(3.230.143.40) 您好!臺灣時間:2021/04/21 19:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡明潔
研究生(外文):Ming-Chieh Tsai
論文名稱:多層壁奈米碳管-三氧化二鋁包覆二氧化矽奈米顆粒複合材料薄膜作為生物感測器之探討
論文名稱(外文):Biosensors based on multiwalled carbon nanotubes - alumina-coated silica nanoparticles composite films
指導教授:蔡毓楨
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:123
中文關鍵詞:奈米碳管三氧化二鋁包覆二氧化矽奈米顆粒葡萄糖氧化酵素葡萄糖生物感測器
外文關鍵詞:carbon nanotubealumina-coated silica nanoparticlesglucose oxidaseglucose biosensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:129
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文第一部份以一種新穎的非共價鍵與非有機溶液修飾的方式藉由奈米顆粒來分散奈米碳管於水溶液中,多層壁奈米碳管(multi-walled carbon nanotubes, MWNTs)被帶有高正電荷之三氧化二鋁包覆二氧化矽奈米顆粒(alumina-coated silica nanoparticles, ACS)直接分散於水溶液中,而沒有將MWNTs的表面官能基化。經由穿透式電子顯微鏡及原子力顯微鏡的微觀表面形貌分析,可以確定帶正電荷之ACS奈米顆粒確實可圍繞於MWNTs之上,且可有效的將MWNTs彼此間分散開來。探討水溶液的pH值、ACS奈米顆粒於水溶液中的量、以及MWNTs於水溶液中的量,對於MWNTs的分散有何影響,而去設計一連串的實驗,在經過超音波震盪一小時後,觀察MWNTs的分散情形。接著,我們將MWNTs-ACS複合材料以自組裝的方式吸附於玻璃碳電極(glassy carbon electrode, GCE)表面,以原子力顯微鏡觀察MWNTs-ACS複合材料吸附在GCE表面之情形,發現MWNTs在GCE表面扮演奈米導線的角色,提供良好的電傳導性。MWNTs-ACS複合材料薄膜修飾GCE浸於含有5 mM Fe(CN)63-/4-氧化還原物的0.1 M氯化鉀(potassium chloride, KCl)溶液系統中,分別以不同的掃描速度(25~200 mV/s)掃描之循環伏安實驗中,我們可以觀察到隨著掃描速度不斷的增加,除了會使得陽極的峰電流及陰極的峰電流增加,而且陽極峰電流及陰極峰電流分別與掃描速率的平方根成正比的線性關係,因此可以判斷出由MWNTs-ACS複合材料薄膜修飾GCE所進行的電化學反應屬於擴散控制。我們將MWNTs-ACS複合材料薄膜修飾GCE做為化學感測器偵測過氧化氫(hydrogen peroxide, H2O2)與還原型煙胺腺嘌呤二核酸(β-nicotinamide adenine dinucleotide, reduced form, NADH)時,發現可用較小之電壓即可催化H2O2與NADH,而得到相當高之電流訊號。
本論文第二部份先以電化學沉積將鉑(platimum, Pt)奈米顆粒導入MWNTs-ACS複合材料薄膜中,再將葡萄糖氧化酵素以離子結合法藉由靜電吸附固定在MWNTs-ACS-Pt複合材料薄膜中,其表面形貌、元素成分與效能測定分別利用場發射掃描式電子顯微鏡、X光能量散譜儀、循環安伏法與安培法進行測試。其最佳化葡萄糖生物感測器之線性範圍可達10.5 mM,其靈敏度高達113.13 mA M -1cm-2,偵測極限為6.18 μM,應答時間約5 sec。最後為了加強其穩定度與對干擾物的測定,我們在該葡萄糖生物感測器的電極表面,再加上一層全氟磺酸聚合物作為保護。
A novel noncovalent and inorganic method was used to disperse multi-walled carbon nanotubes (MWNTs) in aqueous solution. MWNTs were directly dispersed into highly charged alumina-coated silica nanoparticles (ACS) aqueous solution without functionalization of their surfaces. The dispersed MWNTs was characterized by transmission electron microscopy and atomic force microscopy. It was possible to disperse up to 20 mg/mL of MWNTs in 1 wt% ACS nanoparticles aqueous solution at pH 2. This homogeneous MWNTs-ACS aqueous solution was stable for weeks after ultrasonication.
