跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/26 14:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪裕民
研究生(外文):Yu-Min Hung
論文名稱:錫-9wt%鋅銲料之電遷移研究
論文名稱(外文):Electromigration study of Sn-9 wt%Zn solder
指導教授:陳志銘陳志銘引用關係
指導教授(外文):Chih-Ming Chen
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:74
中文關鍵詞:Sn-9Zn 銲料電遷移微結構
外文關鍵詞:Sn-9Zn solderelectromigrationmicrostructural
相關次數:
  • 被引用被引用:0
  • 點閱點閱:120
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在無鉛化的趨勢下,傳統Sn-Pb銲料將被取代,其中Sn-9wt%Zn銲料熔點(198.5℃)較接近Sn-Pb銲料(183℃),是相當具有潛力的無鉛銲料之ㄧ。本研究主要使用兩種不同冷卻速率,分別為fan-cooling與furnace-cooling來研究Sn-9Zn銲料在電遷移下的微結構發展。在平均電流密度105A/cm2下,發現有Sn的突起物產生,表示在Sn-9Zn系統中Sn為主要擴散元素,相比之下,Zn幾乎固定不動,並發現不同冷卻速率下所形成之銲料微結構形態嚴重影響電遷移行為。當Zn以細緻形態在銲料中析出時(fan-cooling),在通電之後,銲料表面形態大多沒有任何改變,除了在陽極端有少量之Sn的突起物產生。若是Zn以較粗大的形態在銲料中析出(furnace-cooling),發現Sn的突起物並非只有在陽極端,而是整個銲料範圍內都會有。較粗大的Zn阻擋了Sn原子的遷移,導致Sn原子在Zn的前端累積而形成突起物,同時觀察到阻擋效果與Zn的大小和方向有關。
由於Zn是易氧化元素,導致Sn-9Zn銲料的潤濕性與抗氧化性不佳,一般為了改善其性質,會選擇添加第三種元素。因此本研究選擇添加Bi與Cu,即為Sn-8wt%Zn-3wt%Bi與Sn-9wt%Zn-1wt%Cu銲料進行電遷移實驗。在平均電流密度105A/cm2下,發現Sn-8Zn-3Bi銲料中Bi原子會先受到電流應力影響而遷移,並在陽極端發現累積,此行為亦減緩Sn所受之電遷移效應,延後Sn之電遷移。Sn-9Zn-1Cu銲料中,Cu會先與銲料中Zn反應生成CuZn5與Cu5Zn8,在通電之後,發現陰極附近孔洞生成,幾乎都發生在銲料內部Cu-Zn IMC(intermetallic compound)周圍。
Removing Pb from the electronics has became a global trend and the traditional SnPb solder will soon be replaced. The Sn-9Zn (in wt.%) solder alloy is one of the potential candidates because it has a melting point (198.5℃) that is closer to that of the conventional eutectic SnPb solder (183℃). The subject of this study is to investigate the microstructural evolution of the Sn-9Zn solder under current stressing with a current density of about 105 A/cm2. Two different cooling conditions, furnace and fan cooling, were used in the reflow of the solder, and by which coarse and fine Zn precipitates were formed in the solder, respectively. After current stressing, Sn extrusion was observed, suggesting that Sn is the dominant moving species under electromigration. In contrast, Zn appeared to be immobile. It was also found that the microstructure of the solder had a significant effect on the electromigration behavior. For the solder with coarse Zn precipitates, more Sn extrusion sites were observed, and they were located not only at the anode side but also within the solder. Coarse Zn precipitates appeared to block Sn migration, thus Sn migration was intercepted in front of the Zn precipitates. The Sn atoms accumulated there, which led to its extrusion. The blocking effect was found to depend strongly on the size and orientation of the Zn precipitates.
Effects of the addition of Bi and Cu into the Sn-9Zn solder on its electromigration behavior were also investigated. The solders used are Sn-8Zn-3Bi and Sn-9Zn-1Cu. In the Sn-8Zn-3Bi solder, Bi migrated ahead of Sn along with the electron toward the anode side under current stressing. The Sn-9Zn-1Cu solder displays a microstructure different from that of the Sn-9Zn solder because Cu reacts with Zn to form the CuZn5 and Cu5Zn8 compounds in the solder. After current stressing, voids were formed in the solder matrix and mainly surrounded the Cu-Zn compounds.
