(3.236.82.241) 您好!臺灣時間:2021/04/13 02:44
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:廖秉��
研究生(外文):Ping-Heng Liao
論文名稱:以銅為基礎觸媒擔持於奈米碳管之製備及其應用於甲醇蒸汽重組反應之研究
論文名稱(外文):Preparation of Copper Based Catalyst Supported on Carbon Nanotubes for Steam Reforming of Methanol
指導教授:楊鴻銘楊鴻銘引用關係
學位類別:博士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:203
中文關鍵詞:奈米碳管奈米觸媒Cu-Ni合金化學還原法蒸汽重組反應
外文關鍵詞:carbon nano-tubesnano-catalystNi-Cu alloyschemical reduction methodmethanol steam reforming
相關次數:
  • 被引用被引用:0
  • 點閱點閱:150
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文的研究目的為製備以銅為基礎觸媒擔持在奈米碳管(CNTs),並應用在甲醇蒸汽重組反應。在燃料電池重組器中,甲醇相較於天然氣或其他碳氫化合物為一種更有效率的產氫來源,而甲醇蒸汽重組反應是製氫反應中常被使用的方法。另一方面,奈米碳管具有的一些特性可以應用在觸媒載體上,如高的(管長/管徑)比例與適當的孔洞分佈等,本研究即以奈米碳管製備觸媒應用在製氫反應上。
本實驗以Cu、Ni與Ni-Cu合金為觸媒加入ZnO作為促進劑,將其擔持於奈米碳管上,製備觸媒則使用化學還原法與含浸法。實驗探討不同製備觸媒條件對觸媒特性的影響,變數包含奈米碳管酸處理、乙醇添加量、分散劑種類、載體種類、金屬含量、合金比例及金屬與ZnO比例等變數。在甲醇蒸汽重組反應操作變因有反應溫度、反應物水與甲醇比例、重量空間流速、觸媒金屬含量、合金比例、金屬與ZnO比例與觸媒穩定性測試等。在製備觸媒前,先以酸(硝酸/硫酸=3/1 v/v)處理奈米碳管表面去除雜質,使其表面出現缺陷及產生親水官能基,且提高碳管熱性質,而過程中添加適量的乙醇以降低水溶液極性,並增加金屬前驅物吸附於碳管的機會,另外加入分散劑使金屬顆粒可以分散在奈米碳管上,增加金屬表面積。以共同還原法可將Cu與Ni形成Cu-Ni合金,加入氫氧化四甲基銨則可减低顆粒聚集現象,將合金順利擔持在CNTs表面。本研究亦將Cu-Ni合金擔持於活性碳上及使用還原法製備出非合金狀態之Cu/Ni金屬擔持在CNTs上。觸媒特性之分析則使用穿透式電子顯微鏡(TEM)、Xay繞射儀(XRD)、傅立葉轉換紅外線光譜儀(FTIR)、X光能量散佈儀(EDS)、BET表面積與孔洞分析儀(BET)、場發射掃描式電子顯微鏡(FESEM)和熱重分析儀(TGA)。
由TEM分析結果,Cu、Ni與Cu-Ni合金觸媒之金屬顆粒大小約為10-20nm,且金屬顆粒分散性良好。將此觸媒應用在甲醇蒸汽重組反應,金屬含量為23~30wt% Cu80ZnO20/CNTs之觸媒具有高活性,其反應性隨著溫度的增加可得氫氣產率隨之增加。使用23 wt% Cu80ZnO20/CNTs觸媒在溫度為280℃時氫產率可達到83%,而在溫度360℃以上,氫產率則可達到100%,以水與甲醇之莫耳比為1.5為最佳,20 wt% 之Ni20-Cu80/CNTs觸媒在溫度360℃以上,氫氣產率亦可幾乎達到100%。以奈米碳管為載體之觸媒(Ni20-Cu80/CNTs)活性明顯高於以活性碳為載體之觸媒(Ni20-Cu80/C),且亦高於非合金狀態觸媒(Ni20/Cu80/CNTs)。另外,Cu/ZnO/CNTs觸媒雖然表現出高活性,但是觸媒穩定性較低,當Cu觸媒加入Ni使之形成合金狀態,且加入ZnO為促進劑並擔持在奈米碳管後,所形成之(Cu4-Ni1)80/ZnO20/CNTs觸媒則具有很高之反應活性與穩定度,在360℃之甲醇轉化率亦可以達到100 %。其中Ni金屬會影響氫氣吸附與抑制Cu顆粒燒結,而加入ZnO則可以分散並提高觸媒表面積。以40-60 nm管徑之CNTs當作載體,提供了較良好的環境使金屬顆粒使顆粒分散,而增加觸媒觸媒活隨著管徑的增加而提升。在甲醇裂解反應中,Ni的含量與CNTs管徑都會影響觸媒活性與CO的選擇率,反應溫度在200-400℃間隨著Ni含量增加其甲醇轉化率隨之降低,但是CO選擇率隨之增加。
本研究成功利用化學還原法與含浸法將金屬Cu、Ni與Ni-Cu合金,以及ZnO擔持於奈米碳管上,應用於甲醇蒸汽重組反應中有良好的效果。
In this dissertation, the purpose of this study is to prepare copper based catalyst supported on carbon nanotubes (CNTs) and to apply it on steam reforming of methanol. Mathanol, compared to natural gas or other hydrocarbons, is a more efficient energy source to produce hydrogen in fuel cell reformer, and steam reforming of methanol reaction is a method to produce hydrogen frequently. Besides, carbon nanotubes can be used as supports of catalysts because of their specific properties, such as high ratio of length to diameter, appropriate pore size distribution, etc. The preparation of catalysts with carbon nanotubes as supports is investigated for production of hydrogen in this study.