A novel method for attaching MWNTs-ACS composite onto the surface of glassy carbon electrode (GCE) by a self-assembly process is described. The resulting MWCNT-ACS modified GCE was investigated by atomic force microscopy. In cyclic voltammetric responses, both anodic and cathodic peak currents varied linearly with the square root of scan rates in 0.1 M KCl containing 5 mM Fe(CN)64- at MWNTs-ACS modified GCE, which suggests a diffusion-controlled process. The MWNTs-ACS modified GCE exhibits the abilities to raise the current responses and to decrease the electrooxidation potential of β-nicotinamide adenine dinucleotide, reduced form (NADH) and hydrogen peroxide (H2O2).
A novel amperometric glucose biosensor based on electrodeposition of Pt nanoparticles on MWNTs by potentiostatic method and electrostatic adsorption of glucose oxidase (GOD) at the MWNTs-ACS-Pt-GOD modified GCE is described. The morphology, nature, and performance of the MWNTs-ACS-Pt-GOD nanobiocomposite were characterized by field emission scanning electron microscopy, energy dispersive X-ray spectroscopy, cyclic voltammetry, and amperometry. The glucose biosensor displayed a linear range up to 10.5 mM, a sensitivity of 113.13 mA M -1cm-2, a detection limit of 6.18 μM, and a response time of less than 5 s. Finally, to improve the stability and anti-interferent ability of the glucose biosensor, Nafion film was coated on the surface of the MWNTs-ACS-Pt-GOD modified GCE.
摘要 i
Abstract iii
總目錄 v
圖目錄 vii
表目錄 xi

第一章 序論 1
1-1 前言 1
1-2 分析物-血糖的檢測方法及文獻回顧 2
1-3 生物感測器 4
1-3-1 生物感測器的發展 4
1-3-2生物感測器的基本構造與組成 7
1-3-3 酵素的簡介 12
1-3-4 酵素動力學 14
1-3-5 酵素固定的方法 16
1-4 電化學方法 19
1-4-1 循環伏安法 19
1-4-2 安培法 21
1-5 奈米碳管 23
1-5-1 簡介 23
1-5-2 奈米碳管的特性 24
1-5-3 奈米碳管的合成 27
1-5-4 奈米碳管的應用 28
1-5-5 奈米碳管的分散方法 30
1-6 自組裝奈米薄膜 32
1-6-1 Langmuir-Blodgett薄膜 33
1-6-2 自組裝單層奈米薄膜 34
1-6-3 自組裝多層奈米薄膜 35
1-7 金屬奈米顆粒 35
1-7-1 金屬奈米顆粒的特性 35
1-7-2 鉑奈米顆粒的製備 36
1-8 三氧化二鋁包覆二氧化矽奈米顆粒 37
1-9微結構分析 38
1-9-1 原子力顯微鏡 39
1-9-2 穿透式電子顯微鏡 40
1-9-3 場發射掃描式電子顯微鏡 41
1-9-4 拉曼光譜儀 42
第二章 實驗方法與步驟 44
2-1 實驗藥品 44
2-2 實驗儀器 44
2-3 實驗步驟 46
2-3-1 電極前處理 46
2-3-2 多層壁奈米碳管分散於ACS奈米顆粒水溶液 47
2-3-3以自組裝的方式將MWNTs-ACS複合材料修飾於GCE 47
2-3-4 以電化學沉積法將Pt奈米顆粒沉積於MWNTs-ACS複合材料薄膜上 48
2-3-5 藉由靜電吸附將GOD固定在MWNTs-ACS-Pt複合材料薄膜上 48
2-3-6 電化學測試 49
第三章 結果與討論 51
3-1 以ACS奈米顆粒懸浮奈米碳管的探討 51
3-1-1不同pH值之ACS奈米顆粒水溶液分散MWNTs之探討 51
3-1-2不同wt%之ACS奈米顆粒水溶液分散MWNTs之探討 54
3-1-3 不同含量MWNTs於ACS奈米顆粒水溶液中分散情形之探討 55
3-1-4 MWNTs-ACS微觀表面形貌之探討 58
3-2 MWNTs-ACS複合材料以自組裝方式吸附於GCE之化學感測器 62
3-2-1 MWNTs-ACS複合材料以自組裝方式吸附於GCE之表面形態分析 62
3-2-2 MWNTs-ACS複合材料以自組裝吸附於GCE之Fe(CN)63-/4-氧化還原系統之電化學行為探討 66
3-2-3 MWNTs-ACS複合材料薄膜修飾GCE偵測H2O2之試驗 73
3-2-4 MWNTs-ACS複合材料薄膜修飾GCE偵測NADH之試驗 81
3-3 MWNTs-ACS-Pt-GOD複合材料薄膜修飾GCE偵測葡萄糖 91
3-3-1 MWNTs-ACS-Pt-GOD微觀表面形貌之探討 91
3-3-2 MWNTs-ACS-Pt複合材料薄膜修飾GCE偵測H2O2 96
3-3-3 MWNTs-ACS-Pt-GOD複合材料薄膜修飾GCE偵測葡萄糖 104
3-3-4 MWNTs-ACS-Pt-GOD複合材料薄膜修飾GCE對於干擾物與合成血清的偵測以及長時間下偵測葡萄糖的穩定度 109
第四章 結論與未來展望 115
4-1 結論 115
4-2 未來展望 116
第五章 參考文獻 117
[1]S. Iijima, Nature, 354, 56, 1991.
