跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/11 08:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林叡毅
研究生(外文):Ray-Yi Lin
論文名稱:多孔性PMMA/蒙脫土複合薄膜之製備與吸附應用
論文名稱(外文):Preparation of porous PMMA/montmorillonite membranes for adsorption application
指導教授:孫幸宜
指導教授(外文):Shing-Yi Suen
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:英文
論文頁數:71
中文關鍵詞:PMMA/蒙脫土高分子複合薄膜對硝基苯酚陽離子染料吸附脫附
外文關鍵詞:PMMA/MMT composite membranesp-nitrophenolCationic dyeAdsorption: Desorption
相關次數:
  • 被引用被引用:1
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究是利用相轉移法製備三種PMMA/蒙脫土(montmorillonite, MMT)之高分子複合薄膜,實驗前半部份係利用乳化聚合的合成方式先行製備PMMA/Na+-MMT高分子複合材料進而再利用轉移法製備PMMA/Na+-MMT高分子複合膜,後半部份即參照前步驟之實驗方法進而改變使用改質蒙脫土(O-MMT)而製備PMMA/O-MMT高分子複合薄膜。
於薄膜特徵性質上:霍式轉換紅外線光譜(FTIR)可利用其證明蒙脫土存在於複合薄膜之中,藉由熱重量分析儀(TGA)可推算出複合薄膜之蒙脫土含量且進而推算離子交換容量(IEC)隨著蒙脫土添加量而改變,利用接觸角分析儀(contact angle)及含水率(water content)測量本實驗之高分子薄膜之親疏水性,此外寬角度X光繞射分析儀(WAXD)可清楚判別出蒙脫土於薄膜上其層間距的變化,由於本實驗之薄膜將應用於分離流動液體上,因此,也藉由在不同流速下比較其壓力降(pressure drop)的變化,最後,以掃描穿透式電子顯微鏡(FE-SEM)及光學顯微鏡(OM)觀察薄膜表面的特徵型態。
接下來在應用部份即分別利用PMMA/Na+-MMT和PMMA/O-MMT高分子複合薄膜批次吸附陽離子染料(Methyl violet 2B)及酚化合物(p-nitrophenol),利用PMMA/Na+-MMT高分子複合薄膜於批次吸脫附陽離子染料實驗之中發現高分子複合薄膜中蒙脫土含量M/P = 0.5和0.6表現出最佳吸附效果,分別為兩小時內97 % 和95 % 之吸附率(染料初始濃度為0.015 mg/mL),並且選擇1 M KSCN in 80 % 甲醇水溶液(v/v)為最佳之脫附劑,其脫附率均約為92 %,此外利用PMMA/O-MMT高分子複合薄膜批次吸附酚化合物實驗之中發現於高分子複合薄膜中蒙脫土含量M/P = 0.3現出最佳吸附效果,為三十四小時內77 % 之吸附率(酚化合物初始濃度為0.025 mg/mL)且選擇80 % 甲醇水溶液 (v/v)為最佳之脫附劑,其脫附率為97 %。最後進而討論PMMA/MMT高分子複合薄膜於流動循環實驗,本實驗利用一片直徑為47 mm 圓形高分子複合薄膜固定於特定模組中並於流動循環系統中吸附陽離子染料或酚化合物接著利用批次脫附實驗之最佳脫附劑進行流動脫附實驗,重複三次上述之吸脫附流程而討論其薄膜之重複利用性。
In this study, porous PMMA/montmorillonite (MMT) composite membranes were prepared via phase inversion. In the first part, PMMA/Na+-MMT composite materials were synthesized by emulsion polymerization, followed by the preparation of composite membranes. In the second part, organic-modified MMT clays (O-MMT) were employed to prepare for the composite membranes. The membrane properties were characterized: FTIR and thermogravimetric analyses verified the near complete incorporation of MMT in the composite membranes. By measuring the ion-exchange capacity, contact angle, and water content, the hydrophilicity of composite membranes was analyzed. Moreover, the X-ray diffractograms exhibited the change of interlayer spacing of MMT clays in the composite membranes. Membrane morphology was detected by scanning electron microscope and optical microscope. To evaluate their applicabilities, the adsorption performance of these PMMA/MMT membranes was investigated. In the batch experiment with PMMA/Na+-MMT membranes, the best Methyl violet 2B adsorption performance was achieved by the membranes prepared in feed MMT/MMA (M/P) ratios of 0.5 and 0.6, where about 95-97 % dye adsorption (initial dye concentration of 0.015 mg/mL) was attained in 2 h. The optimal desorption solution was 1 M KSCN in 80 % methanol (v/v) and the related desorption percentage was 92 %. In the batch experiment with PMMA/O-MMT membranes, the best p-nitrophenol adsorption performance (initial concentration of 0.025 mg/mL) was obtained by the feed M/P ratio = 0.3, about 77 % p-nitrophenol adsorption in 34 h. The optimal desorption solution was 80 % methanol (v/v) and the related desorption percentage was 97 %. At last, the flow recirculation adsorption experiment with one piece of 47 mm diameter composite membrane was conducted, followed by the desorption experiment using the optimal desorption solution. The membrane regenerability was proved by successfully performing three consecutive cycles.