Cu, Cu-Ni alloys and Ni catalysts with ZnO as a promoter supported on CNTs are prepared by chemical reduction and wet impregnation methods. The effects of different preparing conditions, including acid-treatment of CNTs, additions of ethanol, type of dispersants and supports of catalyst, metal content, weight ratio of alloys and ratio of metal/ZnO on catalytic activity are explored. Operating parameters in steam reforming of methanol are included reaction temperature, weight hourly space velocity, molar ratio of H2O/CH3OH, metal content, weight ratio of alloys, ratio of metal/ZnO, and stability of catalysts. Before the chemical reduction step, the CNTs should be pre-treated by mixed acids (nitric acid/sulfuric acid= 3/1 v/v) to remove impurities, and to create defects on its surface to form functional groups. The thermal property of CNTs was then enhanced. The hydrophilicity of CNTs was improved by adding a suitable amount of ethanol to make the metal precursors contacting with the surface of CNTs more easily. The addition of dispersant can make metal particles to diperse well on surface of CNTs and increase surface area of metal particles. The Cu-Ni alloys were anchored on the surface of CNTs by co-reduction of Ni- and Cu-precursors under the use of tetra-n-methylammonium hydroxide to reduce the aggregation of Cu-Ni particles. Ni-Cu catalyst supported on activated carbon (Ni-Cu/C) was prepared as well, and bimetal Ni and Cu supported on CNTs (Ni/Cu/CNTs) was attained by successive reduction of first Cu- and then Ni- precursors in this study. The catalysts were characterized by transmission electron microscope (TEM), X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), energy dispersive spectrometer (EDS), Brunauer-Emmett-Teller method (BET), field emission scanning electron microscope (FESEM) and thermogravimetric analysis (TGA).
From TEM analysis a good dispersion of Cu, Ni and Cu-Ni alloys particles with about 10-20 nm on the surface of CNTs was observed. The catalysts with 23 to 30 wt% Cu80ZnO20/CNTs showed high activities, increased with an increase of temperature to produce hydrogen. By using 23 wt% Cu80ZnO20/CNTs as the catalyst, the hydrogen yield was obtained up to 83% at 280oC and nearly 100% at temperatures greater than 360oC with 1.5 of molar ratio of water to methanol. The hydrogen yield in steam reforming of methanol was near 100% at 360oC. Ni affected the chemisorption of H2 catalysts and restrained the sintering of Cu particles. Moreover, ZnO dispersed Cu80-Ni20 particles well and increased surface area of catalysts. CNTs with 40-60 nm of tube diameters provided better environment to disperse metals and to enhance activity of catalysts. Both of the Ni content of catalysts and tube diameters of CNTs affected activities and CO selectivity in decomposition of methanol. The increasing Ni content of catalysts made lower CH3OH conversion and higher CO selectivity at 200-400 oC.
In this study, we successfully prepared Cu, Ni, Cu-Ni alloys and ZnO supported on CNTs with chemical reduction and impregnation method, and applied in steam reforming of methanol efficiently.
中文摘要 I
英文摘要 III
誌 謝 VI
目錄 VII
圖目錄 XIII
表目錄 XVII
符號說明 XIX
第一章 緒論 1
一、 前言 1
二、 簡介 1
(一) 製備氫氣方法簡介 1
(二) 燃料電池簡介 4
1. 燃料電池之原理 4
2. 燃料電池類型與比較 5
(三) 奈米碳管簡介 8
1.奈米碳管結構與製備 8
2. 奈米碳管的廣泛應用及奈米碳管觸媒之應用: 10
三、 文獻回顧 12
(一) 以奈米碳管為載體之觸媒製備 12
1. 奈米碳管酸前處理 13
2. 觸媒製備方法 15
(二) 奈米碳管為載體之觸媒應用: 19
(三) 燃料電池重組器之反應與觸媒 21
1. 甲醇蒸汽重組反應 22
2. 甲醇直接裂解反應與甲醇部分氧化反應 25
四、 研究目的與方法 26
(一) 研究目的 26
