Shah, Science, 303, 482, 2007.
[127]Sumitomo Chemical Co., Ltd., French Patent 1524533, 1968.
[128]M. Hagiwara, H. Mitusi, S. Machi, and T. Kagiya, J. Polym. Sci. A-1, 6, 603, 1968.
[129]G. Srinivasan and J. R. Elliott, Ind. Eng. Chem. Res., 31, 1414, 1992.
[130]J. L. Kendall, D. A. Canelas, J. L. Young, and J. M. DeSimone, Chem. Rev., 99, 543, 1999.
[131]S. M. Howdle, M. S. Watson, M. J. Whitaker, V. K. Popov, M. C. Davies,F. S. Mandel, J. D. Wang, and K. M. Shakesheff, Chem. Commun., 109, 2001.
[132]M. Tang, T. Y. Wen, T. B. Du, and Y. P. Chen, Eur. Polym. J., 39, 143, 2003.
[133]S. Partap, A. K. Hebb, I. ur Rehman, J. A. Darr, Polym. Bull., 58, 849, 2007.
[134]A. L. Douglas and J. S. Kenneth, Chem. Rev., 95, 1431, 1995.
[135]J. W. Green, M. J. Rubal, B. M. Osman, R. L. Welsch, P. E. Cassidy, J. W. Fitch, and M. T. Blanda, Polym. Adv. Technol., 11, 820, 2000.
[136]C. Domingo, E. Loste, and J. Fraile, J. Supercrit. Fluids., 37, 72, 2006.
[137]蕭心瑜, “高分子與鐵複合材料之製備,” 清華大學化工系碩士論文, 2005.
[138]M. Modell, US Patent 4338199, 1982.
[139]J. Gao, J. Am. Chem. Soc., 115, 6893, 1993.
[140]A. Shanableh, Wat. Res., 34, 945, 2000.
[141]I. Yutaka, S. Osamu, S. Masahiro, H. Kiyotaka, and A. Masahiko, Chem. Eng. Sci., 58, 935, 2003.
[142]P. York, PSTT, 2, 430, 1999.
[143]J. Jung and M. Perrut, J. Supercrit. Fluids, 20, 179, 2001.
[144]Y. Hakuta, H. Hayashi, and K. Arai, Curr. Opin. Solid State Mater. Sci., 7, 341, 2003.
[145]B. Chehroudi, Combust. Sci. and Tech., 178, 555, 2006.
[146]E. Reverchon and R. Adami, J. Supercrit. Fluids, 37, 1, 2006.
[147]M. Bahrami and S. Ranjbarian, J. Supercrit. Fluids, 40, 263, 2007.
[148]L. T. Canham, A. G. Cullis, C. Pickering, O. D. Dosser, T. I. Cox, and T. P. Lynch, Nature, 368, 133, 1994.
[149]Y. Mizushima and M. Hori, J. Mater. Sci., 30, 1551, 1995.
[150]K. S. Morely, P. C. Marr, P. B. Webb, A. R. Berry, F. J. Allison, G. Moldovan, P. D. Brown, and S. M. Howdle, J. Mater. Chem., 12, 1898, 2002.
[151]T. Wahlbrink, D. Küpper, Y. M. Georgiev, J. Bolten, M. Möller, David Küpper, M. C. Lemme, and H. Kurz, Microelectron. Eng., 83, 1124, 2006.
[152]T. Beena, S. Kalpesh, S. Basha, and J. R. Vir, J. Nanosci. Nanotechnol., 6, 1584, 2006
[153]Y. P. Sun, R. Guduru, F. Lin, and T. Whiteside, Ind. Eng. Chem. Res., 39, 4663, 2000.
[154]Y. Chernyak, F. Henon, R. B. Harris, R. D. Gould, R. K. Franklin, J. R. Edward, J. M. Desimone, and R. G. Carbonell, Ind. Eng. Chem. Res., 40, 6118, 2001.
[155]M. Türk, B. Helfgen, P. Hils, R. Lietzow, and K. Schaber, Part. Part. Syst. Charact., 19, 327, 2002.