摘要………………………………………………………………………Ⅰ
Abstract…………………………………………………………………Ⅲ
Chapter 1 Introduction………………………………………………1
Chapter 2 Experimental………………………………………………4
2.1. Materials…………………………………………………………4
2.1.1 Physical and chemical properties of Methyl violet 2B and p-nitriphenol………………………………………………………4
2.2. Preparation of PMMA/MMT composite membranes……………5
2.2.1. Membrane A………………………………………………………5
2.2.2. Membrane B………………………………………………………7
2.2.3. Membrane C……………………………………………………7
2.3. Membrane characterization……………………………………8
2.3.1. Fourier transform infrared (FTIR) analysis……………8
2.3.2. Thermogravimetric analysis (TGA)…………………………8
2.3.3. Membrane thickness……………………………………………9
2.3.4. Contact angle…………………………………………………9
2.3.5. Water content…………………………………………………9
2.3.6. Ion-exchange capacity (IEC)………………………………9
2.3.7. Wide-angle X-ray diffraction (WXRD)……………………10
2.3.8. Pressure drop…………………………………………………10
2.3.9. Field-emission scanning electron microscope (FE-SEM)……10
2.3.10. Optical microscope (OM)…………………………………11
2.4. Batch adsorption/desorption experiment…………………11

2.4.1. Batch dye adsorption/desorption experiment…………11
2.4.2. Batch p-nitrophenol adsorption/desorption experiment………………………………………………………………11
2.5. Adsorption isothermal measurements………………………12
2.6. Flow adsorption/desorption experiment……………………13
2.6.1. Flow dye adsorption/desorption experiment……………13
2.6.2. Flow p-nitrophenol adsorption/desorption experiment……13
Chapter 3 Results and discussion…………………………………15
3.1 Characterization of PMMA/MMT composite membranes………15
3.1.1. FTIR results…………………………………………………15
3.1.2. TGA results……………………………………………………15
3.1.3. Contact angle results………………………………………18
3.1.4. Water content results………………………………………18
3.1.5. IEC results……………………………………………………19
3.1.6. WXRD results…………………………………………………20
3.1.7. Pressure drop results………………………………………22
3.1.8. Membrane morphology…………………………………………22
3.2. Batch dye adsorption/desorption performance……………24
3.3. Batch p-nitrophenol adsorption/desorption performance……27
3.4 Adsorption isotherms……………………………………………30
3.5 Flow dye adsorption/desorption performance………………32
3.6 Flow p-nitrophenol adsorption/desorption performance…33
Chapter 4 Conclusion…………………………………………………34
Chapter 5 References…………………………………………………36

Compared with different inorganic particles-filled hybrid
membranes……………………………………………………………42
Table 2 Membrane preparation conditions…………………43
Table 3 Properties of PMMA/MMT composite membranes…44
Table 4 Methyl violet 2B removal and desorption percentages from water using PMMA/Na+-MMT composite membrane (Membrane B, M/P = 0.5) for flow system; C0 = 0.015 mg/mL……………………………………………………………45
