|
1. 陳嘉銘, 奈米鎂-鎳合金於加氫/脫氫反應的應用:PEG胺化反應及奈米碳管的成長, 化學工程學系. 2004, 國立中興大學: 台中. p. 33. 2. Kresge, C.T., et al., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature, 1992. 359: p. 710-712. 3. Beck, J.S., et al., Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Journal of American Ceramic Society, 1992. 114: p. 10834-10843. 4. Chen, C.Y., et al., Studies on mesoporous materials II. Synthesis mechanism of MCM-41. Microporous Materials, 1993. 2: p. 27-34. 5. Monnier, A., et al., Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures Science, 1993. 261: p. 1299-1303. 6. Firouzi, A., et al., Cooperative organization of inorganic-surfactant and biomimetic assemblies. Science, 1995. 267: p. 1138. 7. Hartmann, M., A. Poppl, and L. Kevan, Formation and stability of Ni(I) Ions in MCM-41 mesoporous molecular sieves. Journal of Physical and Chemistry, 1995. 99: p. 17494-17496. 8. Hartmann, M., A. Poppl, and L. Kevan, Ethylene dimerization and butene isomerization in nickel-containing MCM-41 and AlMCM-41 mesoporous molecular sieves: an electron spin resonance and gas chromatography study. Journal of Physical Chemistry 1996. 100: p. 9906-9910. 9. Ryoo, R., et al., Preparation of nanosize Pt clusters using Ion-exchange of Pt(NH3)(4)(2+) inside mesoporous channel of MCM-41. Catalysis Letter, 1996. 37: p. 29-33. 10. Ko, C.H. and R. Ryoo, Imaging the channels in mesoporous molecular sieves with platinum. Chemcal Communications, 1996. 21: p. 2467. 11. Aronson, B.J., C.F. Blanford, and A. Stein, Solution-phase grafting of titanium dioxide onto the pore surface of mesoporous silicates: synthesis and structural characterization. Chemistry of Materials, 1997. 9: p. 2842-2851. 12. Honma, I., H. Sasabe, and H.S. Zhou, Nanophase and nanocomposite materials II. Mater. Res. Soc. Symp. Proc., 1997. 457: p. 525. 13. Deo, G., I.E. Wachs, and J. Haber., Critical Reviews in Surface Chemistry, 1994. 4: p. 141-187. 14. Wachs, I.E. and B.M. Weckhuysen, Structure and reactivity of surface vanadium oxide species on oxide supports. Applied Catalysis A: General, 1997. 157: p. 67. 15. Das, N., et al., Bonding states of surface vanadium oxide phases on silica : Structural characterization by 51V-NMR and Raman spectroscopy. Journal of Physical and Chemitry, 1993. 97 p. 8240-8243. 16. Wang, C.B., G. Deo, and I.E. Wachs, Characterization of vanadia sites in v-silicalite, vanadia-silica cogel, and silica-supported vanadia catalysts: x-ray powder diffraction, raman spectroscopy, solid-state 51V NMR, temperature-programmed reduction, and methanol oxidation studies. Journa of catalysis, 1998. 178: p. 640-648. 17. Gao, X., et al., Structural and reactivity properties of Nb-MCM-41: comparison with that of highly dispersed Nb2O5/SiO2 Catalysts. Journal of Catalysis, 2001. 203: p. 18-24. 18. Chen, Y., et al., Supported tantalum oxide catalysts: synthesis, characterization and methanol oxidation chemical probe. Journal of Physical and Chemitry B, 2003. 107: p. 5243-5250. 19. 潘宗冀, 奈米級被擔持金屬氧化物觸媒之氧化反應研究, 化學工程學系. 2006, 國立中興大學: 台中. p. 21. 20. 黃晁熙, 不同過渡金屬添加於矽酸鹽觸媒之結構與氧化反應研究, 化學工程學系. 2002, 國立中興大學. 21. Welch, L.M., L.J. Croce, and H.F. Christmann, Hydrocarbon Process, 1978. 57: p. 131. 22. Cafani, F. and F. Trifiro, Applied Catalysis A: General, 1992. 88: p. 115-135. 23. Mamedov, E.A. and V.C. Corberan, Oxidative dehydrogenation of lower vanadium oxide-based catalysts. The present state of the art and outlooks. Applied Catalysis A: General, 1995. 127: p. 1-40. 