(二) 研究方法 27
1. 觸媒之製備 28
2. 觸媒之反應活性探討 29
第二章 實驗設備與實驗方法 32
一、 實驗藥品 32
二、 實驗設備 33
三、 分析儀器 35
(一) 觸媒特性分析方法 35
1. X-ray繞射儀(X-ray Diffraction Spectrometer) 35
2. BET表面積與孔洞分析儀(BET) 36
3. 場發射掃描式電子顯微鏡(FE-SEM) 39
4.穿透式電子顯微鏡(TEM) 39
5. 傅立葉轉換紅外線光譜儀(FTIR) 40
6. X光能量散佈儀(EDS) 41
7. 熱重分析儀(TGA) 41
(二) 觸媒活性分析 43
1. 氣相層析儀(Gas Chromatograph) 43
四、 觸媒製備方法 45
(一) 奈米碳管酸前處理 47
(二) Cu/ZnO/CNTs之觸媒製備步驟 48
(三) Cu-Ni/CNTs之觸媒製備步驟 50
(四) 其他以奈米碳管為載體之觸媒製備步驟 51
(五) Cu/ZnO/Al2O3之觸媒製備步驟 51
五、 觸媒於活性反應之計算方法 52
(一) 甲醇蒸汽重組的反應 52
1. 氫氣產率、甲醇轉化率與二氧化碳選擇率之計算 53
2. WHSV(weight hourly space velocity)之運算 53
3. TOF( turnover frequency)之計算 53
(二) 直接甲醇裂解反應 54
1.甲醇轉化率與一氧化碳選擇率之計算 54
2. WHSV(weight hourly space velocity)之運算 54
3. TOF( turnover frequency)之計算 55
(三)H2、CO與CO2校正曲線 55
第三章 奈米碳管為載體之觸媒特性分析 58
一、 前言 58
二、 觸媒特性分析 59
(一) 酸前處理對奈米碳管之影響 59
(二) Cu/CNTs與Cu/ZnO/CNTs觸媒之製備條件影響與物性分析 65
1. 酸前處理對金屬含量與分散之影響 65
2. 乙醇與鹼液體積比對於觸媒製備之影響 67
3. 金屬擔持量對於碳管的熱性質之影響 71
4. Cu/CNTs與Cu/ZnO/CNTs之XRD與ED分析 73
(三) Ni/CNTs與Cu-Ni/CNTs觸媒之製備條件影響與物性分析 76
1. 乙醇與鹼液比對於觸媒製備之影響 76
2. 加入四級銨鹽對於觸媒金屬顆粒分散之影響 77
3. Cu-Ni合金負載量對於CNTs的熱性質之影響 80
4. Ni/CNTs與Cu-Ni/CNTs之XRD、ED與EDS分析 81
(四) 不同活性金屬、CNTs管徑與雙載體觸媒之物性分析 85
1. Cu與ZnO重量比對Cu/ZnO/CNTs觸媒孔洞之分佈 85
2.不同活性金屬觸媒之XRD、TGA與BET分析 87
3. 不同CNTs管徑載體觸媒之BET與FESEM分析 91
4. 不同載體與雙載體之BET與FESEM分析 98
(1) 不同碳系載體對觸媒製備之影響 98
(2) 雙載體不同重量比對觸媒製備之影響 102
三、 結論 106
第四章 以Cu/ZnO/CNTs觸媒進行甲醇蒸汽重組反應 109
一、 前言 109
二、 Cu/ZnO/CNTs觸媒甲醇蒸汽重組反應活性探討 109
(一) 反應溫度對產物分佈之影響 110
(二) 反應物水與甲醇莫耳數比對甲醇蒸汽組反應之影響 111
(三) Cu80/ZnO20/CNTs觸媒金屬含量對甲醇蒸汽組反應之影響 115
(四) 23 wt% Cu/ZnO/CNTs觸媒Cu含量對甲醇蒸汽組反應之影響 118
(五) 反應壓力對甲醇蒸汽組反應之影響 121
(六) 23 wt% Cu80/ZnO20/CNTs觸媒穩定性測試 124
三、結論 126
第五章 以Ni/CNTs與Cu-Ni/CNTs觸媒進行甲醇蒸汽重組反應 128
一、前言 128
二、 Ni/CNTs觸媒甲醇蒸汽重組反應活性探討 128
(一) 加入TMAOH為分散劑之Ni/CNTs對甲醇蒸汽重組反應之影響 128
(二) 反應物水與甲醇莫耳數比對甲醇蒸汽重組反應之影響 130
(三) Ni/CNTs觸媒金屬含量對甲醇蒸汽重組反應之影響 132
(四) 不同進料Wcat./ Fmethanol值對甲醇蒸汽重組反應之影響 133
(五) 甲醇蒸汽重組反應前後對Ni/CNTs觸媒型態之影響 135
三、 Cu-Ni/CNTs觸媒甲醇蒸汽重組反應活性探討 137
(一) 反應溫度對產物分佈之影響 137
(二) 反應物水與甲醇莫耳數比對甲醇蒸汽組反應之影響 139
(三) Cu-Ni/CNTs觸媒Ni金屬含量對甲醇蒸汽組反應之影響 141
(四) Cu80-Ni20/CNTs觸媒金屬含量對甲醇蒸汽組反應之影響 145
(五) Ni-Cu/CNTs與Ni/Cu/CNTs觸媒對甲醇蒸汽組反應之影響。 148
四、 結論 150
第六章 以ZnO為促進劑之金屬與合金觸媒及不同載體之觸媒活性 154
一、 前言 154
二、 不同活性金屬對甲醇蒸汽重組反應之影響 155
(一) 不同活性金屬對產氫速率之影響 155
(二) 不同反應物比例與活性金屬對產氫速率之影響 160
(三) 23 wt% (Cu4-Ni1)/ZnO/CNTs觸媒(Cu4-Ni1)合金含量對甲醇蒸汽組反應之影響 163
(四) 不同活性金屬之觸媒穩定性測試 166
三、 不同活性金屬對甲醇直接裂解反應之影響 169
(一) 不同活性金屬對產氫速率之影響 169
四、 不同擔體對甲醇蒸汽重組反應之影響 173
(一) 不同碳系載體對甲醇蒸汽重組反應之影響 173
(二) 不同CNTs管徑載體對甲醇蒸汽重組反應之影響 175
(三) 雙載體對甲醇蒸汽重組反應之影響 177
五、 不同擔體對甲醇直接裂解反應之影響 179
(一) 不同CNTs管徑載體對甲醇直接裂解反應之影響 179
六、 結論 181
第七章 總結 185
一、 觸媒製備與特性分析 185
二、 觸媒活性探討 186
三、 未來展望 191
參考文獻 192
自述 202
期刊發表………………………………………………………………..202

圖目錄

圖1-1 化學能轉變電能反應式意圖 5
圖1-2 PEMFC燃料電池式意圖 7
圖1-3 奈米碳管碳原子排列2D示意圖 10
圖1-4 奈米碳管碳原子排列3D示意圖 10
圖1-5 碳管酸處理前後zeta potential之變化圖 14
圖1-6 利用無電鍍法擔持金屬之敏化及活化示意圖 17
圖1-7 利用乙二醇法製備奈米碳管觸媒之示意圖 19
圖1-8觸媒製備流程圖 29
圖2-1 觸媒活性研究之反應器設備圖 34
圖2-2 X-ray繞射儀之測定原理 36
圖2-3 晶面繞射峰典型視意圖 36
圖2-4 TGA分析之氧化溫度測定說明圖 42
圖2-5 奈米碳管酸前處理流程圖 47
圖2-6 Cu/CNTs之觸媒製備流程圖(化學還原法) 48
圖2-7 Cu/ZnO/CNTs之觸媒製備流程圖(含浸法) 49
圖2-8 Cu-Ni/CNTs之觸媒製備流程圖(共還原法) 50
圖2-9 H2檢量線 56
圖2-10 CO檢量線 57
圖3-1 TGA分析奈米碳管(40-60nm)經前處理後熱性質 60
圖3-2 管徑20-40 nm奈米碳管之TGA分析圖 61
圖3-3 奈米碳管表面官能基酸前處理之影響 64
圖3-4 奈米碳管酸化前處理對製備15 wt% Cu/CNTs之影響 66
圖3-5 乙醇與鹼液比對15 wt% Cu/CNTs觸媒之顆粒與分佈影響 68
圖3-6 製備15 wt% Cu/CNTs觸媒,乙醇加入量與CNTs酸處理對金屬顆粒之影響 70
圖3-7 TGA分析Cu含量對於CNTs熱性質影響與Cu實際擔持量 71
圖3-8 Cu/CNTs觸媒之不同金屬含量XRD圖譜 73
圖3-9 Cu/ZnO/CNTs觸媒之不同金屬比例含量XRD圖譜 75
圖3-10 Cu/CNTs 之電子繞射光譜圖 76
圖3-11 加入四級銨鹽對於Ni/CNTs觸媒金屬顆粒分散之影響 79
圖3-12 Cu80-Ni20/CNTs與Ni/CNTs觸媒之不同金屬含量XRD圖譜 81
圖3-13 20 wt% Cu80-Ni20/CNTs觸媒之TEM分析圖 83
