跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/02 21:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林照興
研究生(外文):Chao-Hsing Lin
論文名稱:以綠色化學程序合成聚胺酯-脲素樹酯之中間體
論文名稱(外文):Green Chemistry Synthesis of Intermediates for Polyurethane-urea
指導教授:戴憲弘
學位類別:博士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:96
語文別:英文
論文頁數:155
中文關鍵詞:綠色化學聚胺酯-脲素樹酯
外文關鍵詞:polyureadimethyl 44’-methylene diphenylcarbamatediphenyl 44’-methylene diphenylcarbamateAminationchemical recyclingethoxylationpropoxylationPC recycling
相關次數:
  • 被引用被引用:1
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
In this research, two green chemical processes for synthesizing intermediates for polyurethane-urea have been developed successfully. Firstly, environmental friendly processes of non-phosgene approach to two 4, 4’-methylene diphenylcarbamates and isocyanate-free routes based on these intermediates to urea-prepolymers and polyureas have been devised. Secondly, one-pot reaction process with digestion and alkoxylation of the polycarbonate wastes conversion into bishydroxyalky ethers of bisphenol A for use as polyurethane raw materials also have been developed.
In the part one of my study, I worked out a practical synthesis of amine-terminated urea prepolymers and polyureas through the amination of dimethyl 4, 4’-methylene diphenylcarbamate (4, 4’-DM-MDC) and diphenyl 4, 4’-methylene diphenylcarbamate (4, 4’-DP-MDC) in a novel non-phosgene route. The preparation of 4, 4’-DM-MDC was achieved by condensation of methyl N-phenylcarbamate with formaldehyde using concentrated hydrochloric acid as a promotor in a methanol solution at 30 oC. Under these conditions, the result has improved to a 91 % conversion based on methyl N-phenylcarbamate with the selectivity of 2, 4’-DM-MDC at 2 % and 4, 4’-DM-MDC at 91 %. On the other hand, we performed a carbonylation of 4, 4’-methylenedianiline (4, 4’-MDA) with diphenyl carbonate with pivalic acid at 80 oC as the catalyst to achieve the highest yield of 94 % for 4, 4’-DP-MDC.
Amination of 4, 4’-DM-MDC with high boiling-point polyetherdiamines resulted in rapid removal of methanol at around 160 oC to produce amine terminated urea-prepolymers which by reaction with a diisocyanate such as diphenylene diisocyanate (MDI), formed polyureas. This approach however, failed to give high molecular weight polyureas directly when equal moles of short-chained diamines and 4, 4’-DM-MDC were mixed in a one-pot reaction process. On the other hand, amination of 4, 4’-DP-MDC was found to be more efficient than those of 4, 4’-DM-MDC, and could be used for both polyureas and a hydroxyl terminated urea-prepolymer synthesis. The preparation of hydroxyl terminated urea-prepolymer, like 4, 4’-diphenylmethanebis-[(2-hydroxyethyl)urea] for instance, can be prepared in high yield of 97% in minutes, from amination of 4, 4’-DP-MDC and ethanol amine. More conveniently, a one-pot amination of 4, 4’-DP-MDC with a diamine or mixed diamines was also found to be an excellent method for the preparation of high molecular weight polyureas. Thus, the amination approach using 4, 4’-DP-MDC as the key intermediate provides a general and excellent green chemistry route for introducing methylene diphenylene units into urea-prepolymers and polyurea elastomers without using phosgene or diphenylmethane diisocyanate in the overall process
An efficient process of the chemical recycling of polycarbonate (PC) waste into diols of bis-phenol A (BPA) for use as raw materials in PU production also has been developed. This is another development of green process of making PU intermediates through waste materials. Digestion of PC waste in alkylene glycols, i.e., ethylene glycol (EG) and propylene glycol (PG), with catalytic amount of sodium carbonate at 180 oC under normal atmosphere pressure afforded partial alkoxylation products of BPA. This initial product mixture was found to be consisting of BPA (28 %) and monohydroxyethyl ether (MHE-BPA, 40 %) and bishydroxyethyl ether of bisphenol A (BHE-BPA, 25 %) when digested in EG solution. Whereas, in PG digestion solution, the corressponding digestion products consist of monohydroxyproply ether of BPA (MHP-BPA, 53 %) and bishydroxypropyl ether of BPA (BHP-BPA, 21 %) with the rest being un-propoxylated BPA (26%). When these digested solutions were further treated with molar excess of urea with a catalytic amount of zinc oxide at 180 oC, BHE from EG or BHP-BPA from PG was produced in high yields. In both digestion processes, cyclic alkylene carbonates, i. e. ethylene carbonate (EC) or propylene carbonate (PPC), were observed as the transient intermediates which eventually disappears during the prolonged alkoxylation conditions. ZnO was added to the second step as the catalyst to accelerate urea’s trans-esterification process. Both BHE and BHP products have been successfully utilized in making PU polymers of good mechanical properties. This chemical approach thus provides a viable alternative for PC recycling.
