跳到主要內容

臺灣博碩士論文加值系統

(3.235.60.144) 您好!臺灣時間:2021/07/24 01:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉德暉
研究生(外文):Da-Huei Liou
論文名稱:新穎平整劑的開發及應用於電鍍銅填充盲、通孔
論文名稱(外文):Development of a novel leveler and its application on copper electroplating for via and through hole filling
指導教授:竇維平
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:114
中文關鍵詞:電鍍銅平整劑盲孔通孔
外文關鍵詞:copper platingleveleblind viarthough hole
相關次數:
  • 被引用被引用:1
  • 點閱點閱:638
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
為了增加電子產品的功能及使得它們的體積變得更小,在晶圓和印刷電路板的製造技術上都有改變。例;如,晶圓製造技術上運用了雙鑲嵌製程─即是利用直接電鍍的方式將銅導線填充於導通道中,取代了傳統的鋁製程。為完成印刷電路板中的高密度內連接,增層法被應用於連接印刷電路板中的每個盲孔和通孔。盲孔或通孔的金屬化製程也是直接利用電鍍的方式完成。本論文在於開發出一種新的平整劑─是銅電鍍液中的一種重要添加劑,並了解平整劑在導孔填充中的影響。
一開始我們選用四種新穎的平整劑於導孔填充部份並試著比較不同平整劑的填充能力。進一步的,吾人找出一種新穎的平整劑─命名為TNTBC,當硫酸濃度控制在適當的濃度下在盲孔或通孔金屬化製程中有較好的填充能力。根據金相光學顯微鏡、掃描式電子顯微鏡和X光繞射光譜的結果,我們發現在銅電鍍液中不同濃度的硫酸不僅會改變銅沈積的結構也會影響到電鍍液的填充能力。吾人使用計時電位法和循環伏安法來證明硫酸能減少TNTBC的消耗速率。吾人又利用掃描式電子顯微鏡觀察在改變質傳效用下的銅沈積之表面結構。根據銅沈積結構變化,吾人發現TNTBC和氯離子會形成壹層錯合物薄膜吸附於銅層上。這一層錯合物薄膜會減少銅離子的通量因此使得銅晶粒成長變得較困難。根據能量散射光譜分析,吾人發現TNTBC會夾鍍在銅沈積中。依據能量散射光譜和電鍍填孔結果,吾人證明了填孔機制遵循吸附、消耗和擴散(dsorption-comsumption-diffustion, ACD)機制。
In order to enhance the functions of electronic products and let their size become smaller, the manufacture teachnologies of chips and printed circuit boards (PCBs) have to be changed. For example, the Dual Damascus Process has been used in chip manufacture to replace the traditional aluminum process, that is, copper conducting lines are filled into trenches by means of electroplating. To carry out high density interconnectionof PCB, “build up process�� is employed to connect each blind via or though hole built in the PCB. The matellization process of blind via or though hole is also achieved by means of copper electroplating. The major topic of this thesis is to develop a new leveler, which is an important leveler in copper electroplating solution and to understand the effect of the leveler in hole filling.
In the beginning, we selected four novel additives as levelers for hole filling and tried to compare the filling performance of various leveler. Furthermore, we found out that a novel leveler, namely TNTBC, has better filling performance in metallization of blind via or though hole when the concentration of surfluric acid is controlled at an appropriate level. According to those results of OM, SEM and XRD, we discovered that different concentration of sulfuric acid in the copper electroplating solution does not only change the structure of copper deposit but also influence the filling capability of the plating solution. We used chronopotentimetry and cyclic voltammetry method to prove that sulfuric acid can reduce the comsumption rate of TNTBC. We used SEM to observe the topographic of the copper deposit under the condition of various effectiveness of mass transport. According to the structure variation of the copper deposit, we found that TNTBC and chloride ions may form a complex film to adsorb onto copper layer. The adsorbed complex film reduced the flux of copper ion and thus made the growth of copper grain more difficult. According to the EDS analyses, we found that TNTBC is incorporated into the copper deposit. According to the results of EDS analyses and the filling plating, we proved that the filling mechanism does obey a model of adsorption-comsumption-diffustion (ACD) proposed in a previous work.