圖3-14 Cu80-Ni20/CNTs 之電子繞射光譜圖 84
圖3-15 Cu與ZnO比例對Cu/ZnO/CNTs觸媒之孔洞分佈圖 86
圖3-16 不同活性金屬觸媒之XRD分析圖譜。 89
圖3-17 (Cu4-Ni1)/ZnO/CNTs觸媒之不同金屬含量XRD圖譜。 90
圖3-18 不同管徑CNTs酸處理後之孔洞分佈圖 94
圖3-19 Cu80/ZnO20/CNTs之不同CNTs管徑孔洞分佈圖 95
圖3-20 CNTs管徑不同對金屬分佈性之影響 97
圖3-21 碳系載體觸媒之孔洞分佈圖 100
圖3-22 載體不同對金屬分佈性之影響 101
圖3-23 雙載體觸媒(ZrO2-CNTs)之FESEM影像圖 103
圖3-24 雙載體觸媒之管洞孔洞分佈圖 104
圖4-1 反應溫度對產物分佈之影響。 110
圖4-2 反應物水與甲醇莫耳數比對產氫速率之影響 112
圖4-3 反應物水與甲醇莫耳數比對CO2選擇率之影響 113
圖4-4 反應物水與甲醇莫耳數比對產物中CO體積百分比之影響 114
圖4-5 觸媒金屬含量對產氫速率之影響 116
圖4-6 觸媒金屬含量對產物分佈之影響 117
圖4-7 Cu/ZnO/CNTs觸媒Cu金屬含量對產氫速率之影響 119
圖4-8 Cu/ZnO/CNTs觸媒Cu金屬含量對產物分佈之影響 120
圖4-9 反應壓力對產氫速率之影響 122
圖4-10 反應壓力對CO2選擇率之影響 123
圖4-11 23 wt% Cu80/ZnO20/CNTs觸媒穩定性測試 125
圖5-1 加入TMAOH之Ni/CNTs對產氫速率之影響 129
圖5-2 反應物水與甲醇莫耳數比對產氫速率之影響 131
圖5-3 Ni/CNTs觸媒金屬含量對產氫速率之影響 132
圖5-4 不同進料Wcat./ Fmethanol值對產氫速率之影響 134
圖5-5 Ni/CNTs觸媒反應前後之XRD圖譜 136
圖5-6 Ni/CNTs觸媒反應前後之TEM影像圖 137
圖5-7 反應溫度對產物分佈之影響 138
圖5-8反應物水與甲醇莫耳數比對產氫速率之影響 140
圖5-9 反應物水與甲醇莫耳數比對CO2選擇率之影響 141
圖5-10 Cu-Ni/CNTs觸媒Ni金屬含量對產氫速率之影響 142
圖5-11 Cu-Ni/CNTs觸媒Ni含量對H2產率與CO2選擇率之影響 144
圖5-12 Cu80-Ni20/CNTs觸媒金屬含量對產氫速率之影響 146
圖5-13 Cu80-Ni20/CNTs觸媒金屬含量對CO2選擇性之影響 147
圖5-14 Ni-Cu/CNTs與Ni/Cu/CNTs觸媒對產氫速率之影響 149
圖6-1 不同活性金屬對產氫速率之影響 156
圖6-2 不同活性金屬對CO2選擇率之影響 158
圖6-3 不同反應物比例與活性金屬對產氫速率之影響 161
圖6-4 不同反應物比例與活性金屬對CO2選擇率之影響 162
圖6-5 23 wt% (Cu4-Ni1)/ZnO/CNTs觸媒Cu4-Ni1含量對產氫速率影響 163
圖6-6 23 wt% (Cu4-Ni1)/ZnO/CNTs觸媒Cu4-Ni1含量對CO2選擇率之影響 165
圖6-7 不同活性金屬觸媒之活性穩定性 167
圖6-8 不同活性金屬觸媒之活性穩定性 168
圖6-9 不同活性金屬觸媒進行甲醇裂解對甲醇轉化率之影響 170
圖6-10 不同活性金屬觸媒進行甲醇裂解對產氫速率之影響 171
圖6-11 不同碳系載體對產氫速率之影響 174
圖6-12 不同CNTs管徑載體之觸媒對氫氣產率與CO2選擇率影響 176
圖6-13 觸媒之載體(ZrO2-CNTs)比例對產氫速率之影響 177
圖6-14 觸媒之載體(ZrO2-CNTs)比例對CO2選擇率之影響 178
圖6-15 不同CNTs管徑載體之觸媒對甲醇裂解反應之影響 180


表目錄

表1-1 各種燃料電池特性與應用 6
表1-2 化學酸處理後,奈米碳管表面之酸基濃度 13
表1-3 影響觸媒物理性質之變因 30
表1-4 甲醇蒸汽重組反應之操作變因整理 31
表1-5 不同產氫反應之應用 31
表2-1 GC分析條件及樣品滯留時間 45
表3-1 酸處理前後對於不同CNTs管徑其熱性質之影響 62
表3-2 奈米碳管酸化前處理對製備15 wt% Cu/CNTs 之影響 65
表3-3 乙醇與鹼液比對製備15 wt% Cu/CNTs觸媒之顆粒分佈影響 67
表3-4 23 wt% CunZnO(100-n)/CNTs觸媒之金屬相對含量對CNTs氧化溫度之影響 72
表3-5 Cu/CNTs 之電子繞射光譜(ED)分析 75
表3-6 乙醇與鹼液比對製備15 wt% Ni/CNTs觸媒之影響 77
表3-7 不同合金含量 Cu80-Ni20/CNTs觸媒之TGA分析 80
表3-8 20 wt% Cu80-Ni20/CNTs 之電子繞射光譜(ED)分析 84
表3-9 20wt% Cu80-Ni20/CNTs之EDS 元素分析 85
表3-10 不同Cu與ZnO重量比觸媒之BET分析 85
表3-11 不同活性金屬觸媒熱性質之TGA分析 88
表3-12 不同觸媒之BET分析 91
表3-13 不同CNTs管徑與觸媒之BET分析 92
表3-15 ZrO2與CNTs形成雙載體觸媒之BET分析 105
表4-1 Cu80/ZnO20/CNTs觸媒金屬含量對甲醇蒸汽組反應之影響 118
表4-2 23 wt% CunZnO(100-n)/CNTs觸媒Cu含量對甲醇蒸汽組反應之影響 121
表5-1 不同進料Wcat./ Fmethanol值對甲醇蒸汽重組反應之影響 135
表5-2 20 wt% Nin-Cu(100-n)/CNTs觸媒之Ni金屬含量對甲醇蒸汽重組反應之影響 145
表5-3 Cu80-Ni20/CNTs觸媒金屬含量對甲醇蒸汽組反應之影響 148
表5-4 Cu與Ni合金與非合金對反應活性之影響 150
表6-1 不同觸媒對甲醇蒸汽反應之影響 159
表6-2 23 wt% (Cu4-Ni1)nZnO(100-n)/CNTs觸媒(Cu4-Ni1)含量對甲醇蒸汽組反應之影響 166
表6-3不同觸媒對甲醇裂解反應之影響 172
表6-4 不同載體對甲醇蒸汽重組反應之影響 175
表6-5 不同CNTs管徑對甲醇裂解反應之影響 181
[1].S. Iijima, "Helical microtubules of graphitic carbon", Nature 354 (1991) 56-58
[2].S. Iijima, T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter", Nature 363 (1993) 603-605
[3].D. S. Bethune, C. H. Klang, M. S. de Vries, G. Gorman, R. Savoy, J. Vazquez, R. Beyers, "Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls", Nature 363 (1993) 605-607
[4].M. S. Dresselhaus, G. Dresselhaus, R. Saito, "Physics of carbon nanotubes", Carbon 33 (1995) 883-891
[5].R. S. Ruoff, D. C. Lorents, "Mechanical and thermal properties of carbon nanotubes", Carbon 33 (1995) 925-930
[6].V. N. Popov, "Carbon nanotubes: properties and application", Materials Science and Engineering: R: Reports 43 (2004) 61-102
[7].C. H. Li, K. F. Yao, J. Liang, "Influence of acid treatments on the activity of carbon nanotube-supported catalysts", Carbon 41 (2003) 858-860