24. Chen, Y. and I.E. Wachs, Tantalum oxide-supported metal oxide (Re2O7, CrO3, MoO3, WO3,V2O5, and Nb2O5) catalysts: synthesis, raman characterization and chemically probed by methanol oxidation. Journal of Catalysis, 2003. 217: p. 46. 25. Chen, Y., et al., Supported tantalum oxide catalysts: synthesis, physical characterization, and methanol oxidation chemical probe reaction. Journal of Physical and Chemitry, 2003. 107: p. 5243-5250. 26. Briand, L.E., A.M. Hirt, and I.E. Wachs, Quantitative determination of the number of surface active sites and the turnover frequencies for methanol oxidation over metal oxide catalysts: application to bulk metal molybdates and pure metal oxide catalysts. Journal of Catalysis, 2001. 202: p. 268-278. 27. Burcham, L.J., M. Badlani, and I.E. Wachs, The origin of the ligand effect in metal oxide catalysts: novel fixed-bed in situInfrared and kinetic studies during methanol oxidation. Journal of Catalysis, 2001. 203: p. 104-121. 28. Li, J.L., et al., A new silver-containing ceramics for catalytic oxidation of methanol to formaldehyde. Materials letters, 2000. 44: p. 233. 29. Waterhouse, G.I.N., G.A. Bowmaker, and J.B. Metson, Mechanism and Active Sites for the Partial Oxidation of Methanol to Formadehyde over An Electrolytic Silver Catalyst. Applied of Catalysis A, 2004. 265: p. 85. 30. Mukhopadhyay, K., et al., Bulk production of quasi-aligned carbon nanotube bundles by the catalytic chemical vapour deposition CCVD/method. Chemical Physics Letters, 1999. 303: p. 117-124. 31. Zhang, A., et al., A novel method of varying the diameter of carbon nanotubes formed on an Fe-supported Y zeolite catalyst. Microporous and Mesoporous Materials, 1999. 29: p. 383-388. 32. Jia, J., et al., Carbon fibers prepared by pyrolysis of methane over Ni/MCM-41 catalyst. Microporous and Mesoporous Materials, 2003. 57 p. 283-289. 33. Somanathan, T., A. Pandurangan, and D. Sathiyamoorthy, Catalytic influence of mesoporous Co-MCM-41 molecular sieves for the synthesis of SWNTs via CVD method. Journal of Molecular Catalysis A: Chemical, 2006. 256: p. 193-199. 34. Dai, H., et al., Single-Wall Nanotubes Produced by Metal-Catalyzed Disproportionation of Carbon Monoxide. Chemical Physics Letters, 1996. 260: p. 471-475. 35. Urban, M., et al., Production of carbon nanotubes inside the pores of mesoporous silicates. Chemical Physics Letters, 2002. 359 p. 95-100. 36. Kroto, H.W., et al., C60: buckminster fullerene. Nature, 1985. 318: p. 162. 37. Iijima, S., Helical microtubules of graphitic carbon. Nature, 1991. 354: p. 56-58. 38. Bethune, D.S., et al., Cobalt- catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature, 1993. 363: p. 605-607. 39. Iijima, S. and T. Ichihashi, Single-shell carbon nanotubes of 1-nm diameter. Nature, 1993. 363: p. 603-605. 40. Saito, R., et al., Electronic structure of chiral graphene tubules. Applied Physics Letters, 1992. 60: p. 2204. 41. Peng, H.Y., et al., Smallest diameter carbon nanotubes. Applied Physics Letters, 2000. 77: p. 2831. 42. Qin, L.C., et al., The smallest carbon nanotube. Nature, 2000. 408: p. 50. 43. http://nano.gtri.gatech.edu/. 44. http://www.people.virginia.edu/~lz2n/mse209/Chapter3.pdf. 45. Jung, M., et al., Growth of carbon nanotues by chemical vapordeposition. Dianond and Related Materials, 2001. 10: p. 1235. 46. Kaatz, F.H., et al., Diameter control and emission properties of carbon nanotubes using chemical vapor deposition. Materials Science and Engineering C, 2004. 23: p. 141. 47. Cui, H., et al., Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition. Chemical Physics Letters 2003. 