[2]M.C. Bank, R.R. Moore, T.J. Davies, R.G. Compton, Chem. Commu., 1805, 2004.
[3]R.R. Moore, C.E. Banks, R.G. Compton, Anal. Chem.,76, 2677, 2004.
[4]J. Wang, M. Musameh, A. Merkoci, Y. Lin, Electrochem. Commu., 4, 743, 2002.
[5]S.G. Wang, Q. Zhang, R. Wang, S.F. Yoon, Biochem. Biophys. Res. Commun., 311, 572, 2003.
[6]Y.C. Tsai, S.C. Li, J.M. Chen, Langmuir, 21, 3653, 2005.
[7]X. Yu, D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos, J.F. Rusling, Electrochem. Commun., 5, 408, 2003.
[8]K. Yamamoto, G.Y. Shi, T.S. Zhou, F. Xu, J.M. Xu, T. Kato, J.Y. Jin, L.T. Jin, Analyst, 128, 249, 2003.
[9]H.W. Liaw, J.M. Chen, Y.C. Tsai, J. Nanosci. Nanotechnol., 6, 2396, 2006.
[10]M. Musameh, J. Wang, A. Merkoci, Y. Lin, Electrochem. Commun., 4, 743, 2002.
[11]J. Zhu, M. Yudasaka, M. Zhang, S. Iijima, J. Phys. Chem. B, 108, 11317.
[12]馬心婷,名醫的糖尿病聖經,杏一醫療,2005。
[13]M. Alvarez-Icaza, U. Bilitewski, Anal. Chem., 65, 525, 1993.
[14]M. Quinto, I. Losito, F. Palmisano, C. G. Zambonin, Anal. Chim. Acta., 420, 9, 2000.
[15]A.P. Robert, Med. Instrum., 51.
[16]Michael, J. O’Brien II, S.R.J. Brueck, V.H. Perez-Luna, L.M. Tender, G.P. Lopez, Biosens. Bioelectron., 14, 145, 1999.
[17]F. W. Scheller, U. Wollenberger, A. Warsinke, and F. Lisdat, Current Opinion in Biotechnology, 2001, 12, 35–40.
[18]C. I. Lin, W. P. Chu, K. A. Joseph, Y. C. Wong, C. K. Chang, and Y. D. Lee, Journal of Medical and Biological Engineering, Vol. 23, No. 2, p.53-56
[19]http://www.karstenfaehnrich.de/Biosensors/biosensors.htm
[20]B.R. Eggins, Chemical Sensors and Biosensors, Wiley, New York, 2002.
[21]J. Shah, E. Wilkins, Electroanalysis, 15, 157, 2002.
[22]P. Bergveld, IEEE Transcations on Biomedical Engineering, 17, 70-71.
[23]P.N. Prasad, Introduction to Biophotonics, Wiley-Interscience, New Jersey, 2003, Chapter 9.
[24]M. Okuyama, IEEE International Symposium on Micromechatronics and Human Science, 29, 1998.
[25]E. Bakker, P. Buhlmann, E. Pretsch, Electroanalysis, 11, 915, 1999.
[26]http://juang.bst.ntu.edu.tw/BCbasics/Enzyme12.htm
[27]R. A. Messing, Academic Press, New York, p1, 1975.
[28]F.T. Richard, S.S. Jerome, Handbook of Chemical and Biological Sensors, p5.
