跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/07/28 23:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林宗立
研究生(外文):Tsung-Li Lin
論文名稱:藉由簡易方法合成新型環氧樹脂硬化劑與其高性能固化物之製作
論文名稱(外文):Facile Preparation of Novel Epoxy Curing Agents and Their High-performance Thermosets
指導教授:林慶炫
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:102
中文關鍵詞:環氧樹脂硬化劑
外文關鍵詞:Epoxy Curing Agents
相關次數:
  • 被引用被引用:0
  • 點閱點閱:720
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗藉由低成本且簡單的一步反應合成兩個難燃環氧樹脂硬化劑,9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-yl- tris(4-hydroxyphenyl)methane (1),與9,10-dihydro-9-oxa-10-
phosphaphenanthrene-10-yl-(4-aminophenyl)-bis(4-hydroxyphenyl)methane (2),藉由IR,高解析mass,X-rad單晶繞射與NMR鑑定其結構正確,並探討各種反應條件對產率與產物之結構的影響。由實驗結果推測此為SN1反應機制,另外我們也探討推電子基與拉電子基對於反應性的影響。我們將(1-2)做為環氧樹脂DGEBA,CNE和HP7200的硬化劑,並測試其硬化後的玻璃轉移溫度、熱裂解溫度、難燃性與吸水性,硬化後的環氧樹脂固化物相較於傳統的(DDM)硬化系統具有適當的Tg,熱穩定性與傑出的難燃性質。
另外我們利用o-cresol、2,6-Dimethylphenol 、o-Toluidine或2,6-Dimethylaniline做為第三個反應物原料合成一系列含有甲基的硬化劑(3-6) ,藉由IR,高解析mass,X-rad單晶繞射與NMR鑑定其結構正確,我們將(3-6)做為環氧樹脂DGEBA和HP7200的硬化劑,並測試其硬化後的玻璃轉移溫度、熱烈解溫度、難燃性與吸水性,含有甲基的環氧樹脂固化物比較不含甲基的(1-2)硬化系統,具有略低的Tg,適當的熱穩定性,較低的吸水性與傑出的難燃性質。
Two flame-retardant epoxy curing agents, 9,10-dihydro-9-oxa-10-
phosphaphenanthrene-10-yl- tris(4-hydroxyphenyl)methane (1) and 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-yl- (4-aminophenyl)-
bis(4-hydroxyphenyl)methane (2), were prepared by a facile, inexpensive and one-pot procedure. The structures of the curing agents were confirmed by IR, high-resolution mass, single crystal diffractogram and NMR spectra. The effects of the reaction conditions on the yield and the structure of the product were discussed. According to the experimental data, a SN1 mechanism was proposed. The effect of electron-donating and electron-withdrawing groups on the reactivity was also discussed. Compound 1 and 2 served as curing agents for diglycidyl ether of bisphenol A (DGEBA) , cresol novolac epoxy (CNE) and dicyclopentadiene epoxy(HP7200). Properties such as glass transition temperature, thermal decomposition temperature, flame retardancy, and moisture absorption of the resulting epoxy thermosets were evaluated. The glass transition temperature, thermal decomposition temperature, flame retardancy, and moisture absorption of the resulting epoxy thermosets were evaluated. The glass transition temperatures of epoxy thermosets are in the range of 171-220 oC. The flame retardancy increases with increasing phosphorus content and a UL-94 V0 grade can be a chieved with a phosphorus content of 1.5%.
We also synthesized another novel methyl-containing epoxy curing agents (3-6) by selected o-cresol, 2,6-Dimethylphenol, o-Toluidine, and 2,6-Dimethylaniline as the third reactant. The structure of the curing agents were confirmed by IR, high-resolution mass, single crystal diffractogram and NMR spectra. Compound 3-6 served as curing agents for diglycidyl ether of bisphenol A (DGEBA) and dicyclopentadiene epoxy(HP7200). Properties such as glass transition temperature, thermal decomposition temperature, flame retardancy, and moisture absorption of the resulting epoxy thermosets were evaluated. The methyl-containing epoxy thermosets show slightly lower Tg values, moderate thermostability , lower moisture absorption and excellent flame retardancy than (1-2) curing system.