Table 5 P-nitrophenol removal and desorption percentages from water using PMMA/O-MMT composite membrane (Membrane C, M/P = 0.3) for flow system; C0 = 0.0125 mg/mL……………………………………………………………………46

Fig. 1. Chemical structure of MMT clays……………………47
Fig. 2. Molecular structure of Methyl violet 2B…………48
Fig. 3. Molecular structure of p-nitrophenol………………49
Fig. 4. FT-IR spectra of (A) Membrane A, (B) Membrane B, and (C) Membrane C in different feed MMT ratios……………50
Fig. 5. TGA plots for (A) Membrane A, (B) Membrane B, and (C) Membrane C in different feed MMT ratios…………………51
Fig. 6. Contact angle for various feed ratio M/P in Membrane C………………………………………………………………52
Fig. 7. Water content various for PMMA/MMT composite membranes………………………………………………………………53
Fig. 8. Ion exchange capacity various for PMMA/MMT composite membranes…………………………………………………54
Fig. 9. WXRD patterns for Membrane A and Membrane B in different feed MMT ratios………………………………………55
Fig. 10. WXRD patterns for Membrane C in different feed MMT ratios and the variation of the O-MMT in the process of preparing membrane……………………………………………………56
Fig. 11. Pressure drop in different flow rate for the PMMA/MMT composite membranes……………………………………57
Fig. 12. SEM photographs for Membrane A in different feed Na+-MMT ratios…………………………………………………………58
Fig. 13. SEM photographs for Membrane B in different feed Na+-MMT ratios…………………………………………………………59
Fig. 14. SEM photographs for Membrane C in different feed O-MMT ratios……………………………………………………………60

Fig. 15. OM photographs (×50) for Membranes A in different feed Na+-MMT ratios after staining with Methyl violet 2B (C0 = 0.015 mg/mL) for 24 h………………………………………61
Fig. 16. OM photographs (×50) for Membranes B in different feed Na+-MMT ratios after staining with Methyl violet 2B (C0 = 0.015 mg/mL) for 24 h………………………………………62
Fig. 17. OM photographs (×50) for Membranes C in different feed O-MMT ratios after staining with Methyl violet 2B (C0 = 0.015 mg/mL) for 24 h……………………………………………63
Fig. 18. Adsorption kinetic curves of Methyl violet 2B onto Membranes A and B in different feed Na+-MMT ratios (C0 = 0.015 mg/mL)…………………………………………………………64
Fig. 19. Batch desorption results of Methyl violet 2B (C0 = 0.015 mg/mL) for Membranes A and B……………………………65
Fig. 20. Adsorption kinetic curves of p-nitrophenol onto Membrane C in different feed O-MMT ratios (C0 = 0.025 mg/mL)……………………………………………………………………………66
Fig. 21. Batch desorption results of p-nitrophenol (C0 = 0.025 mg/mL) for Membrane C………………………………………67
Fig. 22. Adsorption isotherms of Methyl violet 2B…………68
Fig. 23. Adsorption isotherms of p-nitrophenol……………69
Fig. 24. Flow adsorption result of Methyl violet 2B (C0 = 0.015 mg/mL) for Membrane A (M/P = 0.5)………………………70
Fig. 25. Flow adsorption result of p-nitrophenol (C0 = 0.0125 mg/mL) for Membrane C (M/P = 0.3)………………………71
[1] S.G. Adoor, M. Sairam, L.S. Manjeshwar, K.V.S.N. Raju, T.M. Aminabhavi, Sodium montmorillonite clay loaded novel mixed matrix membranes of poly(vinyl alcohol) for pervaporation dehydration of aqueous mixtures of isopropanol and 1,4-dioxane, J. Membr. Sci. 285 (2006) 182.