[156]K. Moribe, S. Tsutsumi, S. Morishita, H. Shinozaki, Y. Tozuka, T. Oguchi, and K. Yamamoto, Chem. Pharm. Bull., 53, 1025, 2005.
[157]R. Thakur and R. B. Gupta, J. Supercrit. Fluids, 37, 307, 2006.
[158]E. Reverchon, C. Celano, G. Della Porta, A. Di Trolio, and S. Pace, J. Mater. Res., 13, 284, 1998.
[159]E. Reverchon, J. Supercrit. Fluids, 15, 1, 1999.
[160]K. Chen, X. Zhang, J. Pan, W. Zhang, and W. Yin, Powder Technol., 152, 127, 2005.
[161]E. Rodier, H. Lochard, M. Sauceau, and J. J. Letourneau, Eur. J. Pharm. Sci., 26, 184, 2005.
[162]M. Henczka, J. Baldyga, and B. Y. Shekunov, Chem. Eng. Sci., 60, 2193, 2005.
[163]V. G. Baidakov, J. Chem. Phys., 110, 3955, 1999.
[164]J. Kerc, S. Srcic, Z. Knez, P. Sencar-Bozic, Int. J. Pharmac., 182, 33, 1999.
[165]N. Elvassore, M. Flaibani, A. Bertucco, P. Caliceti, Ind. Eng. Chem. Res., 42, 5924, 2003.
[166]M. J. Whitaker, J. Hao, O. R. Davies, G. Serhatkulu, S. Stolnik-Trenkic, S. M. Howdle, K. M. Shakesheff, J. Control. Release, 101, 85, 2005.
[167]J. Zhang, B. Han, J. Liu, X. Zhang, Z. Liu, and J. He, Chem. Commun., 2724, 2001.
[168]M. Ohde, H. Ohde, and C. M. Wai, Langmuir, 21, 1738, 2005.
[169]J. S. Wang, H. B. Pan, and C. M. Wai, J. Nanosci. Nanotechnol., 6, 2025, 2006.
[170]P. W. Atkins, “Physical Chemistry,” W.H. Freeman & Company, 2002.
[171]張仕欣及王崇人, 化學, 56, 209, 1998.
[172]蘇志杰, 機械工業雜誌, 255, 131, 2004.
[173]何正恩及高振宏, 化工技術, 11, 102, 2003.
[174]吳春桂, 化工技術, 11, 116, 2003.

[175]許樹恩及吳泰伯, “X光繞射原理與材料結構分析,” 中國材料科學學會, 1996.
[176]林敬二及林宗義, “儀器分析,” 雅美出版社, 1994.
[177]談駿嵩, 科學發展, 359, 12, 2002.
[178]P. Ball and L. Garwin, Nature, 355, 761, 1992.
[179]S. Auer and D. Frenkel, Nature, 413, 711, 2001.
[180]S.C. Liao, W.E. Mayo, and K.D. Pae, Acta Mater., 45, 4027, 1997.
[181]P. S. Shah, J. D. Holmes, K. P. Johnston, B. A. Korgel, J. Phys. Chem. B 106 (2002) 2545.
[182]E. P. Cristina, L. Massimo, P. B. Iván, and M. A. López-Quintela, Langmuir, 22, 7027, 2006.
[183]Y. Xiong, I. Washio, J. Chen, H. Cai, Z. Li, and Y. Xia, Langmuir, 22, 8563, 2006.
[184]I. Washio, Y. Xiong, Y. Yin, and Y. Xia, Adv. Mater., 18, 1745, 2006.
[185]T. Sugimoto, “Monodispersed Nanoparticles,” Elsevier, 2001.
[186]R. Salvati, A. Longo, G. Carotenuto, L. Nicolais, S. De Nicola, and G. P. Pepe, Eur. Phy. J. B, 41, 43, 2004.
[187]林麗娟, 工業材料, 86, 100, 1994.
[188]Y. Sun, B. Gates, B. Mayers, and Y. Xia, Nano Lett., 2, 165, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