374: p. 222-228. 48. Thostenson, E.T., Z. Ren, and T.W. Chou, Advances in the Science and Technology of Carbon Nanotubes and Their Composites: A Review. Composites Science and Technology, 2001. 61: p. 1899. 49. Yao, Z., et al., Carbon nanotubeintramolecular junctions. Nature, 1998. 402: p. 273. 50. Liu, C., et al., Semi-continuous synthesis single-walled carbon nanotubes by a hydrogen arc discharage method. Carbon, 1995. 37(11): p. 1865-1868. 51. Ebbessen, T.W. and P.M. Ajayan, Large-scale synthesis of carbon nanotubes. Nature, 1992. 358: p. 220-222. 52. Saito, Y., et al., Carbon nanocapsules and single-layered nanotubes produced with platinum-group metals (Ru, Rh, Pd, Os, Ir, Pt) by arc discharge. Journal of Applied Physicals, 1996. 80: p. 3062-3067. 53. Guo, T., et al., Catalytic growth of single-walled nanotubes by laser vaporization. Chemical Physics Letters, 1995. 243: p. 49-54. 54. Collins, P.G. and P. Avouris, Nanotubes for electronics. Scientific American, 2000. 283: p. 62-69. 55. Liu, J., et al., Fullerene crop circles. Nature, 1997. 385: p. 780-781. 56. Birkett, P.R., et al., Transition metal surface decorated fullerenes as possible catalytic agents for the creation of single walled nanotubes of uniform diameter. Chemical Physics Letters, 1997. 281: p. 111-114. 57. Rodriguez, N.M., M.S. Kim, and R.T.K. Baker, Carbon nanofibers: a unique catalyst support medium. Journal of Physical Chemistry, 1994. 98(50): p. 13108-13111. 58. Ren, Z.F., et al., Synthesis of Large Arrays of Well-Aligned Carbon Nanotubes on Glass. Science, 1998. 282: p. 1105-1107. 59. Bower, C., et al., Plasma-induced alignment of carbon nanotubes. Applied Physics Letters, 2000. 77: p. 830-832. 60. Journet, C., et al., Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature, 1997. 388: p. 756-768. 61. Sen, R., A. Govindaraj, and C.N.R. Rao, Carbon nanotubes by the metallocene route. Chemical Physics Letters, 1997. 267: p. 276-280. 62. Fan, S., et al., Self-Oriented Regular Arrays of Carbon Nanotubes and their Field Emission Properties. Science, 1999. 283: p. 512-514. 63. Lee, C.J. and J. Park, Growth model of bamboo-shaped carbon nanotubes by thermal chemical vapor deposition. Applied Physics Letters, 2000. 77: p. 3397-3399. 64. 王世敏, 許祖勛和傅晶, 奈米材料製備技術. 2001, 北京: 化學工業出版社. 65. Halperin, W.P., Quantum size effects in metal particles. Review of Modern Physics, 1986. 58: p. 532. 66. Ball, P. and L. Garwin, Science at the atomic scale. Nature, 1992. 355: p. 761-766. 67. Dawson, W.J., Hydrothermal synthesis of advanced ceramic powders. American Ceramic Society Bulletin, 1988. 67: p. 1673-1678. 68. Morey, G.W., Hydrothermal synthesis. Journal of the American Ceramic Society, 1953. 36: p. 279. 69. Wada, S., T. Suzuki, and T. Noma, Preparation of barium titanate fine particles by hydrothermal method and their characterization. Journal of the Ceramic Society of Japan, 1995. 103: p. 1220. 70. Chittofratt, A. and E. Matijevic, Uniform particles of zinc-oxide of different morphologies. Colloid and Surface, 1990. 48: p. 65. 71. Hernardi, K., et al., Catalytic synthesis of carbon nanotubes using zeolite suppport. Zeolites, 1996. 17: p. 416-423. 72. Kamalakar, G., D.W. Hwang, and L.P. Hwang, Synthesis and characterization of multiwalled carbon nanotubes produced using zeolite Co-beta. ;:. Journal of Material Chemistry, 2002. 12: p. 1819-1823. 73. Diaz, G., et al., Carbon nanotubes prepared by catalytic decomposition of benzene over silica supported cobalt catalysts. . Fullerene Science and Technology, 1998. 