[29]J.M.S. Cabral, J.F. Kennedy, R. F. Taylor(New York; Dekker), 73,1991.
[30]J.C. Vidal, E. Garcia, J.R. Castillo, Sensors and Actuators B, 57,219,1999.
[31]U. Mirtha, W. Jess, Anal. Chem., 58,2979,1986.
[32]L. Doretti, D. Ferrara, P. Gattolin, S. Lora, Talanta, 44, 859, 1997.
[33]G.T. Constantinos, B.F. Ageliki, N.T. Pantelis, Electro. Commu., 7, 781, 2005.
[34]D. Lucio, F. Daniela, G. Paola, L. Silvano, Talanta, 44, 859, 1997.
[35]J. Parellada, A. Narvaez, Biosens. Bioelectron., 12, 267, 1997.
[36]J. Li, L.S. Chia, N.K. Goh, S.N. Tan, J. Electroanal. Chem., 460, 234, 1999.
[37]呂淑佩,聚苯胺複合式酵素碳粉電極在生化分析上的應用,國立東華大學化學研究所,2002。
[38]A.J. Bard, I.R. Faulkner, Electrochemical Methods: Fundaments and Applications, Wily, New York, 2000.
[39]D.R. Crow, Principle and Applications of Electrochemistry,高立,1998。
[40]F.M. Veronese, C. Mammucari, F. Schiavon, O. Schiavon, S. Lora, F. Secundo, A. Chilin, A. Guiotto, Il Farmaco, 56, 541, 2001.
[41]胡啟章,電化學原理與方法,五南圖書,2002。
[42]D.S. Bethune, C.H. Kiang, M.S. Devries, G. Gorman, R. Savoy, J. Vazquez, Nature, 363, 605, 1993.
[43]C.N.R. Rao, B.C. Satishkumar, A. Govindaraj, M. Nath, Chem. phys. chem, 2, 78, 2001.
[44]林江珍, 林嵩祚, 中華民國九十四年石油季刊, 41, 47 , 2005.
[45]R.H. Baughman, A.A. Zakhidow, W.A. de Heer, Science, 297, 787, 2002.
[46]N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett., 68,1579,1992.
[47]R.Saito, M. Fujita, G. Dresselhaus, M. S. Dresslhaus, Appl. Rev. Lett., 60,2204,1992.
[48]J.W.G. Wildoer, L.C. Venema, A.G. Rinzler, R.E. Smalley, C. Dekker, Nature, 391, 59, 1998.
[49]J. E. Fischer, Acc. Chem. Res., 35,1079,2002.
[50]M. Terrones, W. K. Hsu, H.W. Kroto, D. R. M. Walton, Topics in Current Chemistry, 1991,1,1998.
[51]J. Hone, M. Whitney, C. Piskoti, A. Zettl, Phys. Rev. B, 59,2514,1999.
[52]M. A. Osman, D. Srivastava, Nanotechnolory, 12, 21 (2001).
[53]M. R. Falvo, G. J. Clary, R. M. II Taylor, V. Chi, F. P. Brooks, S. Washburn, R. Superfine, Nature, 277, 1971, 1997.
[54]M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Nature, 381, 678, 1996.
[55]E.W. Wong, P.E. Sheehan, C.M. Lieber, Science, 277, 1971, 1997.
[56]黃建盛,科學新天地,第13期,4-9頁。
[57]M.R. Pederson, J.Q. Broughton, Physical Review Letters, 69, 2689, 1992.
[58]A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, M. J. Heben, Nature, 386, 377, 1997.
[59]G. T. Wu, C. S. Wang, X. B. Zhang, H. S. Yang, Z. F. Qi, W. Z. Li, J. Power Sources, 75, 175, 1998.
[60]F. Beguin, V. A. Nalimova, D. E. Sklovsky, G. N. Bondarenko, H. Alvergnat-Gaucher, S. Bonnamy, Synthetic Metals, 88, 89, 1997 .
[61]C.C. Pang, Min.H. Chen, T.Y. Lin, T.C. Chou, Sensor and Actuators B, 73, 221, 2001.
[62]P. C. Pandey, S. Upadhyay, Ida Tiwari, V. S. Tripathi, Anal. Biochem., 288, 39, 2001.
[63]X. Yu, D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos, J.F. Rusling, Electrochem. Commun., 5, 408, 2003.