總目錄
中文摘要……………………………………………………………….…i
英文摘要……………………………………………………………...…ii
總目錄………………………………………………………………..…iv
表目錄…………………………………………………...………....…ix
圖目錄……………………………………………………………....…..x

第一章 緒論……………………………………………………….………1
1.1 環氧樹脂簡介..………………………...………….……….……1
第二章 文獻回顧………………………………………………………..3
第三章 實驗……………………………………………………………..5
3.1 實驗藥品……………………………………………………..….5
3.1-1 化合物……………………………………………………5
3.1-2 溶劑………………………………………………………6
3.2 儀器設備……………………..…………………………..……....7
3.3 實驗步驟………………………………………..………………..9
3.3-1 化合物(1)之合成……………………………..…………10
3.3-2 化合物(2)之合成……………………………..…………11
3.3-3 化合物(3)之合成……………………………..…………12
3.3-4 化合物(4)之合成……………………………..…………13
3.3-5 化合物(5)之合成……………………………..…………14
3.3-6 化合物(6)之合成……………………………..…………15
第四章 Curing agents單體鑑定……………..…………..…………….16
4.1化合物(1)之單體鑑定…..…………..…………..…………16
4.1-1 DSC鑑定…..…………..…………………………16
4.1-2 FTIR鑑定…..…………..…………………………………17
4.1-3 NMR鑑定…..…………..………………………………...18
4.2化合物(2)之單體鑑定.………………………………....…21
4.2-1DSC鑑定…..…………..………………………………21
4.2-2 FTIR鑑定…..…………..………………………………22
4.2-3 NMR鑑定…........…………..……………………………23
4.2-4化合物(2)的XRD分析..…………………………………..28
4.3化合物(3)之單體鑑定………………………………..…..29
4.3-1DSC鑑定…..…………..………………………………29
4.3-2 FTIR鑑定…..…………..……………………………….30
4.3-3 NMR鑑定…..…………..……………………………….31
4.3-4低解析MASS鑑定……..………………………………35
4.3-5 高解析MASS鑑定……..………………………………..36
4.4化合物(4)之單體鑑定..……………………………..………37
4.4-1 DSC鑑定………..…………………………………..…37
4.4-2 FTIR鑑定……….....…………………………………..…38
4.4-3 NMR鑑定………..………………………………..………39
4.4-4低解析MASS鑑定…………………………………..……43
4.4-5 高解析MASS鑑定………………………………..………44
4.4-6化合物(4)的XRD分析……………………………..……45
4.5化合物(5)之單體鑑定…………………………..……….....46
4.5-1DSC鑑定…………………………..………..................46
4.5-2 FTIR鑑定…………………………..………...................47
4.5-3 NMR鑑定…………………………..………...................48
4.5-4 低解析MASS鑑定………………..………...................52
4.5-5 高解析MASS鑑定………………..………...................53
4.6化合物(6)之單體鑑定…………..……….............................54
4.6-1DSC鑑定…………..………………………..................54
4.6-2 FTIR鑑定…………..………………………...................55
4.6-3 NMR鑑定…………..……………………….....................56
4.6-4 低解析MASS鑑定………………………........................60
4.6-5 高解析MASS鑑定………………………........................61
第五章 結果與討論…..…..…..…......……………………..……62
5.1合成化合物(1-2) ………..………………………………..……62
5.2合成(10-11)衍生物………..…………………………..…………66
5.3合成(1-2)的反應機構…..………………………………...………68
5.4化合物(1)的NMR追蹤..………………………………...………70
5.5化合物(2)的FTIR追蹤..………………………………...…….……72
5.6化合物(2)的NMR追蹤……………………………...…….……73
5.7合成(10-11)衍生物………………………...…….………………75
5.8化合物(10)之NMR鑑定………....……….………………....77
5.9化合物(11)之NMR鑑定……………...……..........................78
5.10化合物(12)之NMR鑑定..…….………………...................79
5.11化合物(13)之NMR鑑定…………...…….……………........80
5.12 (1-2)與環氧樹酯DGEBA、CNE及HP7200之熱性質分析…......81
5.13 (1,3-4)與環氧樹酯DGEBA及HP7200之熱性質分析. ……........87
5.14 (2,5-6)與環氧樹酯DGEBA及HP7200之熱性質分析................93
第六章 結論....................……………..........................99
第 七 章 參考文獻……................…………….......................101
表 目 錄
Table 1. Effects of reaction conditions on the yield of (1-2,7)....................65
Table 2. 硬化物代號.............................................................................81
Table 3. Thermal and dielectric properties of epoxy thermosets
(P1-P6)………………………………………………………85
Table 4. UL-94 tests of cured Epoxy / (2) /DDS systems..............86