Abstract i
Contents iv
Catalogue of Figures vii
Catalogue of Schemes xii
Catalogue of Tables xv
1. Introduction 1-1
1.1. Description 1-1
1.2. Intermediates synthesis of dialkyl 4, 4’-methylene diphenylcarbamatese for polyurethane-urea preparation 1-4
1.3. Intermediates of bishydroxyethyl/propyl ethers of bisphenol A for polyurethane 1-23
2. Experimental section 2-1
2.1. Materials and reagents 2-1
2.2. Instrumentation 2-2
2.3. Experiments 2-2
2.3.1. Preparation of intermediates for polyurea / polyurethane 2-2
2.3.2. Synthesis of amine-terminated urea-prepolymers 2-7
2.3.3. Synthesis of polyureas 2-7
2.3.4. Synthesis of polyurethanes 2-11
3. Results and discussion 3-1
3.1. Synthesis of 4, 4’-methylene diphenylcarbamates 3-1
3.1.1. Condensation of Methyl N-phenylcarbamate with formaldehyde) 3-1
3.1.2. Oxidative carbonylation of MDA with dialkyl carbonate 3-5
3.2. A non-phosgene route to polyureas via amination of 4, 4’-methylene diphenylcarbamates 3-7
3.2.1. Non-phosgene route to amine/hydroxyl terminated urea-prepolymers and polyureas 3-9
3.2.2. Preparation of amine terminated urea-prepolymers from 4, 4’-DM-MDC 3-9
3.2.3. Preparation of hydroxyl terminated urea-prepolymer from 4, 4’-DP-MDC 3-13
3.2.4. Preparation of polyureas from 4, 4’-DP-MDC 3-14
3.2.5. Hydrogen bonding 3-18
3.2.6. Thermal properties of polyurea 3-19
3.3. Preparation of bishydroxylalkyl ethers of bisphenol A form polycarbonate (PC) or PC wastes by using alkylene glycols in the presence of sodium carbonate 3-21
3.3.1. Synthesis of bishydroxyethyl ether of bisphenol A (BHE-BPA) 3-22
Synthesis of bishydroxypropyl ether of bisphenol A (BHP-BPA) 3-23
3.3.2. One-pot alkoxylation by urea-glycol in the presence of zinc oxide 3-26
3.3.3. Selectivity and steric hinderance effect in propoxylation with urea-PG mixture 3-32
3.3.4. Synthesis of PU with bishydroxyalkyl ether of bisphenol A and MDI 3-34
3.3.5. Thermal and mechanical property of PU prepared 3-34
4. Conclusion 4-1
5. Appendix 5-1
5.1. The 12 principles of Green Chemistry 5-1
5.2. Spectra 5-3
1. C. A. M. Afonso and J. G. Crespo, Green Separation Processes, Wiley-VCH, Weinheim, 2005.
2. P. T. Anastas and J. C. Warner, Green Chemistry: Theory and Practice, Oxford
University Press, Oxford, 1988.
3. C. Lorenzetti, P. Manaresi, C. Berti and G. Barbiroli, J Polym Environ, 2006, 14 (1), 89-101.
4. J. Davy, Philosophical Transactions of the Royal Society of London, 1812, 102, 144–151.
5. J. Borak and W. F. Diller, J Occup Environ Med, 2001, 43 (2): 110–9; W. Schneider and W. Diller, Ullmann''s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2002.
6. H. Ulrich, Chemistry and Technology of Isocyanates, John Wiley & Sons, 1996.
7. R. Heitkamper, K. Konig, R. Fauss, and K. Findeisen, US Pat. 4 388 238, 1983.
8. I. Izdebskii and D. Pawlak, Synthesis 1989, 6, 423.
9. M. Aresta, C. Berloco, E. Quaranta, Tetrahedron 1995; 51(29), 8073.
10. (a) H. Hellbach, F. Merger, F. Towae, US Pat., 4 596 679, 1986; (b) G. Bohmholdt, W. Heitmann, P. Kirchner, H.-W. Michalczak, US Pat., 5 360 931, 1994.
11. (a) W. D. McGhee, B. L. Parnas, D. P. Riley and J. J. Talley, US Pat., 5 223 638, 1993; (b) W. D. McGhee and T. E. Waldman, U.S. Pat., 5 189 205, 1992.
12. J. G. Zajacek, J. J. McCoy and K. E. Fuger, US Pat., 3 895 054, 1975.
13. (a) S. Fukuoka and T. Watanabe, U.S. Pat., 4 552 974, 1985; (b) S. Fukuoka, M. Chono and T. Watanabe, U.S. Pat., 4 547 322, 1985.
