跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/03 11:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林宗賢
研究生(外文):Tsung-Hsien Lin
論文名稱:奈米多孔二氧化矽微粒製備與鑑定
論文名稱(外文):Preparation and Characterization of Nano Porous Silica Particles
指導教授:吳震裕
指導教授(外文):Chen-Yu Wu
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:47
中文關鍵詞:多孔二氧化矽
外文關鍵詞:porous silica
相關次數:
  • 被引用被引用:1
  • 點閱點閱:181
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本實驗以十八烷基胺 ( Stearylamine, SA ) 與3-甘油酸丙基三甲氧基矽烷 ( 3-Glycidyl oxypropyl trimethoxysilane, GPS ) 合成具有矽氧烷基的長鏈碳界面活性劑GS,並藉其在水相自組裝成微胞的特性,添加四乙氧基矽氧烷 ( TEOS ) 在微胞表面縮合成SiO2殼層。探討TEOS含量對形成的有機無機殼核微粒型態和物理性質影響,並分析以鍛燒方式得到之中空二氧化矽微粒及其孔洞形貌。以FESEM分析其形貌,GS/TEOS所製備的二氧化矽可形成球形微粒且隨著TEOS添加量增加粒徑有上升的趨勢,添加5-10倍TEOS ( TEOS/GS重量比 ) 時二氧化矽粒徑由9.1 nm 上升至12.2nm,而AFM分析粒徑由9.6 nm上升至11.9 nm;TEM分析粒徑由11.8 nm上升至13.5 nm。親水/親油性質測試發現添加3倍TEOS二氧化矽微粒表面為親油性質,而添加5-10倍TEOS時二氧化矽微粒表面呈現親水性質。NMR分析顯示添加3-10倍TEOS時Q/T比值由4.63增加到20.23,表示微粒中SiO2含量隨著TEOS添加量增加而上升。而TGA分析GS/TEOS製備二氧化矽微粒有機/無機含量比,其SiO2含量與TEOS添加量成正比。BET分析GS/TEOS製備二氧化矽微粒表面積,添加5-10倍TEOS時BET表面積則由221.1 m2/g上升至409.2 m2/g,表示TEOS含量增加可使二氧化矽微粒表面積上升。經由鍛燒去除有機鏈段得到中孔洞的二氧化矽微粒,表面積因有機鏈段去除產生新孔洞而明顯上升,孔洞大小為1.9 nm至2.6 nm。其中添加5倍TEOS之BET表面積為可達到765.6 m2/g。經計算後添加5-10倍TEOS ( TEOS/GS重量比 ) 後可得到SiO2殼層厚度為2.43 nm –3.19 nm。
In this experiment, we used stearylamine (SA) and 3-glycidyloxypropyl-
trimethoxysilane (GPS) to synthesize the surfactant, GS, bearing long alkyl chain of silane and we used its property of self-assembling in water phase to synthesize SiO2 shells on the surface of micelles via adding tetraethyl orthosilicate (TEOS). We investigated how the content of TEOS affects the forms and the physical properties of obtained organic/inorganic core-shell structure. Further, we analyzed the appearance of the hollow SiO2 nano-particles made by calcination and its pore shape. By analyzing with FESEM, we found that the SiO2 produced by GS/TEOS could form spherical particles, and the size of the particles increase with the increase of TEOS. When the added TEOS is 5-10 times the weight of GS, the size of SiO2 particles increases from 9.1 nm to 12.2 nm. Further, the size of SiO2 particles increased from 9.6 nm to 11.9 nm in AFM and increased from 11.8 nm to 13.5 nm in TEM. In testing hydrophobic/hydrophilic properties, we find that the surface of SiO2 particles is hydrophobic while the the added TEOS is 3 times the weight of GS. When the added TEOS is 5-10 times the weight of GS, we observed that the SiO2 particles exhibit hydrophilic property. In NMR analysis, when the amout of TEOS was 3-10 times the weight of GS, the Q/T value increased from 4.63 to 20.23. That revealed the content of SiO2 enhanced with the increase of TEOS. In TGA analysis, after analyzing the content of organic/inorganic of the SiO2 particles produced by GS/TEOS, the additive of TEOS increase along with the the content of SiO2. In BET analysis, by analyzing the surface area of SiO2 particles produced by GS/TEOS, we know that the BET surface area increased from 221.1 m2/g to 409.2 m2/g when the added TEOS is 5-10 times the weight of GS. This means that the increase of the amount of TEOS could result in the increase of the surface of SiO2 particles. After removing the organic chains in the particles by calcination and we obtained mesoporous SiO2 particles, which are from 1.9 nm to 2.6 nm pore, and the BET surface area can reach to 765.6 m2/g when the added TEOS is 5 times that of the weight of GS, Combined with the theoretical calculations, when the added TEOS is 5-10 times the weight of GS, we observed that the thickness of the SiO2 shells varies from 2.43 nm to 3.19 nm.