[2] Y.-C. Wang, S.-C. Fan, K.-R. Lee, C.-L. Li, S.-H. Huang, H.-A. Tsai, J.-Y. Lai, Polyamide/SDS–clay hybrid nanocomposite membrane application to water–ethanol mixture pervaporation separation, J. Membr. Sci. 239 (2004) 219.
[3] P. Meneghetti, S. Qutubuddin, Thermochim. Synthesis, thermal properties and application of polymer-clay nanocomposites, Thermochim. Acta. 442 (2006) 74.
[4] J.P.G. Villaluenga, M. Khayet, M.A. L.-Manchado, J.L. Valentin, B. Seoane, J.I. Mengual, Gas transport properties of polypropylene/clay composite membranes, Eur. Polym. J. 43 (2007) 1132.
[5] Y. Kim, J.S. Lee, C.H. Rhee, H.K. Kim, H. Chang, Montmorillonite functionalized with perfluorinated sulfonic acid for proton-conducting organic–inorganic composite membranes, J. Power Sources. 162 (2006) 180.
[6] S.-W. Chuang, S. L.-C. Hsu, C.-L. Hsu, J. Synthesis and properties of fluorine-containing polybenzimidazole/montmorillonite nanocomposite membranes for direct methanol fuel cell applications, Power Sources. 168 (2007) 172.
[7] Z. Gaowen, Z. Zhentao, Organic/inorganic composite membranes for application in DMFC, J. Membr. Sci. 261 (2005) 107.
[8] S.-W. Chuang, S. L.-C. Hsu, Y.-H. Liu, Synthesis and properties of fluorine-containing polybenzimidazole/silica nanocomposite membranes for proton exchange membrane fuel cells, J. Membr. Sci. 305 (2007) 353.
[9] Y. Li, T.-S. Chung, C. Cao, S. Kulprathipanja, The effects of polymer chain rigidification, zeolite pore size and pore blockage on polyethersulfone (PES)-zeolite A mixed matrix membranes, J. Membr. Sci. 260 (2005) 45.
[10] Y. Li, H.-M. Guan, T.-S. Chung, S. Kulprathipanja, Effects of novel silane modification of zeolite surface on polymer chain rigidification and partial pore blockage in polyethersulfone (PES)–zeolite A mixed matrix membranes, J. Membr. Sci. 275 (2006) 17.
[11] C.-C. Hu, T.-C. Liu, K.-R. Lee, R.-C. Ruaan, J.-Y. Lai, Zeolite-filled PMMA composite membranes: influence of coupling agent addition on gas separation properties, Desalination, 193 (2006) 14.
[12] Y.-J. Fu, C.-C. Hu, K.-R. Lee, Y.-J. Chen, J.-Y. Lai, Zeolite-filled PMMA composite membranes: influence of surfactant addition on gas separation properties, Desalination, 200 (2006) 250.
[13] R. Molinari, L. Palmisano, E. Drioli, M. Schiavello, Studies on various reactor configurations for coupling photocatalysis and membrane processes in water purification, J. Membr. Sci. 206 (2002) 399.
[14] T.-H. Bae, T.-M. Tak, Effect of TiO2 nanoparticles on fouling mitigation of ultrafiltration membranes for activated sludge filtration, J. Membr. Sci. 249 (2005) 1.
[15] S.H. Kim, S.-Y. Kwak, B.-H. Sohn, T.H. Park, Design of TiO2 nanoparticle self-assembled aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem, J. Membr. Sci. 211 (2003) 157.
