跳到主要內容

臺灣博碩士論文加值系統

(44.211.84.185) 您好!臺灣時間:2023/05/30 05:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱建嘉
研究生(外文):Chien-Chia Chu
論文名稱:天然蒙脫土脫層之奈米矽片及其自我排列性質
論文名稱(外文):Silicate Platelets from Clay Exfoliation and Their Self-assembly Properties
指導教授:鄭如忠
學位類別:博士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:96
語文別:英文
論文頁數:63
中文關鍵詞:黏土脫層自我排列蓮花效應奈米矽管
外文關鍵詞:calyexfoliationself-assemblyLotus effectsilicate nanotube
相關次數:
  • 被引用被引用:0
  • 點閱點閱:592
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Abstract:
(1) Exfoliating smectite montmorillonite into random silicate platelets: A one-step process for exfoliating the layered aluminosilicate is established by using a polyamine exfoliating agent, which was prepared from the partial curing of polyoxypropylene-diamine and diglycidyl ether of bisphenol-A at various molar ratios. The corresponding HCl-treated quaternary salts enabled the ionic exchange of sodium montmorillonite and the formation of intercalated silicates (25-56 Å d spacing) or exfoliated silicates, determined by using X-ray diffraction and transmission electronic microscopy. The exfoliation process is attributed to the conformational stretching of the intercalants in the silicate layers.
(2) Random silicate platelets in the water phase from the extraction process: By adding aqueous NaOH to emulsion (toluene/water mixing), leading to pH increase. Simultaneously, the original emulsion of the POP/silicate hybrid in toluene/water was demulsified in two separate phases. The toluene organic phase dissolved the polyamine exfoliating agents and the silicates in the water phase. The random silicate platelets in water phase had 95 wt % purity.
(3) Self-assembly of silicate platelets piling into fibrous arrays: Individual platelets possessing high-aspect-ratio dimension and ionic character enable to self-assemble into micro-scale fiber bundles after water evaporation. The self-stacking mechanism indicated strong face-to-face ionic charge stacking propensity in triggering a vertical growth, in an average 5 μm length. Under a TEM electron beam bombardment, the fibrous materials of stacked platelets were further transformed into a tube-like arrangement.
(4) Manipulating the assemblages of silicate platelets and fatty amine salts to form a Lotus effect surface: Superhydrophobic surface, exhibiting a high water-droplet contact angle of 157o and a rough surface by SEM, has been generated from a self-assembly of high-aspect-ratio silicate platelets associated with detergent-ranged alkyl amine salts. Anionic silicate platelets in an averaged dimension of 100 × 100 × 1 nm3 enable to self-align into a rough plateau surface. The alkyl amine salts tethered to the platelet surface provide a flexible hydrophobic surface exhibiting the Lotus effect.
Abstract …………………………..…………………………. xiii

Acknowledgment…………………………………………………. xv


Chapter 1Introduction………………………………………. 1

Chapter 2 JJLin Lab’s Clay Literature Review………… 4

Chapter 3 Fundamental Principle
3.1 The Naturally Occurring Montmorillonite............. 16
3.2 Cation Exchange Capacity (CEC) of Layered Silicates……………... 17
3.3 Total Layer Surface Area and Surface Charge Density………...…… 17

Chapter 4 Experimental Section
4.1 Materials…………………...….…………...…………………..…….. 19
4.2 Experimental Procedures………………………………...…………... 20
4.3 Analysis and Characterization……..……......…………….................. 24

Chapter 5 Results and Discussion
5.1 Preparation of POP-amine/DGEBA coupled oligomers as intercalating agents…………………………………………….…….. 27
5.2 Ionic exchanging and intercalating of Na+-MMT with the quaternary salts of POP-amine oligomers…..……………………………………. 28
5.3 Mechanism of intercalation versus exfoliation and TEM evidence of exfoliation……………………………………………………………. 31
5.4 Isolation and characterization of random silicate platelets in water suspension…………………................................................................. 33
5.5 Unique Physical Property of NSP……………………………………. 37
5.6 Self-assembling of nano silicate platelets into fibrous arrays………… 39
5.7 Ionic exchanging of nano silicate platelets with octadecylamine quaternary salts and prepared of superhydrophobic surface….………. 44
5.8 Superhydrophobic membrane from SMA copolymers added to NSP/Octadecylamine quaternary salt solution……………………….. 49

