跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/26 08:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊智凱
研究生(外文):Chih-Kai Chuang
論文名稱:仿生性高分子液胞之製備及其結構探討
論文名稱(外文):Preparation and Structural Characterization of Biomimetic Polymer Vesicles
指導教授:邱信程
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:79
中文關鍵詞:高分子液胞奈米級液胞
外文關鍵詞:polymer vesiclesnanoscale vesicles
相關次數:
  • 被引用被引用:0
  • 點閱點閱:138
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究所採用脂質共聚合高分子poly(acrylic acid-co-distearin acrylate),是以聚丙烯酸poly(acrylic acid, PAAc)為主鏈,於側鏈上修飾不同比例之二硬脂酸甘油酯 (distearin),可藉由改變製備方法製備出微米級及奈米級高分子液胞 (polymer vesicles)。然而利用二次乳化法所製備微米級高分子液胞,藉由光學顯微鏡、雷射掃描式共軛焦顯微鏡 (LSCM) 觀察其形態,並證實其具有內部含水隔間的液胞結構。此高分子液胞具有許多特質,其一為具有高度的結構穩定性,於真空乾燥後都能維持中空球體結構,甚至於高離子強度環境也能維持液胞結構。可藉由調整有機共溶劑的混合比例及增加共聚物中之接枝比率,以製備不同粒徑大小之微米級高分子液胞。此高分子液胞系統具有pH應答,於高pH值環境形態會由液胞形變為微胞,此時會迫使原包覆水溶性物質物擴散釋放。
另一製備方法為溶劑置換法可製備出奈米級粒子,藉由穿透式電子顯微鏡 (TEM) 及掃描式電子顯微鏡 (SEM) 觀察其奈米粒子形態;並以動態光散射粒徑分析儀(DLS)、螢光光譜儀等分析奈米液胞於不同pH值下其性質及結構變化。將包覆親水性物質的奈米粒子經由TEM、LSCM影像證實其為液胞結構;利用DLS分析可證實奈米液胞膜具有酸鹼應答特性,於高pH值環境下其液胞胞膜會澎潤使粒徑增加,DSA含量較多的高分子所形成的奈米高分液胞其胞膜較緻密。
In this study, lipid copolymer poly(acrylic acid-co-distearin acrylate) was synthesized by using poly(acrylic acid) as the backbone modified with different ratio of distearin as the side chain. Through various approaches to preparation, we got microscale and nanoscale polymeric vesicles. By double emulsion method, microscale vesicles were prepared and observed to be hollow spherical structures through SEM images. Via encapsulating hydrophilic fluorescent material into the vesicles and observed by LSCM, aqueous compartments within the polymeric vesicles were further confirmed. This kind of microscale polymeric vesicles was highly stable at high salt concentration and the hollow sphere structures still remained after lyophilization. The vesicles size can be controlled by adjusting either the THF/CHCl3 ratio used during emulsification or the DSA content content of copolymers. However, when the polymeric vesicles consisted in high pH environments, the polymeric spheres turned vesicles into solid micelles and then the hydrophilic materials within the vesicles was also released at the same time. By solvents replacement method, nanoscale vesicles were prepared and observed to be collapsed nanosphere structures through SEM images. Via encapsulating hydrophilic fluorescent material into the vesicles and observed by TEM and LSCM, aqueous compartments within the polymeric vesicles were also confirmed. When the nanoscale polymeric vesicles consisted in high pH environments, the membrane exhibited swelling behavior. As a result, nanoscale polymeric vesicles with higher DSA contents would be more rigid.