[8].K. Esumi, I. Ishigami, A. Nakajima, K. Sawada, H. Honda, "Chemical treatment of carbon nanotubes", Carbon 34 (1996) 279-281
[9].M. S. P. Shaffer, X. Fan, A. H. Windle, "Dispersion and packing of carbon nanotubes", Carbon 36 (1998) 1603-1612
[10].P. Serp, M. Corrias, P. Kalck, "Carbon nanotubes and nanofibers in catalysis", Applied Catalysis A: General 253 (2003) 337-358
[11].Q. C. Xu, J. D. Lin, J. Li, X. Z. Fu, Z. W. Yang, W. M. Guo, D. W. Liao, "Combination and interaction of ammonia synthesis ruthenium catalysts", Journal of Molecular Catalysis A: Chemical 259 (2006) 218-222
[12].G. M. Spinks, S. R. Shin, G. G. Wallace, P. G. Whitten, S. I. Kim, S. J. Kim, "Mechanical properties of chitosan/CNT microfibers obtained with improved dispersion", Sensors and Actuators B: Chemical 115 (2006) 678-684
[13].M. K. van der Lee, A. Jos van Dillen, J. H. Bitter, K. P. de Jong, "Deposition precipitation of carbon nanofiber supported Nickel catalysts", Journal of American chemical society 127 (2005) 13573-13582
[14].L. Li, B. Q. Xu, J. L. Li, Z. Q. Mao, "Studies on PEMFC electrocatalysts: physicochemical characterization of homemade Pt/C electrocatalyst", Acta Physiologica 19 (2003) 342-346
[15].L. M. Ang, T. S. A. Hor, G. Q. Xu, C. H. Tung, S. P. Zhao, J. L. S. Wang, "Decoration of activated carbon nanotubes with copper and nickel", Carbon 38 (2000) 363-375
[16].G. T. Wu, C. S. Wang, X. B. Zhang, H. S. Yang, Z. F. Qi, W. Z. Li, "Lithium insertion into CuO/carbon nanotubes", Journal of Power Sources 75 (1998) 175-179
[17].X. Ma, X. Li, N. Lun, S. Wen, "Synthesis of gold nano-catalysts supported on carbon nanotubes by using electroless plating technique", Materials Chemistry and Physics 97 (2006) 351-356
[18].H. Liu, G. Cheng, R. Zheng, Y. Zhao, C. Liang, "Influence of acid treatments of carbon nanotube precursors on Ni/CNT in the synthesis of carbon nanotubes", Journal of Molecular Catalysis A: Chemical 230 (2005) 17-22
[19].M. C. Tsai, T. K. Yeh, C. H. Tsai, "An improved electrodeposition technique for preparing platinum and platinum ruthenium nanoparticles on carbon nanotubes directly grown on carbon cloth for methanol oxidation", Electrochemistry Communications 8 (2006) 1445-1452
20].M. Wang, K. D. Woo, D. K. Kim, "Preparation of Pt nanoparticles on carbon nanotubes by hydrothermal method", Energy Conversion and Management 47 (2006) 3235-3240
[21].V. Y. Lordi, N.; Wei, J., "Method for Supporting Platinum on Single-Walled Carbon Nanotubes for a Selective Hydrogenation Catalyst", Chemistry of Materials 13 (2001) 733-737
[22].W. Li, C. Liang, J. Qiu, W. Zhou, H. Han, Z. Wei, G. Sun, Q. Xin, "Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell", Carbon 40 (2002) 791-794
[23].X. Wang, W. Li, Z. Chen, M. Waje, Y. Yan, "Durability investigation of carbon nanotube as catalyst support for proton exchange membrane fuel cell", Journal of Power Sources 158 (2006) 154-159
[24].J. Xu, K. Hua, G. Sun, C. Wang, X. Lv, Y. Wang, "Electrooxidation of methanol on carbon nanotubes supported Pt-Fe alloy electrode", Electrochemistry Communications 8 (2006) 982-986
[25].K. J. Kong, Y. Choi, B. H. Ryu, J. O. Lee, H. Chang, "Investigation of metal/carbon-related materials for fuel cell applications by electronic structure calculations", Materials Science and Engineering: C 26 (2006) 1207-1210
[26].X. Dong, L. Wang, T. Sun, J. Zhou, Q. Yang, "Study on ethylene polymerization catalyzed by Cp2ZrCl2/carbon nanotube system", Journal of Molecular Catalysis A: Chemical 255 (2006) 10-15