6: p. 853-866. 74. Hernardi, K., et al., Carbon nanotubes production over Co/ silica catalysts. Catalysis Letter, 1997. 48: p. 229-238. 75. Hamwi, A., et al., Fluorination of carbon nanotubes. Carbon, 1997. 35: p. 723-728. 76. Colomer, J.F., et al., Large- scale synthesis of single wall carbon nanotubes by catalytic chemical vapor deposition (CCVD) method. Chemical and Physical Letters, 2000. 317: p. 83-89. 77. Tang, S., et al., Control growth of single-walled carbon nanotubes by catalytic decomposition of CH4 over Mo/Co/MgO catalysts. Chemical and Physical Letters, 2001. 350: p. 19-26. 78. Ning, Y., et al., Bulk production of multi-wall carbon nanotube bundles on sol-gel prepared catalyst. Chemical Physics Letters, 2002. 366: p. 555-560. 79. Soneda, Y., et al. High yield of multiwalled carbon nanotubes from the decomposition of acetylene on Co/Mgo catalyst. in American institue of physics. 2001. 80. Pinheiro, P., et al., Effect of hydrogen on the orientation of carbon layers in deposits from the carbon monoxide disproportionation reaction over Co/Al2O3 catalysts. Carbon, 2000. 38: p. 1469-1479. 81. Baker, R.T.K., Catalytic growth of carbon filaments. Carbon, 1989. 27: p. 315-323. 82. Barker, R.T.K., et al., Effect of the surface state of Iron on filamentous carbon formation. Journal of Catalysis, 1982. 77: p. 74-84. 83. Kock, A.J.H.M., et al., iron on filamentous carbon formation. Journal of Catalysis, 1985. 96: p. 468. 84. Baker, R.T.K., J.J. Chludzinski, and N.S. Dudash, The formation of filamentous carbon from decomposition of acetylene over vanadium and molybdenum. Carbon, 1983. 21: p. 463-468. 85. Baker, R.T.K., M.A. Braber, and P.S. Harris, Nucleation and growth of carbon deposits from the nickel catalyzed decomposition of acetylene. Journal of Catalysis, 1972. 26: p. 51-62. 86. Baird, T., J.R. Fryer, and B. Grant, Carbon formation on iron and nickel foils by hydrocarbon pyrolysis-reactions at 700 ℃. Carbon, 1972. 12: p. 591. 87. Oberlin, A., M. Endo, and T. Koyana, High resolution electron microscopy of graphizable carbon fiber prepared by benzene decomposition. Journal of Crystal Growth, 1976. 32: p. 335. 88. Tibbetts, G.G., Vapor-grown carbon fibers: Status and prospects. Carbon, 1989. 27: p. 745. 89. Sinnott, S.B., et al., Model of carbon nanotube growth through chemical vapor deposition. Chemical Physics Letters, 1999. 315: p. 25. 90. Kiang, C.-H. and W.A.G. III, Catalytic Effects of Heavy Metals on the Growth of Single-Layer Carbon Nanotubes and nanoparticles. Physical Review Letters 1996. 76: p. 2515-2518. 91. Lee, Y.H., S.G. Kim, and D. Tomanek, Catalytic growth of single-wall carbon nanotubes: an Ab initio study. Physical Review Letters, 1997. 78: p. 2393-2396. 92. Maiti, A., C.J. Brabec, and J. Bernholc, Kinetics of metal-catalyzed growth of single-walled carbon nanotubes. Physical Review B 1997. 55: p. R6097-R6100. 93. Lee, Y.T., et al., Temperature-dependent growth of vertically aligned carbon nanotubes in the range 800-1100℃. Journal of Physical and Chemitry B, 2002. 106: p. 7614-7618. 94. Liu, K., et al., A growth mark method for studying growth mechanism of carbon nanotube arrays. Carbon, 2005. 43: p. 2850-2056. 95. Ni, L., et al., Kinetic study of carbon nanotube synthesis over Mo/Co/MgO catalysts. Carbon, 2006. 44: p. 2265-2272. 96. Park, Y.S., et al., High yield purification of multiwalled carbon nanotubes by selective oxidation during thermal annealing. Carbon, 2001. 39: p. 655. 