第一章 緒論---------------------------------------------------1
第二章 文獻回顧-----------------------------------------------3
2-1 微脂粒介紹-------------------------------------------------------------------------3
2-2高分子液胞(polymeric vesicles or polymersomes)---------------------------4
2-3 雙性分子親水鏈段重量分率(f)對聚集形成形態的影響-------------------7
2-4 製備高分子液胞的方法----------------------------------------------------------9
2-4-1 無溶劑技術(solvent free techniques)--------------------------------------9
2-4-2 溶劑置換技術 (Solvent displacement technique)---------------------12
2-5高分子液胞之性質檢測方式---------------------------------------------------13
2-5-1光學顯微技術 (Optical microscopy techniques)-----------------------13
2-5-1-1微分干涉差顯微鏡 (Differential interference contrast, DIC)---13
2-5-2 螢光顯微鏡 (Fluorescence microscopy) -------------------------------14
2-5-2-1 Wide-field epifluorescence microscopy---------------------------- 14
2-5-2-2共軛聚焦螢光顯微鏡 (Confocal fluorescence microscopy)----14
2-5-3 電子顯微鏡 (Electron microscopy) -------------------------------------15
2-5-3-1 穿透式電子顯微鏡 (Transmission electron microscopy)------15
2-5-3-2 掃描式電子顯微鏡 (Scanning electron microscopy)-----------16
2-5-4 顯微操作 (Micromanipulation) -----------------------------------------16
2-5-5 分子量 (Mw) 的影響於膜厚度及strong segregation limit (SSL)-18
2-6高分子液胞的應用---------------------------------------------------------------19
第三章 實驗部分----------------------------------------------------------------------22
3-1 實驗藥品--------------------------------------------------------------------------22
3-2 實驗儀器及設備-----------------------------------------------------------------24
3-3 高分子之合成及性質檢測-----------------------------------------------------25
3-3-1 前置作業---------------------------------------------------------------------25
3-3-1-1 N,N-Dimethyl formamide (DMF)之除水--------------------------25
3-3-1-2 Triehtylamine (TEA)之除水------------------------------------------25
3-3-1-3 AIBN之純化-----------------------------------------------------------25
3-3-2單體N-acroyloxysuccinimide (NAS) 之合成--------------------------25
3-3-3 Poly(NAS)之合成-----------------------------------------------------------26
3-3-4 Poly(AAc-co-distearin acrylate) (poly(AAc-co-DSA))之合成-------27
3-3-4-1 Poly(NAS-co- DSA)之合成------------------------------------------27
3-3-4-2 poly(AAc-co- DSA)之合成------------------------------------------28
3-3-5 接枝高分子之基本性質檢測---------------------------------------------29
3-3-5-1高分子組成測定-------------------------------------------------------29
3-3-5-2接枝高分子主鏈之分子量測定-------------------------------------30
3-4 利用二階段乳化法製備高分子液胞-----------------------------------------31
3-4-1高分子液胞(polymer vesicle)製-------------------------------------------31
3-4-2 調控高分子液胞之粒徑---------------------------------------------------31
3-4-3 高分子液胞於不同pH值之製備----------------------------------------31
3-4-4 高分子液胞於不同離子強度之製備------------------------------------31
3-5 奈米高分子液胞之製備--------------------------------------------------------32
3-6 奈米液胞之性質檢測-----------------------------------------------------------32
3-6-1 粒徑分析---------------------------------------------------------------------32
3-6-2 奈米液胞之螢光光譜儀 (Spectorfluorophotometer) 分析---------33
3-6-3 表面電位 (Zeta potential) 分析-----------------------------------------33
3-7 高分子液胞利用顯微鏡之性質檢測方式-----------------------------------34
3-7-1光學顯微鏡 (optical microscope, OM)----------------------------------34
3-7-2雷射掃描式共軛焦顯微鏡(laser scanning confocal microscope, LSCM) -----------------------------------------------------------------------34
3-7-3 穿透式電子顯微鏡 (transmission electron microscope, TEM)-----34
3-7-4 掃描式電子顯微鏡 (scanning electron microscope, SEM)----------34
第四章 結果與討----------------------------------------------------------------------35
4-1高分子之性質鑑定---------------------------------------------------------------35
4-1-1高分子之純化結果----------------------------------------------------------35
4-1-2高分子之定性分析----------------------------------------------------------36
4-1-3高分子之distearin定量分析-----------------------------------------------38
4-1-4高分子之分子量-------------------------------------------------------------38
4-2 高分子液胞-----------------------------------------------------------------------39
4-3利用電子顯微鏡觀察高分子液胞---------------------------------------------44
4-4 控制高分子液胞之粒徑--------------------------------------------------------45
4-5 觀察高分子液胞於不同pH值環境下之形態-------------------------------49
4-5-1高分子液胞於不同pH值環境下之形態及粒徑-----------------------49
4-5-2 包覆親水性物質於不同pH值環境下之變化-------------------------55
4-6高分子液胞於不同離子強度 (濃度) 分析----------------------------------59
4-7 奈米粒子--------------------------------------------------------------------------62
4-8奈米粒子之形貌------------------------------------------------------------------64
4-9包覆親水物質於奈米液胞內---------------------------------------------------66
4-10奈米液胞之酸鹼應答分析-----------------------------------------------------69
4-10-1螢光分析--------------------------------------------------------------------69
4-10-2奈米液胞於不同pH值之粒徑與表面電位測定----------------------71
4-11奈米液胞於高pH值之形貌---------------------------------------------------73
第五章 結論------------------------------------------------------------------------------74
第六章 參考文獻------------------------------------------------------------------------75
[1]Discher B. M., Won Y. Y., Ege D. S., Lee J. C-M, Bates F. S., Discher D. E., Hammer D. A., Science 1999, 284, 1143-1146.