[16] L. Ying, Preparation of nanoparticle titania immobilized on fiber and its photocaytalytic properties, Industrial Catalysis 14 (8) (2006) 67.
[17] C.-Y Chen, C.-Y. Chen, Formation of silver nanoparticles on a chlating copolymer film containing iminodiacetic acid, Thin Solid Films 484 (2005) 68.
[18] A.H. Gemeay, A.S. E.-Sherbimy, A.B. Zaki, J. Colloid Interface Sci. 245 (2002) 116.
[19] C.-C. Wang, L.-C. Juang, T.-C. Hsu, C.-K. Lee, J.-F. Lee, F.-C. Huang, Adsorption of basic dyes onto montmorillonite, J. Colloid Interface Sci. 273 (2004) 80.
[20] A.H. Gemeay, Adsorption characteristics and the kinetics of the cation exchange of Rhodamine-6G with Na+-montmorillonite, J. Colloid Interface Sci. 251 (2002) 235.
[21] M.A.M. Lawrence, R.K. Kukkadapu, S.A. Boyd, Adsorption of phenol and chlorinated phenols from aqueous solution by tetramethylammonium- and tetramethylphosphonium-exchanged montmorillonite, Appl. Clay Sci. 13 (1998) 13.
[22] R.-S. Juage, S.-H. Lin, K.-H. Tsao, Sorption of phenols from water in column systems using surfactant-modified montmorillonite, J. Colloid Interface Sci. 269 (2004) 46.
[23] C.-H. Ko, C. Fan, P.-N. Chiang, M.-K Wang, K.-C. Lin, -Nitrophenol, phenol and aniline sorption by organo-clays, J. Hazard. Mater. 149 (2007) 275.
[24] J.-Y. Lai, F.-C. Lin, T.-T. Wu, D.-M. Wang, On the formation of macrovoids in PMMA membranes, J. Membr. Sci. 155 (1999) 31.
[25] R.-C. Ruaan, H.-L. Chou, H.-A. Tsai, D.-M. Wang, J.-Y. Lai, Factors affecting the nodule size of asymmetric PMMA membranes, J. Membr. Sci. 190 (2001) 135.
[26] H.-C. Chiu, J.-J. Huang, C.-H. Liu, S.-Y. Suen, Batch adsorption performance of methyl methacrylate/styrene copolymer membranes, React. Funct. Polym. 66 (2006) 1515.
[27] Y.S. Choi, M.H. Choi, K.H. Wang, S.O. Kim, Y.K. Kim, I.J. Chung, Synthesis of exfoliated PMMA/Na-MMT nanocomposites via soap-free emulsion polymerization, Macromolecules. 34 (2001), 8978.
[28] Y.S. Choi, K.H. Wang, M. Xu, I.J. Chung, Synthesis of exfoliated polyacrylonitrile/Na-MMT nanocomposites via emulsion polymerization, Chem. Mater. 14 (2002) 2936.
[29] H. Li, Y. Yu, Y. Yang, Synthesis of exfoliated polystyrene/ montmorillonite nanocomposite by emulsion polymerization using a zwitterion as the clay modifier, Eur. Polym. J. 41 (2005) 2016.
[30] H. Min, J. Wang, H. Hui, W. Jie, Study on emulsion polymerization of PMMA/OMMT nano-composites by redox initiation, J. Macromol. Sci, Part B: Physics. 45 (2006) 623.
[31] S. Filippi, E. Mameli, C.Marazzato, P. Magagnini, Comparison of solution-blending and melt-intercalation for the preparation of poly(ethylene-co-acrylic acid)/organoclay nanocomposites Eur. Polym. J. 43 (2007) 1645.
[32] 陳邦碩, 製備PMMA/蒙脫土複合薄膜與性質探討, 國立中興大學化學工程研究所, 碩士論文, 台中, 台灣, 2004.
[33] D.L. Ho, R.M. Briber, C.J. Glinka, Characterization of organically modified clays using scattering and microscopy techniques. Chem. Mater. 13 (2001) 1923.