97. Tran, N.E. and S.G. Lambrakos, Purification and defect elimination of single-walled carbon nanotubes by the thermal reduction technique. Nanotechnology, 2005. 16: p. 639. 98. Vivekchand, S.R.C., et al., New method of purification of carbon nanotubes based on hydrogen treatment. Journal of Physical Chemistry B, 2004. 108: p. 6935. 99. Weast, R.C., Handbook of Chemistry and Physics. CRC Press. 1976. 100. Tromp, T.K., R.L. Shia, and M. Allen., Potential Environmental Impact of a Hydrogen Economy on the Stratosphere. Science, 2003. 300 p. 1740 -1742. 101. 徐偉竣, 微量鈀添加改善鎂基儲氫材料之性質研究, 材料科學工程學系. 2004, 國立清華大學. 102. Züttel, A., Material for hydrogen storage. Material Today, 2003. 6: p. 24-33. 103. Dillon, A.C., et al., Storage of hydrogen in single walled carbon nanotubes. Nature, 1997. 386: p. 377-379. 104. Darkrim, F.L., P. Malbrunot, and G.P. Tartaglia, Review of hydrogen storage by adsorption in carbon nanotubes. International Journal of Hydrogen Energy, 2002. 27: p. 193-202. 105. Wang, Q. and J.K. Johnson, Optimization of carbon nanotube arrays for hydrogen adsorption. Journal of Physical and Chemitry B, 1999. 103: p. 4809-4813. 106. 陳東瑩, 碳材作為儲氫材料的研究, 電子工程研究所. 2006, 國立清華大學. p. 47. 107. Gupta, B.K., R.S. Tiwari, and O.N. Srivastava, Studies on synthesis and hydrogenation behaviour of graphitic nanofibres prepared through palladium catalyst assisted thermal cracking of acetylene. Journal of alloys and compounds, 2004. 381: p. 301. 108. Chen, P., et al., High H2 uptake by alkali-doped carbon nanotubes under ambient pressure and moderate temperatures Science, 1999. 285: p. 91 - 93. 109. Chen, Y., et al., Hydrogen storage in aligned carbon nanotubes. Applied Physics Letters, 2001. 78: p. 2128-2130. 110. Lee, S.M., K.S. Park, and Y.C. Choi, Hydrogen adsorption and storage in carbon nanotubes. Journal of the American Chemical Society, 2000. 113: p. 209. 111. Yang, R.T., Hydrogen storage by alkali-doped carbon nanotubes-revisited. Carbon, 2000. 38: p. 623-641. 112. Chong, G., Computer simulations of hydrogen adsorption in single-walled carbon nanotubes. Chemical Journal of Chinese Universities, 2001. 6: p. 958 - 961. 113. Dresselhaus, M.S., K.A. Williams, and P.C. Eklund, Hydrogen adsorption in carbon materials. MRS Bull, 1999. 24: p. 45-50. 114. Wang, Q.Y. and J.K. Johnson, Molecular simulation of hydrogen adsorption in single-walled carbon nanotubes and idealized carbon slit pores. Journal of Chemical Physics, 1999. 110: p. 577-586. 115. Rzepka, M. and P. Lamp, Physisorption of hydrogen on microporous carbon and carbon nanotubes. Journal of Physical and Chemistry B, 1998. 102: p. 10894-10898. 116. Dillon, A.C., T. Gennett, and J.L. Alleman. Carbon nanotube materials for hydrogen storage. in Proceedings of the 2000 US DOE Hydrogen Program Review. 2000. 117. Ye, Y., et al., Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Applied Physics Letters, 1999. 74: p. 2307-2309. 118. Liu, C., et al., Hydrogen Storage in Single-Walled Carbon Nanotubes at Room Temperature. science, 1999. 286: p. 1127-1129. 119. Badzian, A., T. Badzian, and E. Breval, Nanostructured, nitrogen-doped carbon materials for hydrogen storage Thin Solid Film, 2001. 398-389: p. 170-174. 120. Shen, K., et al., The role of carbon nanotube structure in purification and hydrogen adsorption. Carbon, 2004. 42: p. 2315-2322. 121. Zhu, H.W., et al., The effect of surface treatments on hydrogen storage of carbon nanotubes. Journal of Materials Science Letters, 2000. 19: p. 1237-1239. 