[2]Jain S., Bates F. S., Science 2003, 300, 460-464.
[3]Discher D. E., Eisenberg A., Science 2002, 297, 967-973.
[4]Yildiz M. E., Prud’homme R. K., Robb I., Adamson D. H., Polym. Adv. Technol. 2007, 18, 427-432.
[5]Bangham A. D., Standish M. M., Watkins J. C., J. Mol. Biol. 1965, 13, 238-252.
[6]Chiu H. C., Lin Y. W., Huang Y. F., Chuang C. K., Chern C. S., Angew. Chem. Int. Ed. 2008, 47, 1875-1878.
[7]New RRC, Liposomes: a practical approach 1990, Oxford Univ. Press.
[8]Ahmed F., Discher D. E., J. Controlled Release 2004, 96, 37-53.
[9]Zhang L., Eisenberg A., Science 1995, 268, 1728-1731.
[10]Holder S. J., Hiorns R. C., Sommerdijk N. A. J. M., Williams S. J., Jones R. G., Nolte R. J. M., Chem. Commum. 1998, 1445-1446.
[11]Battaglia G., Ryan A. J., J. Phys. Chem. B. 2006, 110, 10272-10279.
[12]Stoenescu R., Meier W., Chem. Commum. 2002, 3016-3017.
[13]Uzun O., Xu H., Jeoung E., Thibault R. J., Rotello V. M., Chemi. Eur. J. 2005, 11, 6916-6920.
[14]Li Y., Lokitz B. S., McCormick C. L., Angew. Chem. Int. Ed. 2006, 45, 5792-5795.
[15]Choi H. J., Montemagno C. D., Nano Letters 2005, 5, 2538-2542.
[16]Dufes C., Schätzlein A. G., Tetley L., Gray A. I., Watson D. G., Oliver J. C, Couet W., Uchegbu I. F., Pharmaceutical Research 2000, 17, 1250-1258.
[17]Graff A., Sauer M., Gelder P. V., Meier W., Proc. Natl. Acad. Sci. USA 2002, 99, 5064-5068.
[18]Ringsdorf H., Schlarb B.,Venzmer J., Angew. Chem. Int. Ed. 1988, 27, 113-158.
[19]Meier W., Chem. Soc. Rev. 2000, 29, 295-303.
[20]Bellomo E. G., Wyrsta M. D., Pakstis L., Pochan D. J., Deming T. J., Nat. Mater. 2004, 3, 244-248.
[21]Cornelissen J. J. L. M., Fischer M., Sommerdijk N. A. J. M., Nolte R. J. M., Science 1998, 280, 1427-1430.
[22]Discher D. E., Ahmed F., Annu. Rev. Biomed. Eng. 2006, 8, 323-341.
[23]Ahmed F., Pakunlu R. I., Srinivas G., Brannan A., Bates F., Klein M. L., Minko T., Discher D. E., Molecular pharmaceutics 2006, 3, 340-350.
[24]Ahmed F., Pakunlu R. I., Brannan A., Bates F., Minko T., Disher D. E., J. Control. Release 2006, 116, 150-158.
[25]Kita-Tokarczyk K., Grumelard J., Haefele T., Meier W., Polymer 2005, 46, 3540-3563.
[26]Reeves J. P., Dowben R. M., J. Cell Phisiol. 1969, 73, 49-60.
[27]Napoli A., Boerakker M. J., Tirelli N., Nolte R. J. M., Sommerdijk N. A. J. M., Hubbell J. A., Langmuir 2004, 20, 3487-3491.
[28]Nikova A. T., Gordon V. D., Cristobal G., Talingting M. R., Bell D. C., Evans C., et al., Macromolecules 2004, 37, 2215-2218.
[29]Lee J. C-M, Bermudez H., Discher B. M., Sheehan M. A., Won Y. Y., Bates F. S., Discher D. E., Biotechnol. Bioeng. 2001, 73, 135-145.
[30]Reinecke A. A., Döbereiner H-G, Langmuir 2003, 19, 605-608.