Table 5. 硬化物代號..........................................................................87
Table 6. Thermal and dielectric properties of epoxy thermosets
(P1,P7-P11)…………………………………………………91
Table 7. UL-94 tests of cured Epoxy / (3-4) /DDS systems.……….…….92
Table 8. 硬化物代號......................................................................93
Table 9. Thermal and dielectric properties of epoxy thermosets
(P12-P17)……………………………………………………97
Table 10. UL-94 tests of cured Epoxy /(3-4)/DDS systems…………….98
圖 目 錄
Scheme 3.1 Synthesis of (1)…………………………………………….10
Scheme 3.2 Synthesis of (2)…………………………………………….11
Scheme 3.3 Synthesis of (3).……………………………………………12
Scheme 3.4 Synthesis of (4).……………………………………………13
Scheme 3.5 Synthesis of (5).……………………………………………14
Scheme 3.6 Synthesis of (6).……………………………………………15
Scheme 5.1 Synthesis of (a)(1), (b)(2) and (c-d)(7)…………………….64
Scheme 5.2 Synthesis of (10) and (11)………………………………….67
Scheme 5.3 Proposed SN1 mechanism for the synthesis of (1) and (2)…74
Scheme 5.4 The resonance of (a) carboxylic acid, (b)nitro and (c) phenolic
OH with the carbocation.………………………………………..…76
Scheme 5.7 Synthesis of (12-13).……………………………………....76
Figure 4.1 DSC scan of (1)……………………………………………...16
Figure 4.2 IR spectrum of (1)…………………………………………...17
Figure 4.3 1H and 13C-NMR spectra of (1)……………………………...19
Figure 4.4 31P NMR spectrum of (1) ………………………….…..……19
Figure 4.5 1H and spectra of (1)………………………….……………..20
Figure 4.6 DSC scan of (2)………………………………...……………21
Figure 4.7 IR spectrum of (2)………………………………………...…22
Figure 4.8 1H and 13C-NMR spectra of (2)…………………………..….24
Figure 4.9 2D gCOSY (1H-1H) spectrum of (2)………………………...25
Figure 4.10 2D gHSQC (1H-13C) spectrum of (2)……………………....26
Figure 4.11 31P NMR spectrum of (2) ………………………………….26
Figure 4.12 1H and spectra of (2)……………………………………….27
Figure4.13 The single crystal diffractogram of (2)……………………..28
Figure 4.14 DSC scan of (3)………………………………………..…...29
Figure 4.15 IR spectrum of (3)……………………………………...…..30
Figure 4.16 1H and 13C-NMR spectra of (3)………………………….....32
Figure 4.17 2D gCOSY (1H-1H) spectrum of (3). ……………………...33
Figure 4.18 2D gHSQC (1H-13C) spectrum of (3). ……………...……...34
Figure 4.19 31P NMR spectrum of (3) ……………….…………..…..…34
Figure 4.20 Mass spectrum of (3)……………………….………………35
Figure 4.21 High Resolution Mass spectrum of (3)…….………………36
Figure 4.22 DSC scan of (4)………………………………………..…...37
Figure 4.23 IR spectrum of (4)……………………………………...…..38
Figure 4.24 1H and 13C-NMR spectra of (4)………………………….....40
Figure 4.25 2D gCOSY (1H-1H) spectrum of (4). ……………………...41
Figure 4.26 2D gHSQC (1H-13C) spectrum of (4). ……………...……...42
Figure 4.27 31P NMR spectrum of (4)……………..……………..…..…42
Figure 4.28 Mass spectrum of (4)……………………….………………43
Figure 4.29 High Resolution Mass spectrum of (4)…….…..………..…44
Figure 4.30 The single crystal diffractogram of (4)………………….…45
Figure 4.31 DSC scan of (5)………………………………………..…...46
Figure 4.32 IR spectrum of (5)……………………………………...…..47
Figure 4.33 1H and 13C-NMR spectra of (5)………………………….....49
Figure 4.34 2D gCOSY (1H-1H) spectrum of (5). ……………………...50
Figure 4.35 2D gHSQC (1H-13C) spectrum of (5). ……………...……...51
Figure 4.36 31P NMR spectrum of (5)……………..……………..…..…51
Figure 4.37 Mass spectrum of (5)……………………….………………52
Figure 4.38 High Resolution Mass spectrum of (5)…….…………....…53