謝誌……………………………………i
中文摘要……………………………………ii
英文摘要……………………………………iii
目錄……………………………………iv
表目錄……………………………………vi
圖目錄……………………………………viii
一、緒論……………………………………1
1.1前言……………………………………1
1.2多孔性材料介紹……………………………………1
1.3界面活性劑介紹……………………………………3
1.4微胞形成現象……………………………………4
1.5研究動機與目的……………………………………6
二、文獻回顧……………………………………7
2.1溶凝膠法製備二氧化矽相關文獻……………………………………7
2.2界面活性劑自組裝相關文獻……………………………………10
2.3有機矽烷製備二氧化矽相關文獻……………………………………12
三、實驗……………………………………17
3.1實驗項目……………………………………17
3.2實驗材料……………………………………18
3.3研究架構與實驗流程……………………………………20
3.4實驗儀器……………………………………23
3.5實驗步驟……………………………………24
四、結果與討論……………………………………27
4.1、有機矽烷之製備……………………………………………………27
4.2、有機矽烷之分析………………………………27
4.2.1有機矽烷傅立葉轉換紅外光譜分析……………………………27
4.2.2有機矽烷臨界微胞濃度測定……………………………………28
4.3、有機矽烷之奈米多孔二氧化矽微粒製備…………………………29
4.4、有機矽烷之奈米多孔二氧化矽微粒分析……………………………31
4.4.1 Zeta電位分析………………………………31
4.4.2 光散射粒徑分析……………………………………32
4.4.3 表面型態分析 (FESEM、AFM、TEM)………………32
4.4.4 親水/親油性質測試………………………………………34
4.4.5 29Si核磁共振分析 (29Si-NMR)……………………35
4.4.6 能量散佈光譜分析 (EDS) ……………………………37
4.4.7 無機含量分析 (TGA)……………………………………37
4.4.8 BET比表面積與孔洞分析…………………………38
五、結論……………………………………42
六、參考文獻………………………………………………………………44
附錄一、樣品代號說明…………………………………………94
附錄二29Si NMR Q/T比值計算…………………………………………95
[1] 馬遠榮, “奈米科技” , 第108頁, 城邦文化事業股份有限公司, 台北, 民國九十一年
[2] 張立德, “奈米材料”, 第159頁, 五南書局, 台北, 民國九十一年
[3] Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli J. C.; Beck, J. S., Nature, 359, 710 (1992)
[4] Beck, J. S ;Vartuli, J. C.; Roth, W. J. ; Leonowicz, M. E.; Kresge, C. T. Schmitt, K.D.; Chu, C. T – W.; Olson, D. H.; Sheppard, E. W.; Higgins, S. B. and Schlenker, J. L., J. Am. Chem. Soc., 114, 10834 (1992)
[5] Bhatia, S.; “Zeolite catalysis principles and application”, CRC Press, Florida, (1990)
[6] Imelik, B.; Naccache, Y.; Vedrine, J. C.; Coudurier, G.; Praliaud, H. Catalysis by Zeolite, Elesevier, Amsterdam (1980)
[7] Ward, W.J.; Molecular sieve catalysts, in applied industrial catalysis, Vol. 3, Academic Press, New York (1984)
[8] 顧寧, 付德剛, 張海黔, “奈米技術與應用”, 滄海書局出版, 台中, 民國九十二年四月
[9] 林孟萱, “Ag-SrTiO3奈米核-殼結構例子之研究與製備”, 中原大學碩士論文,民國九十二年
[10] Furusawa, K.; Kimura, Y.; Tagawa, T., J. Colloid Interface Sci. 109, 69-76 (1986)
[11] Chen, J. F.; Ding, H. M.; Wang, J. X.; Shao, L., Biomaterials 25, 723-727 (2004)
[12] Fujiwara, M.; Shiokawa, K.; Tanaka, Y.; Nakahara, Y., Chem. Mater. 16, 5420-5426 (2004)
[13] Hah, H. J.; Kim, J. S.; Jeon, B. J.; Koo, S. M.; Lee, Y. E., Chem. Commun. 1717-1713 (2003)
[14] Shaw, D. J., “Introduction to Colloid and Suface Chemistry”, 4th Ed., Butterbworth Heinemann, Oxford, 84-93 (1991)
[15] 李潔如, 牟中原, “微胞、微乳液的形成”, 科學發展月刊,.第1頁 第28期, 民國八十三年十月
[16] 趙承琛, “界面科學基礎”, 第74頁, 台南, 民國八十五年
[17] Holmerg, K.; Jönsson, B.; Kronberg, B.; Lindman, B., “Surfactants and Polymers in Aqueous Solution” 2nd Ed., England, (2003)