14. C. L. Rodriguez, E. T. Shawl and H. S. Kesling, Jr., US Pat., 5 220 601, 1993.
15. Y. R. Chin and C. T. Huang, Process Economics Program, SRI PEP Review No. 83-2-2, Chem. Systems PERP, 83-Q-3, California, 1984.
16. J. Ryn, A. M. Brownstein, US. Pat., 4 415 745, 1983; J.-Y. Ryu, K. K. Rao, R. J. Spohn, R. Drogin, US. Pat., 4 321 402, 1982.
17. T. Ikariya, M. Itagaki, M. Mizuguchi, I. Sakai and O. Tajima, US Pat., 4 699 994, 1987.
18. N. Yamazaki and T. Igughi, Polym. Sci., Polym. Chem. Ed., 1979, 17(3), 835-841.
19 K. Harada, R. Sugise, K. Kashiwagi and T. Matsuura, US Pat., 6143917, 2000.
20. A. Bosetti, E. Cauchi, V. Carletti and P. Cesti, US Pat., 6034265, 2000.
21. W. J. Blank, Proceedings of the Water-Borne and Higher-Solids Coatings Symposium, 1990, 17th, 279-91.
22. W. J. Blank, Polymeric Materials Science and Engineering, 1998, 79, 399-400.
23. L. G. Wolgemuth and C. Hill, US Pat., 3950285, 1976.
24. (a) G. Greber and H. R. Kricheldorf, Angew. Chem., Int. Ed. Engl. 1968, 7, 941. (b) W. H. Pirkle and M. S. Hoekstra, J. Org. Chem. 1974, 39, 3904. (c) W. H. Pirkle and J. R. Hauske, J. Org. Chem. 1977, 42, 2781. (d) V. F. Mironov, V. P. Kozyukov and G. I. Orlov, J Gen,. Chem. USSR (Engl. Transl.) 1981, 51, 1555. (e) P. Y. Chong, S. Z. Janicki and P. A. Petillo, J. Org. Chem. 1998, 63, 8515-8521. (f) S. Gastaldi, S. M. Weinreb and D. Stien, J. Org. Chem. 2000, 65, 3239-3240.
25. (a) W. F. Gum, W. Riese and H. Ulrich, Hanser, Reaction Polymers, 1992, Parts IIIC4, pp. 393-395; (b) H. Takeyasu, M. Okamura, N. Tsukida and H. Sato, US Pat., 6 043 291, 2000; (c) F. Sanns, Jr., US Pat., 6 326 428, 2001; (d) J. W. MeLaren, K. J. Rettmann, US Pat., 6 265 464, 2001; (e) M. S. Super, D. D. Steppan, W. E. Slack, B. H. Potts, M. F. Hurley, US Pat., 6 765 080, 2004.
26. (a) D. J. Primeaux, Spray Polyurea Versatile High Performance Elastomer for the Polyurethane Industry In: Polyurethanes 89, Proceedings of the SPI 32nd Annual Technical/Marketing Conference. San Francisco, 1989, 26; (b) D. J. Primeaux, A study of Polyurea Spray System. Hign Solids Coatings, 1994, 15:2; (c) D. J. Primeaux, Polyurea Spray Technology in Commercial Application, 60 years of Polyurethanes: International Symposium and Exhibition, 1997.
27. (a) J. A. Johnston, US Pat., 6 797 798, 2004; (b) D. J. Primeaus II, K. C. Anglin, US Pat., 5 731 397, 1998; (c) A. Vanderhider, J. J. Hemphill, J. Elastomers Plast. 1987, 19, 287; (d) J. H. Ewen, SAE Meeting, Feb. 1985, Paper # 850156.
28. (a) C. Gao, Y. Z. Jin, H. Kong, R. L. D. Whitby, S. F. A. Acquah, G. Y. Chen, H. Qian, A. Hartschuh, S. R. P. Silva, S. Henley, P. Fearon, H. W. Kroto, and D. R. M. Walton, J. Phys. Chem. B 2005, 109, 11925-11932; (b) S. H. Seo, Y.-W. Kim and J. Y. Chang, Marcomolecule, 2005, 38, 1525-1527; (c) H. M. Keizer, R. P. Sijbesma, J. F. G. A. Janesen, G. Pasternack and E. W. Meijer, Marcomolecules, 2003, 36, 5602-5606; (d)S. Sivakova, D. A. Bohnsack, M. E. Mackay, R. Suwanmala and S. J. Rowan, A. El-ghayoury, A. P. H. J. Schenning, P. A. van Hal, J. K. J. van Duren, R. A. J. Janssen and E. W. Meijer, Angew. Chem. Int. Ed. 2001, 40(19), 3660-3663.