Figure 4.39 DSC scan of (6)………………………………………..…...54
Figure 4.40 IR spectrum of (6)……………………………………...…..55
Figure 4.41 1H and 13C-NMR spectra of (6)………………………….....57
Figure 4.42 2D gCOSY (1H-1H) spectrum of (6).……………………...58
Figure 4.43 2D gHSQC (1H-13C) spectrum of (6).……………...……...59
Figure 4.44 31P NMR spectrum of (6)……………..……………..…..…59
Figure 4.45 Mass spectrum of (6)……………………….………………60
Figure 4.46 High Resolution Mass spectrum of (6)…….…………..…..61
Figure 5.1 1H spectra of (1) at various reaction time………………..…..71
Figure 5.2 IR spectrum of (2) at various reaction time………………....72
Figure 5.3 1H spectra of (2) at various reaction time………………...….74
Figure 5.4 1H-NMR spectra of (10)……………………………..………77
Figure 5.5 1H-NMR spectra of (11)……………………………..………78
Figure 5.6 1H-NMR spectra of (12)………………………………….….79
Figure 5.7 1H-NMR spectra of (13)…………………………………..…80
Figure 5.8 DMA curves of P1-P6……………………………………….83
Figure 5.9 TMA curves of P2…………………………..……………….83
Figure 5.10 TGA thermograms of P1-P6………………………………..84
Figure 5.11 DMA curves of P1, P7-P11…………………………….......89
Figure 5.12 TMA curves of P10…………………………………...……89
Figure 5.13 TGA thermograms of P1,P7-P11…………………………..90
Figure 5.14 DMA curves of P12-P17…………………………….……..95
Figure 5.15 TMA curves of P16………………………………….……..95
Figure 5.16 TGA thermograms of P12-P17……………….…………….96
[1] 桓內弘著,賴耿揚譯,環氧樹脂應用實務,復漢出版社,1-3 ,1993
[2] 謝正悅,林慶炫,王春山,科學發展月刊,第28 卷第11 期,八十
九年九月
[3] Wang, C. S.; Berman, J. R.; Walker, L. L.; Mendoza,A. J Appl Polym
Sci 1991, 43, 1315.
[4] Wang, C. S.; Sun, Y. M.; Mendoza, A. Org PreprProc Int 1992, 24, 176.
[5] Liu, Y. L.; Hsiue, G. H.; Chiu, Y. S. J Polym Sci Part A: Polym Chem
1997, 35, 565.
[6] Shau, M. D.; Wang, T. S. J Polym Sci Part A: Polym Chem 1996, 34,
387.
[7] Liu, Y. L. J Polym Sci Part A: Polym Chem 2002,40, 359.
[8] Wang, C. S.; Lin, C. H. J Polym Sci Part A: Polym Chem 1999, 37,
3903.
[9] Espinosa, M. A.; Galia` , M.; Ca` diz, V. J Polym Sci Part A: Polym
Chem 2004, 42, 3516.
[10] Shieh, J. Y.; Wang, C. S. Polymer 2001, 42, 7617.
[11] Liu, W.; Varley, R. J.; Simon, G. P. J Appl Polym Sci 2004, 92, 2093.
[12] Wang, C. S.; Lin, C. H. J Appl Polym Sci 1999,74, 1635.
[13] Mikroyannidis, J. A.; Kourtides, D. A. J Appl Polym Sci 1984, 29, 197.
[14] Liu, Y. L.; Hsiue, G. H.; Lee, R. H.; Chiu, Y. S.J Appl Polym Sci 1997,
63, 895.
[15] Stokland, Jr. R. A.; Taylolr, R. I.; Thompson, L. E.; Patel P. B. 2005, 7,
851
[16] Lin, C. H.; Wang, C.S. Polymer 2001, 42, 1869
[17] Liu, Y. L. J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 359
[18] Liu, Y. L.; Wu, C. S.; Hsu, K.Y. and Chang, T. C. J. Polym. Sci., Part A:
Polym. Chem. 2002,40, 2329
[19] Cai, S. X. and Lin C. H. Lin, J. Polym. Sci., Part A: Polym. Chem. 2005,
43, 2862
[20] Lin, C. H, Cai, S. X., Lin, C. H J. Polym. Sci., Part A: Polym. Chem.
2005, 43, 5971
[21] Annakurtty, K. S.; Kishore, K. Polymer, 29,756(1988).
[22] Kishore, K.; Annakurtty, K. S.; Mallick, I. M. Polymer, 29, 762(1988).
[23] Sato, M.; Yokoyama, M. Eur Polym J,16,79(1980).
[24] Sato, M.; Yokoyama, M. J Polym Sci Part A:Polym Chem, 18,
2751(1980).
[25] Sato, M.; Tada, Y.; Yokoyama, M. J Polym Sci Part A: Polym Chem, 19,
1037(1981).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top