Chapter 6 Conclusions………………...………………………………………..…….… 54

References ……………………………………………………………….………..……… 56
[1] C. Wang, M. Shim, P. G. Sionnest Science 2001, 291, 2390.
[2] D. Porter, E. Metcalfe, M. J. K. Thomas Fire Mater. 2000, 24, 45.
[3] E. P. Giannelis Appl. Organomet. Chem. 1998, 12, 675.
[4] E. P. Giannelis Adv. Mater. 1996, 8, 29.
[5] S. S. Ray, M. Okamoto Prog. Polym. Sci. 2003, 28, 1539.
[6] M. Eckle, G. Decher Nano lett. 2001, 1, 45.
[7] J. H. Choy, S. Y. Kwak, Y. J. Jeong, J. S. Park Angew. Chem. Int. Ed. 2000, 39, 4041.
[8] A. D. Cristofaro, A. Violante Appl. Clay Sci. 2001, 19, 59.
[9] C. M. Koo, S. O. Kim, I. J. Chung Macromolecules 2003, 36, 2748.
[10] P. Maiti, P. H. Nam, M. Okamoto, N. Hasegawa, U. Arimitsu Macromolecules 2002, 35, 2042.
[11] M. Zanetti, D. Canavese, A. B. Morgan, F. J. Lamelas, C. A. Wilkie Chem. Mater. 2002, 14, 189.
[12] J. C. Matayabas, S. R. Turner Polymer-Clay Nanocomposites, T. J. Pinnavaia, G. W. Beall, Eds. John Wiley & Son: New York, 2001, pp 207.
[13] B. K. G. Theng Formation and properties of clay-polymer complexes, Elsevier: New York, 1979.
[14] T. J. Pinnavaia Science 1983, 220, 365.
[15] M. S. Wang, T. J. Pinnavaia Chem. Mater. 1994, 6, 468.
[16] M. Kato, A. Usuki, A. Okada J. Appl. Polym. Sci. 1997, 66, 1781.
[17] A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, O. Kamigaito J. Mater. Res. 1993, 8, 1179.
[18] J. J. Lin, I. J. Cheng, R. Wang, R. J. Lee Macromolecules 2001, 34, 8832.
[19] C. C. Chou, F. S. Shieu, J. J. Lin Macromolecules 2003, 36, 2187.
[20] J. J. Lin, I. J. Cheng, C. C. Chou Macromol. Rapid Commun. 2003, 24, 492.
[21] J.J. Lin, Y. M. Chen Langmuir 2004, 20, 4261.
[22] Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, O. Kamigaito J. Polym. Sci., Polym. Chem. 1993, 31, 1755.
[23] A. Usuki, N. Hasegawa, H. Kadoura, T. Okamoto Nano Lett. 2001, 1, 271.
[24] J. Zhu, P. Strart, K. A. Mauritz, C. A. Wilkie J. Polym. Sci., Polym. Chem. 2002, 40, 1498.
[25] X. Fu, S. Qutubuddin Polymer 2001, 42, 807.
[26] N. Hasegawa, H. Okamoto, M. Kawasumi, A. Usuki J. Appl. Polym. Sci. 1999, 74, 3359.
[27] M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, A. Okada Macromolecules 1997, 30, 6333.
[28] H. L. Tyan, Y. C. Liu, K. H. Wei Chem. Mater. 1999, 11, 1942.
[29] T. Lan, P. D. Kaviratna, T. J. Pinnavaia J. Phys. Chem. Solids 1996, 57, 1005.
[30] C. S. Triantafillidis, P. C. LeBaron, T. J. Pinnavaia Chem. Mater. 2002, 14, 4088.
[31] H. Wang, T. Zhao, L. Zhi, Y. Yan, Y. Yu Macromol. Rapid Commun. 2002, 23, 44.
[32] C. Zeng, L. J. Lee Macromolecules 2001, 34, 4098.
[33] F. L. Beyer, N. C. B. Tan, A. Dasgupta, M. E. Galvin Chem. Mater. 2002, 14, 2983.
[34] C. Neinhuis, W. Barthlott Annals of Botany 1997, 79, 667.