29. (a) R. M. Versteegen, R. P. Sijbesma and E. W. Meijer, Marcomolecules 2005, 38, 3176-3184; (b) R. M. Versteegen, R. Kleppinger, R. P. Sijbesma and E. W. Meijer, Marcomolecules 2006, 39, 772-783.
30. (a) S. Maier, T. Loontjens, B. Scholtens and R. Mulhaupt, Angew. Chem. Int. Ed. 2003, 42, 5094-5097; (b) S. Maier, T. Loontjens, B. Scholtens and R. Mulhaupt, Marcomolecules 2003, 36, 4727-4734.
31. B. Thavonekham, Synthesis, 1997, 1189-1994.
32. S. Nobuyuki, T. Masahide, JP 2000128979, 2000.
33. T. Yoshino, S. Inaba and Y. Ishido, B. Chem. Soc. Jpn 1973, 46, 553.
34. (a) J. T. Dunn, and C.W. Va., US Pat., 2 773 881, 1956; (b) C. H. McMullen, N. Y. Katonah, J.R. Nelson, S. Charleston, W. Va, B.C. Ream, C. W. Va., J. A. Sims, J. Elkview and W. Va., US Pat., 4 314 945, 1982.
35. W. Y. Su and G.P. Speranza, US. Pat., 5 003 084, 1991.
36. M. Doya, Y. Kanbara, K. Kimizuka and T.Okawa, US. Pat., 5 440 004, 1995.
37. L. Soos, G. Y. Deak, S. Keki and M. Zsuga, Polymer 1999, 37, 545-550.
38. D. J. Liaw, P. S. Chen, J. Polym. Sci. Pol. Chem. 1996, 34, 885.
39. W. Z. Liao, Master Thesis, National Chung Hsing University, 2005.
40. A. Oku, S. Tanaka and S. Hata, Polymer 2000, 41,6749-6753.
41. L. C. Hu, A. Oku and E. Yamada, Polymer 1998, 39, 3841-3845.
42. W. Y. Chen, Master Thesis, Chaoyang University of Technology, 2005.
43. G. Witt, US Pat., 5 619 898, 1997; H. J. Buysch, US Pat., 5 652 275, 1997.
44. D. J. Williams, Bachelor Thesis, University of New Haven, 1980.
45. W. T. Cologne-Flittard and H. R. Leverkusen, US Pat., 3 388 100, 1968.
46. R. Michel and L. Jacques, FR. Pat., 1 366 067, 1964
47. S. Fukuooka, C. Masazumi and K. Masashi, J. Chem. Soc. Commun., 1984, 399.
48. X.-Q. Zhao, Y.-J. Wang, F. Li, W.-H. Zhang, D.-Z. Hao, Acta Petrolei Sinica, 2001, 17. 53-58
49. R. E. Drumright, P. R. Gruber, and D. E. Henton, Adv. Mater., 2000, 12(23), 1841-1846; D. M. Bigg, R. G. Sinclair, E. S. Lipinsky, J. H. Litchfield, B. R. Allen, US Pat., 6 323 307, 2001.
50. D, J. David and H. B. Staley, Analytical Chemistry of the Polyurethanes, vol. XVI, part III, pp. 357-358.
51. V. P. Arkhireev, V. G. Kostromina, E. V. Kuznetsov, Zhurnal Organicheskoi Khimii, 1970, 6(10), 2033-5; W. T. Cologne-Flittard and H. R. Leverkusen, US Pat., 3 388 100, 1968.
52. H. Matsuda, Polym. Sci., Polym. Chem. Ed., 1974, 12(2), 469-81; DE Pat., 2 402 799, 1975.
53. V. P.Kuleshov, V. P. Arkhireev, B. Ya. Teitel''baum, Vysokomolekulyarnye Soedineniya, Seriya B: Kratkie Soobshcheniya, 1978, 20(10), 747-50.
54. M. van der SChuur, B. Noordover and R. J. Gymans, Polymer, 2006, 47, 1091-1100.
55. M. Doya, T. Ohkawa, Y. Kanbara, A. Okamoto and K. Kimizuka, US. Pat., 5 349 077, 1994.
56. B. Mavis and M. Akinc, J. Am. Ceram. Soc., 2006, 89, 471-477
57. O. Krocher, M. Elsener and M. Koebel, Analytica Chimica Acta, 2005, 537, 393-400.
58. M. U. Alzueta, R. Bilbao, A. Millera, M. Oliva and J. C. Ibanez, Energy & Fuels, 2000, 14, 509-510.
59. C. Wentrup and H. Bornemann, Eur. J. Org. Chem., 2005, 4521-4524.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top