[64]M. Umana, J. Waller, Anal. Chem., 58, 2979, 1986.
[65]M.C. Shin, H.S. Kim, Biosens. Bioelectron., 11, 171, 1996.
[66]K. Yamamoto, G.Y. Shi, T.S. Zhou, F. Xu, J.M. Xu, T. Kato, J.Y. Jin, L.T. Jin, Analyst, 128, 249, 2003.
[67]X. Yu, G. A. Sotzing, F. Papadimitrakopoulos, J. F. Rusling, Anal. Chem., 75, 4565, 2003.
[68]K. Wu, J. Fei, S. Hu, Anal. Biochem., 318, 100, 2003.
[69]T. N. Rao, I. Yagi, T. Miwa, D.A. Tryk, A. Fujishima, Anal. Chem., 71, 2506, 1999.
[70]A. Hirsch, Angew. Chem. Int. Ed., 41, 1853, 2002.
[71]J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bardley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F.R. Macias, Y.S. Shon, T.R. Lee, D.T. Colbert, R.E. Smalley, Science, 280, 1253, 1998.
[72]A. Kuznetsova, I. Popova, J.T. Yates, M.J. Bronikowski, C.B. Huffman, J. Liu, R.E. Smally, H.H. Hwu, J.G. Chen, J. Am. Chem. Soc., 123, 10699, 2001.
[73]A. Kuznetsova, D.B. Mawhinney, V. Naumenko, J.T. Yates, J. Liu, R.E. Smalley, Chem. Phys. Lett., 321, 292, 2000.
[74]E.T. Mickelson, I.W. Chiang, J.L. Zimmerman, P.J. Boul, J. Lozano, J. Liu, R.E. Smally, R.H. Hauge, J.L. Margrave, J. Phys. Chem. B, 103, 4318, 1999.
[75]P.J. Boul, J. Liu, E.T. Mickelson, C.B. Huffman, L.M. Ericson, I.W. Chiang, K.A. Smith, D.T. Colbert, R.H. Hauge, J.L. Margrave, R.E. Smally, Chem. Phys. Lett., 310, 367, 1999.
[76]M.J. O’Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, R.E. Smalley, Science, 297, 593, 2002.
[77]M.J. O’Connell, P. Boul, L.M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K.D. Ausman, R.E. Smalley, Chem. Phys. Lett., 342, 265, 2001.
[78]J. Zhu, M. Yudasaka, M. Zhang, S. Iijima, J. Phys. Chem. B, 108, 11317.
[79]J.E. Riggs, Z. Guo, D.L. Carroll, Y.P. Sun, J. Am. Chem. Soc., 122, 5879, 2000.
[80]A. Star, J.F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E.W. Wong, X. Yang, S.W. Chung, H. Choi, J.R. Heath, Angew. Chem. Int. Ed., 40, 1721, 2001.
[81]B. Star, D.W. Steuerman, J.R. Heath, J.F. Stoddart, Angew. Chem. Int. Ed., 41, 2508, 2002.
[82]W. C. Bigelow, D. L. Pickett, W. A. Zisman, Collid Interface Sci. 1946, 1, 513.
[83]R. G. A. Nuzzo, D. L. Nuzzo, J. Am. Chem. Soc. 1983, 105, 4481.
[84]E. Coronado and C. Mingotaud , Adv. Mater. 1999, 11, 869.
[85]F. Schreiber, Progress in Surface Science, 65 (2000) 151–256.
[86]B. Franklin, Phil. Trans. R. Soc. 1774, 64, 445.
[87]A. Pockels, Nature 1891, 43, 437.
[88]L. Rayleigh, Phil. Mag. 1899, 48, 321.
[89]H. Devaux, Smithsonian Institute Ann. Rep. 1913, 261.
[90]Hardy, W. B., Proc. R. Soc. A. 1912, 86, 610.
[91]I. Langmuir, J. Am. Chem. Soc. 1917, 39, 1848.
[92]K. A. Blodgett, J. Am. Chem. Soc. 1935, 57, 1007.
[93]J. C. Huie, Smart Mater. Struct. 12, 2003, 264-271.
[94]G. Decher, Science, 1997, 277, 1232.
[95]A. Kumar , A. B. Mandale, and M. Sastry, Langmuir, 2000, 16, 6921.
[96]S. Kidambi, J.H. Dai, J. Li, M.L. Bruening, J. Am. Chem. Soc., 126, 2658, 2004.