122. Liu, F., et al., Preparation of short carbon nanotubes by mechanical ball milling and their hydrogen adsorption behavior. Carbon, 2003. 41: p. 2527. 123. Takagi, H., et al., Adsorptive hydrogen storage in carbon and porous materials. Materials Science and Engineering B, 2004. 108: p. 143. 124. Lueking, A. and R.T. Yang, Hydrogen Spillover from a Metal Oxide Catalyst onto Carbon Nanotubes—Implications for Hydrogen Storage. Journal of Catalysis 2002. 206: p. 165-168. 125. Kim, B.J., Y.S. Lee, and S.J. Park, Preparation of platinum-decorated porous graphite nanofibers, and their hydrogen storage behaviors. Journal of Colloid and Interface Science, 2008. 318: p. 530-533. 126. Chen, C.H. and C.C. Huang, Enhancement of hydrogen spillover onto carbon nanotubes with defect feature. Microporous and Mesoporous Materials, 2008. 109 p. 549-559. 127. 顏維廷, 金屬矽酸鹽觸媒於丙烷氧化反應之應用, 化學工程學系. 2001, 國立中興大學. 128. Li, Y. and R.T. Yang, Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover. Journal of the American Chemical Society, 2006. 128: p. 8136-8137. 129. Jr., A.J.L., G. Qi, and R.T. Yang, Hydrogen Storage in Nanostructured Carbons by Spillover: Bridge-Building Enhancement. Langmuir, 2005. 21: p. 11418-11424. 130. Lueking, A.D. and R.T. Yang, Hydrogen spillover to enhance hydrogen storage—studyof the effect of carbon physicochemical properties. Applied Catalysis A: General, 2004. 265: p. 259-268. 131. 陳力俊, 材料電子顯微鏡學. 1994: 科儀叢書. 132. 陳家全, 李家維和楊瑞森, 生物電子顯微鏡學, 貴儀中心. 1991. 133. 林智仁, 材料分析技術專題,. 工業材料雜誌, 2002. 181: p. 94. 134. 許樹恩和吳泰伯, X光繞射原理與材料結構分析. 1993: 國材料科學學會. 135. Ertl, G., H. Knözinger, and J. Weitkamp, Handbook of HeterogeneousCatalysis. Vol. 3. 1997: Weinheim. 1508. 136. 柯以侃和吳明珠, 儀器分析 (熱分析法). 1999: 文京圖書有限公司. 137. 洪郁婷, 氮化物的奈米結構, 化學工程學系. 2001, 國立臺灣大學. 138. Venter, J.J. and M.A. Vannice, Modifications of a diffuse reflectance cell to allow the characterization of carbon-supported metals by DRIFTS. Applied Spectroscopy, 1988. 42: p. 1096-1103. 139. Delgass, W.N., et al. Spectroscopy in heterogeneous catalysis. in Academic Press. 1979. New York. 140. Jehng, J.M., et al., Structural characteristics and reactivity properties of the tantalum modified mesoporous silicalite (MCM-41) catalysts. Microporous and Mesoporous Materials 2007. 99 p. 299-307. 141. Jun, S., et al., Synthesis of new nanoporous carbon with hexagonally ordered mesostructure. J. Am. Chem. Soc., 2000. 122: p. 10712-10713. 142. Reddy, K.M., I. Moudrakovski, and A. Sayari, Synthesis of mesoporous vanadium silicate molecular sieve. Journal of the Chemical Society, Chemical Communications 1994: p. 1059-1060. 143. Luan, Z., et al., Synthesis and Spectroscopic Characterization of Vanadosilicate Mesoporous MCM-41 Molecular Sieves. Journal of Physical Chemistry, 1996. 100: p. 19595-19602. 144. Wei, D., et al., Synthesis and characterization of vanadium substituted mesoporous molecular sieves. Journal of Physical Chemistry 1999. 103: p. 2113-2121. 145. Jehng, J.-M., W.-C. Tung, and C.-H. Kuo, The formation mechanisms of multi-wall carbon nanotubes over the Ni modified MCM-41 catalysts. Journal of porous material, 2008. 15: p. 43-51. 146. Miecznikowski, A. and J. Hanuza, Infrared and Raman studies of ZSM-5 and silicalite-1 at room, liquid nitrogen and helium temperatures. Zeolites, 1987. 7: p. 249. 147. Brinker, C.J., et al., NMR confirmation of strained ''defects'' in amorphous silica. Journal of Non-Crystalline Solids, 1988. 99: p. 418-428. 148. Morrow, B.A. and A.J. McFarlan, Chemical reactions at silica surfaces. Journal of Non-Crystalline Solids, 1990. 120: p. 61-71. 