[31]Dimova R., Seifert U., Pouligny B., Förster S., Döbereiner H-G, Eur. Phys. J. E. 2002, 7, 241-250.
[32]Ghoroghchian P. P., Li G., Levine D. H., Davis K. P., Bates F. S., Hammer D. A., Therien M. J., Macromolecules 2006, 39, 1673-1675.
[33]Lin J. J., Silas J. A., Bermudez H., Milam V. T., Bates F. S., Hammer D. A., Langmuir 2004, 20, 5493-5500.
[34]Ghoroghchian P. P., Frail P. R., Susumu K., Blessington D., Brannan A. K., Bates F. S., Chance B., Hammer D. A., Therien M. J., Proc. Natl. Acad. Sci. USA 2005, 102, 2922-2927.
[35]Napoli A., Valentini M., Tirelli N., Müller M., Hubbell J. A., Nat. Mater. 2004, 3, 183-189.
[36]Arifin D. R., Palmer A. F., Biomacromolecules 2005, 6, 2172-2181.
[37]Menger F. M., Angelova M. I., Acc. Chem. Res. 1998, 31, 789-797.
[38]Reiner J. E., Wells J. M., Kishore R. B., Pfefferkorn C., Helmerson K., Proc. Natl. Acad. Sci. USA 2006, 103, 1173-1177.
[39]Battaglia G., Ryan A. J., J. Am. Chem. Soc. 2005, 127, 8757-8764.
[40]Kremer J. M. H., Van der Esker M. W., Pathmamanoharan C, Wiersema PH, Biochemistry 1977, 16, 3932-3935.
[41]Meng F., Hiemstra C., Engbers G. H. M., Feijen J., Macromolecules 2003, 36, 3004-3006.
[42]Meng F., Engbers G. H. M., Feijen J., J. Control. Release 2005, 101, 187-198.
[43]Mulkey D. K., Henderson A., Ritucci N. A., Putnam RW, Dean JB, Am. J. Physiol. 2004, 286, C940-C51.
[44]Yip K. P., Kurtz I., Methods Cell Biol. 2002, 70, 417-427.
[45]Morgan C. G., Mitchell A. C., Chromosome Res. 1996, 4, 261-263.
[46]Swanson J. A., Methods Microbiol 2002, 31, 1-18.
[47]Najafi F., Sarbolouki M. N., Biomaterials 2003, 24, 1175-1182.
[48]Christian N. A., Milone M. C., Ranka S. S., Li G., Frail P. R., Davis K. P., Bates F. S., Therien M. J., Ghoroghchian P. P., June C. H., Hammer D. A., Bioconjugate Chem. 2007, 18, 31-40.
[49]Bozzola J. J., Russell L. D., Electron microscopy: principles and techniques for biologists 1982, Jones and Bartlett Publishers.
[50]Olbrich K., Rawicz W., Needham D., Evans E., Biophysi. J. 2000, 79, 321-327.
[51]Bermudez H., Brannan A. K., Hammer D. A., Bates F. S., Discher D. E., Macromolecules 2002, 35, 8203-8208.
[52]Srinivas G., Disher D. E., Klein M. L., Nat. Mater. 2004, 3, 638-644.
[53]Vriezema D. M., Angew. Chem. Int. Ed. 2007, 46, 7378-7382.
[54]Sauer M., Haefele T., Graff A., Nardin C., Meier W., Chem. Commum. 2001, 2452-2453.
[55]Broz P., Driamor S., Zuegler J., Marsch S., Meier W., Hunziker P., Nano Letter 2006, 6, 2349-2353.
[56]Meier W., Nardin C., Winterhalter M., Angew. Chem. Int. Ed. 2000, 39, 4599-4602.
[57]Winterhalter M., Hilty C., Bezrukov S. M., Nardin C., Meier W., Fournier O., Talanta 2001, 55, 965-971.
[58]Mecke A., Dittrich C., Meier W., Soft Matter 2006, 2, 751-759.
[59]Adalsteinsson O., Lamotte A., Baddour R. F., Pollak C. K., Colton A., Whitesides G. M, J. Molecular Catalysis 1979, 6, 199-225.
[60]Jenekhe S. A.,Chen X. L., Science 1998, 279, 1903-1907.
[61]Yang J., Piñol R., Gubellini F., Lévy D., Albouy P. A., Keller P., Li M. H., Langmuir 2006, 22, 7907-7911.
[62]Zhang Y., Jiang M., Zhao J., Wang Z., Dou H., Chen D., Langmuir 2005, 21, 1531-1538.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top