致謝------------------------------------------------------I
摘要-----------------------------------------------------II
英文摘要------------------------------------------------III
目錄-----------------------------------------------------IV
圖目錄---------------------------------------------------VI
表目錄----------------------------------------------------X
第一章 緒論-----------------------------------------------1
1.1 前言--------------------------------------------------1
1.2 研究目的----------------------------------------------2
第二章 文獻回顧-------------------------------------------4
2.1 電遷移研究史------------------------------------------4
2.2 電遷移理論--------------------------------------------5
2.3 電遷移對銲料微結構的影響------------------------------6
2.3.1 薄膜銲線----------------------------------------6
2.3.2 覆晶銲點---------------------------------------22
2.4 抑制電遷移發生---------------------------------------31
2.5 Sn-9wt%Zn銲料之電遷移行為---------------------------33
第三章 實驗方法------------------------------------------37
3.1 銲料合金製備-----------------------------------------37
3.2 電遷移樣品製備---------------------------------------38
3.3 電遷移實驗-------------------------------------------42
第四章 結果與討論----------------------------------------44
4.1 不同冷卻速率對電遷移行為之影響-----------------------44
4.1.1 Sn-9Zn在furnace-cooling下之電遷移行為--------------44
4.1.2 Sn-9Zn在fan-cooling下微結構對電遷移的影響----------46
4.2 不同溫度對電遷移行為之影響---------------------------52
4.2.1 不同通電溫度對Sn-9Zn銲料之微結構影響---------------52
4.2.2 兩極介金屬層厚度的差異-----------------------------53
4.2.3 高溫熱處理未通電的影響-----------------------------54
4.3 微量元素添加對Sn-9Zn銲料電遷移行為之影響-------------60
4.3.1 Sn-8Zn-3Bi銲料之電遷移行為-------------------------60
4.3.2 Sn-9Zn-1Cu銲料之電遷移行為-------------------------61
4.4 Fan-cooling Sn-9Zn樣品在不同電流密度下之電遷移的行為-66
第五章 結論----------------------------------------------68
第六章 參考文獻------------------------------------------70
[1] Rao R. Tummala, “Fundamentals of Microsystems Packaging”, McGraw -Hill, New York, (2000).
[2] ”International Technology Roadmap for Semiconductors”, Semicond- uctor Industry Association, (1999).
[3] H. B. Huntington, in “Diffusion in Solids : Recent Developments”, edited by A. S. Nowick and J. J. Burton, Academic Press, New York, p. 303-352, (1975).
[4] P. S. Ho and T. Kwok, “Electromigration studies of aluminum -intermetallic structure”, Extended Abstracts of the Conference on Solid State Devices and Materials, Vol. 16, p. 55, (1984).
[5] 張淑如,“鉛對人體的危害”,勞工安全衛生簡訊,民國84年,第12期,pp.17-18。
[6] Lead-free Solder Project Final Report, NCMS Report 0401RE96, National Center for Manufacturing Science, Ann Arbor, Michigan, (1997).
[7] T. Y. Lee, K. N. Tu, S. M. Kuo, and D. R. Frear, “Electromigration of eutectic SnPb and SnAg3.8Cu0.7 flip chip solder bumps and under-bump metallization”, J. Appl. Phys., Vol. 90(9), p. 4502, (2001).
[8] J. W. Nah, K. Paik, J. O. Suh, and K. N. Tu, “Mechanism of electromigration-induced failure in the 97Pb-3Sn and 37Pb-63Sn composite solder joints”, J. Appl. Phys., Vol. 94(12), p. 7560, (2003).
[9] H. B. Huntington and A. R. Grone, “Current-induced marker motion in gold wires”, J. Phys. Chem. Solids., Vol. 20(76), p. 76, (1961).
[10] J. R. Black, IEEE Trans. on Electron Devices, ED-16, p. 348, (1969).