誌謝..............................................................III
中文摘要...........................................................VI
英文摘要..........................................................VII
圖目錄...........................................................VIII
一、緒論............................................................1
(一)印刷電路板技術的介紹與電化學沈積技術在其中的運用...............1
(二) 晶圓半導體製程的介紹與電化學沈積技術在其中的運用...............4
二、理論與文獻回顧..................................................5
(一)電化學電鍍方法:................................................5
1. 脈衝與反脈衝電鍍法(PULSE AND PULSE REVERSE PLATING).............5
2.直流電鍍法(DIRECT CURRENT PLATING)................................6
(二)添加劑的介紹:..................................................6
1. 無機添加劑......................................................6
(1)氫離子(H+ ).......................................................6
(2)氯離子(CL-).......................................................6
2.有機添加劑.......................................................12
(1)加速劑(ACCELERATOR).............................................12
(2)抑制劑(SUPPRESSOR)..............................................15
(3)平整劑(LEVELER):...............................................21
(三)電化學基礎理論:................................................29
1.活性極化:.......................................................29
2.濃度極化:.......................................................30
3.電阻極化:.......................................................31
(四)電化學沈積法填充導孔模擬理論...................................32
三、研究動機.......................................................36
四、實驗裝置、步驟與實驗藥品.......................................37
(一)實驗裝置.......................................................37
1.哈林試驗槽電鍍實驗...............................................37
2.恆電位/電流儀(POTENTIOSTATS/GALVANOSTATS)........................39
3.金相顯微鏡(OPTICAL MICROSCOPE,OM)...............................40
4.能量散射光譜儀(ENERGY DISPERSIVE SPECTROMETER,EDS)..............41
5.掃描式電子顯微鏡(SCANING ELECTRON MICROSCOPE,SEM)...............41
(二) 實驗步驟......................................................42
1.哈林試驗槽電鍍實驗...............................................42
2.計時電位分析法(CHRONOPOTENTIMETRY,CP).........................42
3.循環線性掃描伏安法(CYCLIC LINEAR SWEEP VOLTAMETRY,CLSV).........43
(三)實驗藥品:......................................................44
五、實驗結果與討論:...............................................45
(一)不同雜環類平整劑的初步電鍍及計時電位實驗比較及分析:...........45
(二)改變鍍液中氫離子濃度對電鍍填孔結構的影響:......................53
(三)有關平整劑TNTBC受到硫酸成分影響情況之分析與探討:...............66
(四)平整劑TNTBC填充導孔行為與機制探討:.............................76
五、結論:.........................................................110
六、參考文獻......................................................111
1.林定浩,“高密度印刷電路板技術�� ,第五章,台灣電路板協會,民國93年。
2.H.Xiao,“Introduction to Semiconductor Manufacturing Technology��, chapter 11, Prentice-Hall Inc., 2001
3.B.R.Murthy, M. M. Roy, K. Ahila, and D. C. Frye “Reactive Ion Etching and Characterization of p-Silk Ultra Low-k Film�� IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 18, 1, 2005
4.L.Xu, P.Dixit, J.Miaro, J.H.L.Pang, X.Zhang, K.H.Tu, and R.Preisser “Through-wafer electroplated copper interconnect with ultrafine grains and high density of nanotwins�竑ppl. Phys. Lett. 90,03311, 2007
5.Z. Nagy, J. P. Blaudeau, N. C. Hung, L. A. Curtiss, and D. J. Zurawski, “Chloride Ion Catalysis of the Copper Deposition Reaction��, J. Electrochem. Soc., 142 , L87, 1995.
6.W. P. Dow, H.S. Huang, M.Y.Yen, and H. H. Chen “Roles of Chloride Ion in Microvia Filling by Copper Electrodeposition�� J. Electrochem. Soc., 152,C77,2005
7.W.Shao, G. Pattanaik,and G.Zangari“Influence of Chloride Anions on the Mechanism of Copper Electrodeposition from Acidic Sulfate Electrolyte��, J. Electrochem. Soc., 154 ,D201 ,2007
8.G. M. Brown, and G .A. Hope“A SERS study of SO42-/Cl-ion adsorption at a copper electrode in situ��, J. Electroanal. Chem., 405,211,1996
9.N. Zukauskaite and A. Malinauskas, “Electrocatalysis by a Brightener in Copper Electrodeposition ��, Sov. Electrochem., 24, 1564, 1989.
10. J. P. Healy and D. Pletcher, “The chemistry of the additives in an acid copper electroplating bath PartⅡ.The instability of 4, 5-dithiaoctane-1, 8-disulphonic acid in the bath on open circuit��, J. Electroanal. Chem., 338, 167, 1992.
11.S. N. Jenq , C. C. Wan, and Y. Y. Wang,“The influence of self-assembled disulfide additive on the pattern shape by Cu electrodeposition through mask��, J. Electroanal. Chem. ,609,68 ,2007
12. M. Yokoi, S. Konishi, and T. Hayaashi, “Adsorption behavior of polyoxyenthylene glycol on the copper surface in an acid copper sulphate bath��, Denki Kagaku, 52, 218, 1984.