[27].N. Isogai, M. Takagswa, M. Watabe, K. Yamagishi, "Catalyst composition for decoposition of Methanol",European patent,0342 (1989) 614
[28].W. H. Cheng, "Reaction and XRD studies on Cu based methanol decomposition catalysts: Role of constituents and development of high-activity multicomponent catalysts", Applied Catalysis A: General 130 (1995) 13-30
[29].H. Oguchi, T. Nishiguchi, T. Matsumoto, H. Kanai, K. Utani, Y. Matsumura, S. Imamura, "Steam reforming of methanol over Cu/CeO2/ZrO2 catalysts", Applied Catalysis A: General 28 (2005) 69-73
[30].A. Mastalir, B. Frank, A. Szizybalski, H. Soerijanto, A. Deshpande, M. Niederberger, R. Schomacker, R. Schlogl, T. Ressler, "Steam reforming of methanol over Cu/ZrO2/CeO2 catalysts: a kinetic study", Journal of Catalysis 230 (2005) 464-475
[31].C. Z. Yao, L. C. Wang, Y. M. Liu, G. S. Wu, Y. Cao, W. L. Dai, H. Y. He, K. N. Fan, "Effect of preparation method on the hydrogen production from methanol steam reforming over binary Cu/ZrO2 catalysts", Applied Catalysis A: General 297 (2006) 151-158
[32].I. Ritzkopf, S. Vukojevic, C. Weidenthaler, J. D. Grunwaldt, F. Schuth, "Decreased CO production in methanol steam reforming over Cu/ZrO2 catalysts prepared by the microemulsion technique", Applied Catalysis A: General 302 (2006) 215-223
[33].J. Agrell, H. Birgersson, M. Boutonnet, I. Melian-Cabrera, R. M. Navarro, J. L. G. Fierro, "Production of hydrogen from methanol over Cu/ZnO catalysts promoted by ZrO2 and Al2O3", Journal of Catalysis 219 (2003) 389-403
[34].B. Lindstrom, L. J. Pettersson, P. G. Menon, "Activity and characterization of Cu/Zn, Cu/Cr and Cu/Zr on α-alumina for methanol reforming for fuel cell vehicles", Applied Catalysis A: General 234 (2002) 111-125
[35].C. Fukuhara, H. Ohkura, Y. Kamata, Y. Murakami, A. Igarashi, "Catalytic properties of plate-type copper-based catalysts, for steam reforming of methanol, on an aluminum plate prepared by electroless plating", Applied Catalysis A: General 273 (2004) 125-132
[36].B. A. Peppley, J. C. Amphlett, L. M. Kearns, R. F. Mann, "Methanol steam reforming on Cu/ZnO/Al2O3. Part 1: the reaction network", Applied Catalysis A: General 179 (1999) 21-29
[37].J. K. Lee, J. B. Ko, D. H. Kim, "Methanol steam reforming over Cu/ZnO/Al2O3 catalyst: kinetics and effectiveness factor", Applied Catalysis A: General 278 (2004) 25-35
[38].J. P. Shen, C. Song, "Influence of preparation method on performance of Cu/Zn-based catalysts for low-temperature steam reforming and oxidative steam reforming of methanol for H2 production for fuel cells", Catalysis Today 77 (2002) 89-98
[39].A. N. Fatsikostas, X. E. Verykios, "Reaction network of steam reforming of ethanol over Ni-based catalysts", Journal of Catalysis 225 (2004) 435-439
[40].S. Liu, K. Takahashi, M. Ayabe, "Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of Pd loading", Catalysis Today 87 (2003) 247-253
[41].S. Liu, K. Takahashi, K. Uematsu, M. Ayabe, "Hydrogen production by oxidative methanol reforming on Pd/ZnO", Applied Catalysis A: General 283 (2005) 125-135
[42].S. Liu, K. Takahashi, K. Uematsu, M. Ayabe, "Hydrogen production by oxidative methanol reforming on Pd/ZnO catalyst: effects of the addition of a third metal component", Applied Catalysis A: General 277 (2004) 265-270
[43].Y. Suwa, S. I. Ito, S. Kameoka, K. Tomishige, K. Kunimori, "Comparative study between Zn-pd/C and Pd/ZnO catalysts for steam reforming of methanol", Applied Catalysis A: General 267 (2004) 9-16