[11] C. K. Hu and J. M. E. Harper, “Copper interconnections and reliability”, Mater. Chem. Phys., Vol. 52, p. 5, (1998).
[12] K. Zeng and K. N. Tu, “ Six cases of reliability study of Pb-free solder joints in electronic packaging technology”, Mater. Sci. & Eng. R, Vol. 38, p. 55, (2002).

[13] S. Brandenburg and S. Yeh, Proceedings of the Surface Mount Internatuonal Conference and Exposition, p. 337, (1998).
[14] C. Y. Liu, C. Chen, C. N. Liao, and K. N. Tu, “Microstructure- electromigration correlateion in a thin stripe of eutectic SnPb solder stressesd between Cu electrodes”, Appl. Phys. Lett., Vol. 75, p. 58, (1999).
[15] W. J. Choi, E. C. C. Yeh, and K. N. Tu, “Electromigration of flip chip solder bump on Au/Ni(V)/Al thin film under bump metallization”, proceedings-electronic-components & Technology Conference, p. 1201, (2002).
[16] H. Ye, C. Basaran, and D. C. Hopkins, IEEE Trans. on Components and Packaging Tech., Vol. 26, p. 673, (2003).
[17] J. R. Lloyd and J. J. Clement, “Electromigration in copper conductors”, Thin Solid Films, Vol. 262, p. 135, (1995).
[18] K. N. Tu, “Recent advances on electromigration in very-large-scale- integration of interconnects”, J. Appl. Phys., Vol. 94(9), p. 5451, (2003).
[19] C. Y. Liu, Chih Chen, and K. N. Tu, “Electromigration in Sn-Pb solder stripes as a function of alloy compositeon”, J. Appl. Phys., Vol. 88, p. 5703, (2000).
[20] C. C. Lu, S. J. Wang, and C. Y. Liu, “Electromigration studies on Sn(Cu) alloy lines”, J. Electron. Mater., Vol. 32(12), p. 1515, (2003).
[21] Q. T. Huynh, C. Y. Liu, C. Chen, and K. N. Tu, “Electromigration in eutectic SnPb solder lines”, J. Appl. Phys.,Vol. 89, 4332, (2001).
[22] S. W. Chen and C. M. Chen, “Electromigration effects upon interfacial reactions”, JOM, Vol. 55(2), p. 62, (2003)
[23] R. Agarwal and K. N. Tu, “Electromigration in eutectic tin-lead solder lines at device temperature”, Proceedings of the 10th International Symposium on Advanced Packaging Materials, Irvine, CA, p. 16, (2005).
[24] R. Agarwal, Shengquan E. Ou, and K. N. Tu, “Electromigration and critical product in eutectic SnPb solder lines at 100℃”, J. Appl. Phys., Vol. 100, 024909, (2006).

[25] Y. C. Hsu, C. K. Chou, and C. Chen, “Electromigration in Pb-free SnAg3.8Cu0.7 solder stripes”, J. Appl. Phys., Vol. 98, 033523 (2005).
[26] C. M. Chen, C. C. Huang, C. N. Liao, and K. M. Liou, “Effects of copper doping on microstructural evolution in eutectic SnBi solder stripes under annealing and current stressing”, J. Electron. Mater., Vol. 36(7), p. 760, (2007).
[27] Y. C. Hu, Y. H. Lin, C. R. Kao, and K. N. Tu, “Electromigration failure in flip chip solder joints due to rapid dissolution of copper”, J. Mater. Res., Vol. 18(11), p. 2544, (2003).
[28] Y. H. Hsiao, Y. C. Chuang, and C. Y. Liu, “Prevention of electromigration-induced Cu pad dissolution by using a high electromigration-resistance ternary Cu-Ni-Sn layer”, Scripta. Mater., Vol. 54, p. 661, (2006).
[29] W. J. Choi, E. C. C. Yeh, and K. N. Tu, “Mean-time-to-failure study of flip chip solder joints on Cu/Ni(V)/Al thin-film under-bump-metallization”, J. Appl. Phys., Vol. 94(9), p. 5665, (2003).