149. Wachs, I.E., et al., In situ Raman spectroscopy studies of bulk and surface metal oxide phases during oxidation reactions Catalysis Today, 1996. 32: p. 47-55. 150. Baltes, M., et al., Supported tantalum oxide and supported vanadia-tantala mixed oxides:structural characterization and surface properties. Journal of Physical and Chemitry B, 2001. 105: p. 6211-6220. 151. Gao, X., J.M. Jehng, and I.E. Wachs, In situ UV–vis–NIR diffuse reflectance and raman spectroscopic studies of propane oxidation over ZrO2-supported vanadium oxide catalysts Journal of Catalysis, 2002. 209: p. 43-50. 152. Bettahar, M.M., et al., On the. Partial Oxidation of Propane and propylene on mixed oxide catalysts. Applied Catalysis A: General, 1996. 145: p. 1-48. 153. Yang, Y., et al., Growth of carbon nanotubes with metal-loading mesoporous molecular sieves catalysts. Materials Chemistry and Physics, 2003. 82: p. 440-443. 154. Sinha, A.K., D.W. Hwang, and L.P. Hwang, A novel approach to bulk synthesis of carbon nanotubes filed with metal by a catalytic chemical vapor deposition method. Chemical Physics Letters, 2000. 332: p. 45. 155. Delpeux, S., et al., High Yield of Pure Multiwalled Carbon Nanotubes from the Catalytic Decomposition of Acetylene on in Situ Formed Cobalt Nanoparticles Journal of Nanoscience and Nanotechnology, 2002. 2: p. 481-484. 156. Singha, B.K., et al., Growth of multiwalled carbon nanotubes from acetylene over in situ formed Co nanoparticles on MgO support. Solid State Communications, 2006. 139: p. 102-107. 157. Rao, A.M., et al., Diameter-selective raman scattering from vibrational modes in carbon nanotubes. Science, 1997. 275: p. 187-191. 158. Egeberg, R.C., et al., Dissociation of CH4 on Ni(111) and Ru(0001). Surface Science, 2002. 497: p. 183-193. 159. Ramsvik, T., et al., Acetylene chemisorption and decomposition on the Co(11_220) single crystal surface. Surface Science, 2002. 499: p. 183-192. 160. Nagakura, S., Study of metallic carbides by electron diffraction part IV. cobalt carbide. Journal of the Physical Society of Japan, 1961. 16(6): p. 1213-1219. 161. Kiang, C.H., et al., Size Effects in Carbon Nanotubes. Physical Review Letters, 1998. 81(9): p. 1869. 162. Shia, Z., et al., Purification of single-wall carbon nanotubes. Solid State Communications, 1999. 112 p. 35-37. 163. Yang, Q., P. Hou, and F. Li, Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes Chemical Physics Letters, 2001. 345: p. 18-24. 164. Klinke, C., J.M. Bonard, and K. Kern, Thermodynamic calculations on the catalytic growth of multiwall carbon nanotubes. Physical Review B 2005. 71: p. 035403. 165. Bartsch, K., et al., On the diffusion-controlled growth of multiwalled carbon nanotubes. Journal of Applied Physics 2005. 97: p. 114301-114307. 166. Ducati, C., et al., Temperature selective growth of carbon nanotubes by chemical vapor deposition. Journal of Applied Physics 2002. 92: p. 3299-3303. 167. Kukovitsky, E.F., S.G. L''vov, and N.A. Sainov, VLS-growth of carbon nanotubes from the vapor. Chemical Physics Letters, 2000. 317: p. 65-70. 168. Helveg, S., et al., Atomic-scale imaging of carbon nanofibre growth. Nature, 2004. 427: p. 426-429. 169. Ichihashi, T., et al., In situ observation of carbon-nanopillar tubulization caused by liquid-like iron particles. Physical Review Letters, 2004. 92: p. 215702. 170. Jost, W., Diffusion in solids, liquids, gases. New York: Academic, 1960: p. 470-473. 171. Saito, Y., Nanoparticles and filled nanocapsules. carbon, 1995. 33: p. 979-988.
|