[97]K. Mukhopadhyay, S. Phadtare, V.P. Viond, A. Kumar, M. Rao, R.V. Chaudhari, M. Sastry, Langmuir, 19, 3858, 1992.
[98]N. Dyn, D.D. Lev, J.A. Gregory, ACM Tran saction s on Graphics, 9, 160, 1990.
[99]J. Prabhuram, T.S. Zhao, Z.X. Liang, R. Chen, Electrochim. acta., 52, 2649, 2007.
[100]Y. Lin, X. Cui, Langmuir, 21, 11474, 2005.
[101]Y.L. Yao, Y. Ding, L.S. Ye, X.H. Xia, Carbon, 44, 61, 2006.
[102]H. Tang, J. Chen, S. Yao, L. Nie, and G. Deng, Anal. Biochem. 331, 2004, 89-97.
[103]http://www.dupont.com.tw
[104]Z. Liu, B. Liu, J. Kong, J. Deng, Anal. Chem., 72, 4707, 2000.
[105]G. Binning, C.F. Quate, Ch. Gerber, Phys. Rev. Lett., 56, 930, 1986.
[106]P. West and A. Ross, An Introdeuction to AFM Modes, Pacific Nanotechnology, Lnc., 2006.
[107]http://140.114.18.41/micro/
[108]洪郁婷,氮化物的奈米結構,國立臺灣大學化學工程學系碩士論文,2001。
[109]J.H. Rouse, Langmuir, 21, 1055, 2005.
[110]R.J. Nemanich, S.A. Solin, Solid State Commun., 23, 417, 1977.
[111]J.R. Wood, M.D. Frogley, E.R. Meurs, A.D. Peijs, D.J. Dustan, J. Phys. Chem. B, 103, 10388, 1999.
[112]H.D. Sun, Z.K. Tang, J. Chen, G. Li, Solid State Commun., 109, 365, 1999.
[113]L.C. Clark, C. Lyons, Acad. Sci., 102, 29, 1962.
[114]Y.C. Tsai, S.C. Li, J.M. Chen, Langmuir, 21, 3653, 2005.
[115]Y.C. Tsai, J.D. Huang, C.C. Chiu, Biosens. Bioelectron., 22, 3051, 2007.
[116]R.C.H. Kwan, P.Y.T. Hon, K.K.W. Mak, R. Renneberg, 19, 1745, 2004.
[117]M. Jacques, P. J. Elving, J. Am. Chem., 102, 6533, 1980.
[118]P.C. Pandey, S. Upadhyay, B.C. Upadhyay, H.C. Pathak, Anal. Biochem., 260, 195, 1998.
[119]Y. C. Tsai, C. C. Chiu, M. C. Tsai, J. Y. Wu, T. F. Tseng, T. M. Wu, and S. F. Hsu, Carbon 45 (2007) 2823-2827.
[120]Y. Sun, X. Zhang, C. Sun, B. Wang, and J. Shen, Macromol. Chem. Phys. 197 (1996) 147-153.
[121]L. Xu, Y. Zhu, L. Tang, X. Yang, and C. Li, Electroanal. 19 (2007) 717-722.
[122]H. J. Wang, C. M. Zhou, F, Peng, H. Yu, Int. J. Electrochem. Sci. 2 (2007) 508-516.
[123]J. Xie, S. Wang, L. Aryasomayajula, and V. K. Varadan, Nanotechnology 18 (2007) 1-9.
[124]S. Hrapovic, Y. Liu, K. B. Male, and J. H. T. Luong, Anal. Chem. 76 (2004) 1083-1088.
[125]H. Tang, J. Chen, S. Yao, L. Nie, and G. Deng, Anal. Biochem. 331 (2004) 89-97.
[126]Y. C. Tsai and H. Y. Chieh, J. Nanosci. Nanotechnol. 7 (2007) 1611-1617.
[127]Y. Zhu, H. Zhu, X. Yang, L. Xu, and C. Li, Electroanalysis 19 (2007) 698-703.
[128]J. C. Vidal, E. Garcia, S. Mendez, P. Yarnoz, and J. R. Castillo, Analyst, 1999, 124, 319-324.
[129]T.R. Harrison (Ed.), Harrison’s Principles of Interna Medicine, vol. II, Mc-Graw Hill, New York, 1998, p.A-2.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