13. J. J. Kelly and A. C. West, “Copper Deposition in the Presence of Polyethylene Glycol Ⅰ. Quartz Crystal Microbalance Study��, J. Electrochem. Soc., 145, 3472, 1998。
14. Z. V. Feng and A. A. Gewirth, “Inhibition Due to the Interation of polyethylene Glycol, Chloride, and Copper in plating baths:A Surface Enhanced Raman Study��, J. Phys. Chem. B., 107,9415, 2003.
15. W. P. Dow, M. Y. Yen, W. B. Lin, and S. W. Ho, “Influence of Molecular Weight of Polyethylene Glycol on Microvia Filling By Copper Electroplating��, J. Electrochem. Soc., 152, C769, 2005.
16. B. G. Xie, J. J. Sun, X. B. Chen, J. H. Chen, Tong-Ling Xiang, and Guo-Nan Chen“ In Situ Monitoring of Additives in Copper Plating Baths by Cyclic Voltammetric Stripping with a Microelectrode�� J. Electrochem. Soc., 154,D516,2007
17. 方景禮,“電鍍添加劑總論�苤A第一版,第4章,傳勝出版社,民國87年
18. G. K. Gomma, “Effect of azole compounds on corrosion of copper in acid medium��, Mater. Chem. and Phys., 56, 27, 1998.
19. M. E. Biggin and A. A. Gewirth, “Infrared Studies of Benzotriazole on Copper Electrode Surfaces", J. Electrochem. Soc., 148, C339, 2001.
20. Z.V. Feng, A. A. Gewirth, “Atomic force microscopic study of polymeric film growth in copper electroplating bath with benzotriazole��, J. Electroanal. Chem.601,242,2007
21. T. P. Moffat, J. E. Bonevich, W. H. Huber, A. Stanishevsky, D. R. Kelly,G. R. Stafford, and D.Josell, “Superconformal Electrodeposition of Copper in 500-90nm Features��, J. Electrochem. Soc., 147, 4524, 2000.
22. J. J. Kelly and A. C. West, “Leveling of 200 nm Features by Organic Additives��, Electrochem. Solid-State Lett., 2, 561, 1999.
23. D. Josell, D. Wheeler, W. H. Huber, and T. P. Moffat, “Superconformal Electrodeposition in Submicron Features��, Phys. Rev. Lett., 87, 2001.
24. K. Kondo, N. Yamakawa, Z. Tanaka, and K. Hayashi, “Copper damascene electrodeposition and additives��, J. Electroanal. Chem., 559, 137, 2003.
25. J. Wang, “Analytical Electrochemistry��, 2nd ed., Chapter 1, WILEY&SONS,INC.,2000
26. A. J. Bard, and L. R. Faulkner “Electrochemical Methods Fundamentals and Applications��, 2nd ed. ,Chapter 1, WILEY&SONS,INC. ,2001
27. M. Paunovic, and M. Schlesinger,“Fundamentals of Electrochemical Depostion�� , 2nd ed., Chapter 6 ,WILEY&SONS,INC. ,2006
28. D. Josell, D. Wheeler, S.-K. Kim, and T. P. Moffat, “Curvature Enhanced Adsorbate Coverage Model for Electrodeposition��, J. Electrochem. Soc., 153, C127, 2006.
29. Y. Cao, P. Taephaisitphongse, R. Chalupa, and A. C. West, “Three-Additive Model of Superfilling of Copper��, J. Electrochem. Soc., 148, C446, 2001.
30. R. Tenno, and A. Pohjoranta, “A Method of Microvia-Filling Process in a Copper Plating With Additives��, J. Electrochem. Soc., 152, C769, 2007.
31. R. Tenno, and A. Pohjoranta, “An ALE Model for Prediction and Control of the Microvia Fill Process with Two Additives��, J. Electrochem. Soc., 155 D383 2008.
32. 汪健民,“材料分析”,第三版,第五章,中國材料科學學會,民國93年
33. 汪健民,“材料分析”,第三版,第七章,中國材料科學學會,民國93年
34. 汪健民,“材料分析”,第三版,第六章,中國材料科學學會,民國93年
35. C. G. Guymon, J. N. Harb, R. L. Rowley, and D. R. Wheeler, “MPSA effects on copper electrodeposition investigated by molecular dynamics simulations�� J.Chem. Phys. 128, 044717 2008
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top