[44].A. Karim, T. Conant, A. Datye, "The role of PdZn alloy formation and particle size on the selectivity for steam reforming of methanol", Journal of Catalysis 243 (2006) 420-427
[45].K. Klier, V. Chatikavanij, R. G. Herman, G. W. Simmons, "Catalytic synthesis of methanol from CO/H2: IV. The effects of carbon dioxide", Journal of Catalysis 74 (1982) 343-360
[46].Y. Choi, H. G. Stenger, "Fuel cell grade hydrogen from methanol on a commercial Cu/ZnO/Al2O3 catalyst", Applied Catalysis B: Environmental 38 (2002) 259-269
[47].Z. Wang, J. Xi, W. Wang, G. Lu, "Selective production of hydrogen by partial oxidation of methanol over Cu/Cr catalysts", Journal of Molecular Catalysis A: Chemical 191 (2003) 123-134
[48].L. Alejo, R. Lago, M. A. Pena, J. L. G. Fierro, "Partial oxidation of methanol to produce hydrogen over Cu-Zn-based catalysts", Applied Catalysis A: General 162 (1997) 281-297
[49].M. L. Cubeiro, J. L. G. Fierro, "Partial oxidation of methanol over supported palladium catalysts", Applied Catalysis A: General 168 (1998) 307-322
[50].K. Hernadi, A. Fonseca, J. B. Nagy, D. Bernaerts, J. Riga, A. Lucas, "Catalytic synthesis and purification of carbon nanotubes", Synthetic Metals 77 (1996) 31-34
[51].H. M. Yang, P. H. Liao, "Preparation and activity of Cu/ZnO-CNTs nano-catalyst on steam reforming of methanol", Applied Catalysis A: General 317 (2007) 226-233
[52].J. Feng, C. P. Zhang, "Preparation of Cu-Ni alloy nanocrystallites in water-in-oil microemulsions", J. Colloid Interface Sci. 293 (2006) 414-420
[53].H. Sakano, T. Koshino, R. Takeuchi, N. Sakai, T. Saito, "Hydrogen generation by steam reforming of methanol over copper-based catalysts for fuel cell applications", International Journal of Hydrogen Energy 26 (2001) 923-933
[54].L. C. Wang, Y. M. Liu, M. Chen, Y. Cao, H. Y. He, G. S. Wu, W. L. Dai, K. N. Fan, "Production of hydrogen by steam reforming of methanol over Cu/ZnO catalysts prepared via a practical soft reactive grinding route based on dry oxalate-precursor synthesis", Journal of Catalysis 246 (2007) 193-204
[55].T. Shishido, Y. Yamamoto, H. Morioka, K. Takehira, "Production of hydrogen from methanol over Cu/ZnO and Cu/ZnO/Al2O3 catalysts prepared by homogeneous precipitation: Steam reforming and oxidative steam reforming", Journal of Molecular Catalysis A: Chemical 268 (2007) 185-194
[56].Y. F. Li, D. X. F., L. W. M., "Effects of ZrO2-promoter on catalytic performance of CuZnAlO catalysts for production of hydrogen by steam reforming of methanol", International Journal of Hydrogen Energy 29 (2004) 1617-1621
[57].J. P. Breen, J. R. H. Ross, "Methanol reforming for fuel-cell applications: development of zirconia-containing Cu-Zn-Al catalysts", Catalysis Today 51 (1999) 521-533
[58].P. H. Matter, U. S. Ozkan, "Effect of pretreatment conditions on Cu/Zn/Zr-based catalysts for the steam reforming of methanol to H2", Journal of Catalysis 234 (2005) 463-475
[59].J. Agrell, M. Boutonnet, J. L. G. Fierro, "Production of hydrogen from methanol over binary Cu/ZnO catalysts: Part II. Catalytic activity and reaction pathways", Applied Catalysis A: General 253 (2003) 213-223
[60].M. M. Gunter, T. Ressler, R. E. Jentoft, B. Bems, "Redox Behavior of Copper Oxide/Zinc Oxide Catalysts in the Steam Reforming of Methanol Studied by in Situ X-Ray Diffraction and Absorption Spectroscopy", Journal of Catalysis 203 (2001) 133-149