[35] W. Barthlott, C. Neinhuis Planta 1997, 202, 1.
[36] Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, O. Sato Angew. Chem. Int. Ed. 2003, 42, 894.
[37] J. Y. Shiu, C. W. Kuo, P. Chen, C. Y. Mou Chem. Mater. 2004, 16, 561.
[38] R. Rosario, D. Gust, A. A. Garcia, M. Hayes, J. L. Taraci, T. Clement, J. W. Dailey, S. T. Picraux J. Phys. Chem. B 2004, 108, 12640.
[39] J. Zhang, J. Li, Y. Han Macromol. Rapid. Commum. 2004, 25, 1105.
[40] L. Feng, Y. Song, J. Zhai, B. Liu, J. Xu, L. Jiang, D. Zhu Angew. Chem. Int. Ed. 2003, 42, 800.
[41] F. Reiner, B. Wilhelm Langmuir 2005, 21, 956.
[42] L. Shuhong, L. Huanjun, W. Xianbao, S. Yanlin, L. Yunqi, J. Lei, Z. Daoben J. Phys. Chem. B 2002, 106, 9274.
[43] W. Xuedong, Z. Lijun, W. Dan Langmuir 2005, 21, 2665.
[44] L. Huang, S. P. Lau, H. Y. Yang, E. S. P. Leong, S. F. Yu J. Phys. Chem. B 2005, 109, 7746.
[45] K. S. L. Kenneth, B. Josė, B. K. T. Kenneth, C. Manish, A. J. A. Gehan, I. M. William, H. M. Gareth, K. G. Karen Nano Lett. 2003, 3, 1701.
[46] V. Maheshwari, J. Kane, and R. F. Saraf Adv. Mater. 2008, 20, 284.
[47] C. H. Wang, W. C. Tsai, K. L. Wei, J. J. Lin J. Phys. Chem. B 2005, 109, 13510.
[48] J. J. Lin, W. C. Tsai, C. H. Wang Langmuir 2007, 23, 4108.
[49] P. M. Tessier, O. D. Velev, A. T. Kalambur, A. M. Lenhoff, J. F. Rabolt, E. W. Kaler Adv. Mater. 2001, 13, 396.
[50] S. I. Stupp, P. V. Braun Science 1997, 277, 1242.
[51] A. Usuki, N. Hasegawa, H. Kadoura, T. Okamoto Nano Lett. 2001, 1, 271.
[52] C. C. Chu, M. L. Chiang, C. M. Tsai, J. J. Lin Macromolecules 2005, 38, 6240.
[53] H. Wang, T. Zhao, L. Zhi, Y. Yan, Y. Yu Macromol. Rapid. Commum. 2002, 23, 44.
[54] Y. S. Choi, M. H. Choi, K. H. Wang, S. O. Kim, Y. K. Kim, I. J. Chung Macromolecules 2001, 34, 8978.
[55] H. Van Olphen Clay Colloid Chemistry, 2nd ed., John Wiley & Sons, New York 1997.
[56] B. K. G. Theng The Chemistry of Clay-Organic Reactions, 2nd ed., John Wiley & Sons, New York 1974.
[57] J. J. Lin, C. C. Chu, C. C. Chou Adv. Mater. 2005, 17, 301.
[58] M. Alexandre, P. Dubois Mater. Sci. Eng. 2000, 28, 1.
[59] M. Zanetti, S. Lomakin, G. Camino Macromol. Mater. Eng. 2000, 279, 1.
[60] A. Akelah, A. Moer J. Appl. Polym. Sci.: Appl. Polym. Symp. 1994, 55, 153.
[61] J. J. Lin, C. C. Chu, M. L. Chiang, W. C. Tsai J. Phys. Chem. B 2006, 110, 18115.
[62] C. W. Chiu, C. C. Chu, W. T. Cheng, J. J. Lin Eur. Polym. J. 2008, 44, 628.
[63] J. J. Lin, J. C. Wei, T. Y. Juang, W. C. Tsai Langmuir 2007, 23, 1995.
[64] J. J. Lin, J. C. Wei, W. C. Tsai J. Phys. Chem. B 2007, 111, 10275.
[65] P. B. Laszlo Organic Chemistry Using Clays, Springer-Verlag, 1993.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