[34] D.L. Ho, R.M. Briber, C.J. Glinka, Effect of solvent solubility parameters on organoclay dispersions. Chem. Mater. 15 (2003) 1309.
[35]Y. Xi, Z. Ding, H. He, R.L. Frost, Structure of organoclays—an X-ray diffraction and thermogravimetric analysis study J. Colloid Interface Sci. 277 (2004) 116.
[36] C.-R. Tseng, J.-Y. Wu, H.-Y. Lee, F.-C. Chang, Preparation and crystallization behavior of syndiotactic polystyrene–clay nanocomposites, Polymer 42 (2001) 10063.
[37] T.-Y. Tsai, C.-H. Li, C.-H. Chang, W.-H. Cheng, C.-L. Hwang, R.-J. Wu, Preparation of exfoliated polyester/clay nanocomposites, Adv. Mater. 17 (2005) 1769.
[38] M.-H. Yeh, W.-S. Hwang, L.-R. Cheng, Microstructure and mechanical properties of neoprene-montmorillonite nanocomposites, Appl. Surf. Sci. 253 (2007) 4777.
[39] T.H. Kim, L.W. Jang, D.C. Lee, H.J. Choi, M.S. Jhon, Synthesis and rheology of intercalated polystyrene/Na+-montmorillonite nanocomposites, Macromol. Rapid Commun. 23 (2002) 191.
[40] Z. Zhang, N. Zhao, W. Wei, D. Wu and Y. Sun, Z. Zhang, N. Zhao, W. Wei, D. Wu and Y. Sun, Synthesis and characterization of poly(butyl acrylate-co-methyl methacrylate)/clay nanocomposites via emulsion polymerization, Int. J. Nanoscience. 5 (2006) 291.
[41] T.-H. Young, L.-W. Chen, Pore formation mechanism of membranes from phase inversion process, Desalination. 103 (1995) 233.
[42] M.J. Han, P.M. Bummer, M. Jay, D. Bhattacharyya, Phase transitions of polysulfone solution during coagulation, Polymer 36 (1995) 4711.
[43] H.C. Park, Y.P. Kim, H.Y. Kim, Y. S. Kang, Membrane formation by water vapor induced phase inversion, J. Membr. Sci. 156 (1999) 169.
[44] J.-K. Fang, H.-C. Chiu, J.-Y. Wu, S.-Y. Suen, Preparation of polysulfone-based cation-exchange membranes and their application in protein separation with a plate-and-frame module, React. Funct. Polym. 59 (2004) 171.
[45] I.-C. Kim, K.-H. Lee, T.-M. Tak, Preparation and characterization of integrally skinned uncharged polyetherimide asymmetric nanofiltration membrane, J. Membr. Sci. 183 (2001) 235.
[46] L. Yan, L. Hui, S. Xianda, L. Jianghong, Y. Shuili, Confocal laser scanning microscope analysis of organic-inorganic microporous membranes, Desalination 217 (2007) 203.
[47] M. Dogan, M. Alkan, Adsorption kinetics of methyl violet onto perlite, Chemosphere 50 (2003) 517.
[48] M. Dogan, Y. Ozdemir, M. Alkan, Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite, Dyes Pigment. 75 (2007) 701.
[49] J.-S. Wu, C.-H. Liu, K. H. Chu, S.-Y. Suen, Removal of cationic dye methyl violet 2B from water by cation exchange membranes, J. Membr. Sci. 309 (2008) 239.
[50] S. Dutta, J. K. Basu, R. N. Ghar, Studies on adsorption of p-nitrophenol on charred saw-dust, Sep. Purif. Techol. 21 (2001) 227-235.
[51] F.A. Banat, B. Al-Bashir, S. Al-Asheh, O. Hayajneh, Adsorption of phenol by bentonite, Environ. Pollut. 107 (2000) 391.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