[61].X. Zhang, P. Shi, "Production of hydrogen by steam reforming of methanol on CeO2 promoted Cu/Al2O3 catalysts", Journal of Molecular Catalysis A: Chemical 194 (2003) 99-105
[62].Y. Liu, T. Hayakawa, K. Suzuki, S. Hamakawa, T. Tsunoda, T. Ishii, M. Kumagai, "Highly active copper/ceria catalysts for steam reforming of methanol", Applied Catalysis A: General 223 (2002) 137-145
[63].B. Lindstrom, L. J. Pettersson, "Steam reforming of methanol over copper-based monoliths: the effects of zirconia doping", Journal of Power Sources 106 (2002) 264-273
[64].J. Papavasiliou, G. Avgouropoulos, T. Ioannides, "Production of hydrogen via combined steam reforming of methanol over CuO/CeO2 catalysts", Catalysis Communications 5 (2004) 231-235
[65].A. P. Tsai, M. Yoshimura, "Highly active quasicrystalline Al-Cu-Fe catalyst for steam reforming of methanol", Applied Catalysis A: General 214 (2001) 237-241
[66].T. Suetsuna, S. Suenaga, T. Fukasawa, "Monolithic Cu-Ni-based catalyst for reforming hydrocarbon fuel sources", Applied Catalysis A: General 276 (2004) 275-279
[67].S. Liu, K. Takahashi, H. Eguchi, K. Uematsu, "Hydrogen production by oxidative methanol reforming on Pd/ZnO: Catalyst preparation and supporting materials", Catalysis Today 129 (2007) 287-292
[68].J. Agrell, H. Birgersson, M. Boutonnet, "Steam reforming of methanol over a Cu/ZnO/Al2O3 catalyst: a kinetic analysis and strategies for suppression of CO formation", Journal of Power Sources 106 (2002) 249-257
[69].N. Takezawa, N. Iwasa, "Steam reforming and dehydrogenation of methanol: Difference in the catalytic functions of copper and group VIII metals", Catalysis Today 36 (1997) 45-56
[70].J. H. Sinfelt, D. J. C. Yates, "Catalytic hydrogenolysis of ethane over the noble metals of Group VIII", Journal of Catalysis 8 (1967) 82-90
[71].P. v. d. Plank, W. M. H. Sachtler, "Surface composition of equilibrated copper-nickel alloy films", Journal of Catalysis 7 (1967) 300-303
[72].J. H. Sinfelt, J. L. Carter, D. J. C. Yates, "Catalytic hydrogenolysis and dehydrogenation over copper-nickel alloys", Journal of Catalysis 24 (1972) 283-296
[73].I. A. Fisher, A. T. Bell, "A Mechanistic Study of Methanol Decomposition over Cu/SiO2, ZrO2/SiO2, and Cu/ZrO2/SiO2", Journal of Catalysis 184 (1999) 357-376
[74].B. A. Peppley, J. C. Amphlett, L. M. Kearns, R. F. Mann, "Methanolsteam reforming on Cu/ZnO/Al2O3 catalysts. Part 2. A comprehensive kinetic model", Applied Catalysis A: General 179 (1999) 31-49
[75].J. Xi, Z. Wang, G. Lu, "Improvement of Cu/Zn-based catalysts by nickel additive in methanol decomposition", Applied Catalysis A: General 225 (2002) 77-86
[76].K. Y. Yu, D. T. Ling, W. E. Spicer, "Thermal desorption studies of CO and H2 from the Cu-Ni alloy", Journal of Catalysis 44 (1976) 373-384
[77].S. Velu, K. Suzuki, M. Okazaki, M. P. Kapoor, T. Osaki, F. Ohashi, "Oxidative Steam Reforming of Methanol over CuZnAl(Zr)-Oxide Catalysts for the Selective Production of Hydrogen for Fuel Cells: Catalyst Characterization and Performance Evaluation", Journal of Catalysis 194 (2000) 373-384
[78].T. L. Reitz, S. Ahmed, M. Krumpelt, R. Kumar, H. H. Kung, "Characterization of CuO/ZnO under oxidizing conditions for the oxidative methanol reforming reaction", Journal of Molecular Catalysis A: Chemical 162 (2000) 275-285
[79].T. Sodesawa, M. Nagacho, A. Onodera, F. Nozaki, "Dehydrogenation of methanol to methyl formate over Cu-SiO2 catatysts prepared by ion exchange method", Journal of Catalysis 102 (1986) 460-463
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