[30] L. T. Chen and C. M. Chen, “Electromigration study in the eutectic SnBi solder joint on the Ni/Au metallization”, J. Mater. Res., Vol. 21(4), p. 962, (2006).
[31] J. W. Nah, J. O. Suh, and K. N. Tu, “Electromigration in flip chip solder joints having a thick Cu column bump and a shallow solder interconnect”, J. Appl. Phys., Vol. 100, 123513, (2006).
[32] X. F. Zhang, J. D. Guo, and J. K. Shang, “Abnormal polarity effect of electromigration on intermetallic compound formation in Sn–9Zn solder interconnect”, Scripta Mater., Vol. 57, p. 513, (2007).
[33] Q. L. Yang and J. K. Shang, “Interfacial segregation of Bi during current stressing of Sn-Bi/Cu solder interconnect”, J. Electron. Mater., Vol. 34(11), p. 1363, (2005).
[34] S. M. Kuo and K. L. Lin, “Microstructure evolution during electromi- gration between Sn–9Zn solder and Cu”, J. Mater. Res., Vol. 22(5), p. 1240, (2003).

[35] W. H. Lin, A. T. Wu, S. Z. Lin, T. H. Chuang, and K. N. Tu, “Electromigration in the flip chip solder joint of Sn-8Zn-3Bi on copper pads”, J. Electron. Mater., Vol. 36(7), p. 753, (2007).
[36] Y. S. Kim, K. S. Kim, C. W. Hwanga, and K. Suganuma, “Effect of composition and cooling rate on microstructure and tensile properties of Sn–Zn–Bi alloys”, J. Alloy. Compd., Vol. 352, p. 237, (2003).
[37] B. J. Lee, N. M. Hwang, and H. M. Lee, “Prediction of interface reaction products between Cu and various solder alloys by thermodynamic calculation”, Acta Mater., Vol. 45, p. 1867, (1997).
[38] C. M. Chen and C. C. Huang, “Effects of silver doping on electromigration of eutectic SnBi solder”, J. Alloy. Compd., Vol. 461, p. 235, (2008).
[39] H. Gan and K. N. Tu, “Polarity effect of electromigration on kinetics of intermetallic compound formation in Pb-free solder V-groove samples”, J. Appl. Phys., Vol. 97, 063514, (2005).
[40] S. M. Kuo and K. L. Lin, “Polarity effect of electromigration on intermetallic compound formation in a Cu/Sn–9Zn/Cu sandwich”, J. Mater. Res., Vol. 23(4), p. 1087, (2008).
[41] S. W. Chen, C. M. Chen, and W. C. Liu, “Electric current effects upon the SnCu and SnNi interfacial reactions”, J. Electron. Mater., Vol. 27(11), p. 1193, (1998).
[42] C. M. Chen and S. W. Chen, “Electric current effects on Sn/Ag interfacial reactions”, J. Electron. Mater., Vol. 28(7), p. 902 (1999).
[43] Eric A. Brandes, Smithells Metals Reference Book, sixth ed., Butterworth, Washington, DC, 1983.
[44] F Seitz, D Turnbull, H Ehrenreich, and NL Peterson. Solid state physics, 22. New York (NY): Academic Press; 1968.
[45] B. Chao, S. H. Chae, X. Zhang, K. H. Lu, J. Im, and P. S. Ho, “Investigation of diffusion and electromigration parameters for Cu–Sn intermetallic compounds in Pb-free solders using simulated annealing”, Acta Mater., Vol. 55, p. 2805, (2007).

[46] J. E. Lee, K. S. Kim, M. Inoue, J. Jiang, and K. Suganuma, “Effects of Ag and Cu addition on microstructural properties and oxidation resistance of Sn-Zn eutectic alloy”, J. Alloy. Compd., in press.
[47] I. Shohji, T. Nakamura, F. Mori, and S. Fujiuchi, “Interface reaction and mechanical properties of lead-free Sn-Zn alloy/Cu joints”, Materials Transactions, Vol. 43, No. 8, p. 1797, (2002).
[48] P. S. Ho and T. Kwok, “Electromigration in metals”, Rep. Prog. Phys. Vol. 52, p. 301, (1989).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top