[18] Israelachvili, J. N.; Mitchell, D. J.; Ninham, B. W., J. Chem. Soc. Faraday Trans., 72, 1525-1568 (1975)
[19] Evans, F. D.; Wennerstrom, H. “The Colloidal Domain”, 2nd Ed., VCH, New York, p. 90 (1990)
[20] Reymond, J. P.; Lefebvre, F.; Bourgeat-Lami, E.; Chem. Mater. 2002, 14, 1325-1331
[21] Cornelissen, J. J. L. M.; Connor, E. F.; Kim, H. H.; Lee, V. Y.; Magibitang, T.; Rice, P. M.; Volksen, W.; Sundberg, L. K.; Miller, R., Chem. Commun. 1010-1011 (2003)
[22] Koh, K.; Ohno, K.; Tsujii, Y.; Fukuda, T., Angew. Chem. Int. Ed., 42, 4194-4197 (2003)
[23] Fujiwara, M.; Shiokawa, K.; Tanaka, Y.; Nakahara, Y., Chem. Mater.16, 5420-5426 (2004)
[24] Kato, M.; Shigeno, T.; Kimura, T.; Kuroda, K., Chem. Mater. 17, 6416-6421 (2005)
[25] Delak, K. M.; Sahai, Nita., Chem. Mater. 17, 3221-3227 (2005)
[26] Fujiwara, M.; Shiokawa, K., Nano Lett., 6, 2925 (2006)
[27] Kuniyoshi, M.; Takahashi, M.; Tokuda, Y.; Yoko, T., J Sol-Gel Sci. Tech. 39, 175-183 (2006)
[28] Huo, Q.; David I. Margolese, D. I.; Stucky G. D., Chem. Mater. 8, 1147-1160 (1996)
[29] Kimura, T.; Sugahara, Y.; Kuroda, K., Chem. Mater. 11, 508-518 (1999)
[30] Pauly, T. R.; Liu, Y. ; Pinnavaia, T. J.; Billinge, S. J. L.; Rieker, T. P., J. Am. Chem. Soc. 121, 8835-8842 (1999)
[31] Kosuge, K,; Singh, P. S., Micro. Meso. Mater. 44-45, 139-145 (2001)
[32] Shimojima, A.; Sugahara, Y.; Kuroda, K., Bull. Chem. Soc. Jpn., 70,2847-2853 (1997)
[33] Shimojima, A.; Sugahara, Y.; Kuroda, K., J. Am. Chem. Soc. 120, 4528-4529 (1998)
[34] Büchel, G.; Unger, K. K.; Matsumoto, A.; Tsutsumi, K., Adv. Mater. 10, (1998)
[35] Katagiri, K.; Ariga, K.; Kikuchi, J., Chem. Lett. 661 (1999)
[36] 車牧龍, “ 高溫起孔洞劑對新型兩相式多孔性介電材料整合之影響 ”,交通大學碩士論文,民國九十四年
[37] Mercier, L.; Pinnavaia, T. J., Chem. Mater. 12, 188-196 (2000)
[38] Shimojima, A.; Umeda, N.; Kuroda, K., Chem. Mater. 13, 3610-3616 (2001)
[39] Shimojima, A.; Mochizuki, D.; Kuroda, K., Chem. Mater. 13, 3603-3609 (2001)
[40] Ruiz-Hitzky, E.; Letaïef, S.; Prévot, V., Adv. Mater. 14, 439 (2002)
[41] Shimojima, A.; Kuroda, K., Langmuir 18, 1144-1149 (2002)
[42] Shimojima, A.; Kuroda, K., Angew. Chem. 115, 4191-4194 (2003)
[43] Umeda, N.; Shimojima, A.; Kuruda, K., Journal of Organometallic Chemistry 686, 223-227 (2003)
[44] Kato, M.; Shigeno, T,; Kimura, T.; Kuroda, K., Chem. Mater. 16, 3224-3230 (2004)
[45] Zhang, Q.; Ariga, K.; Okabe, A.; Aida, T., J. Am. Chem. Soc. 126, 988-989 (2004)
[46] Shimojima, A,; Liu, Z.; Ohsuna, T.; Terasaki, O.; Kuroda, K., J. Am. Chem. Soc. 127, 14108-14116 (2005)
[47] Sakurai, M.; Shimojima, A.; Heishi, M.; Kuroda, K., Langmuir 23, 10788-10792 (2007)
[48] Suzuki, J.; Shimojima, A.; Fujimoto, Y.; Kuroda, K., Chem. Eur. J. 14, 973-980 (2008)
[49] 李威漢, “ SiO2有機/無機混成乾凝膠光致發光之研究 ”, 大同大學碩士論文,民國九十三年
[50] Peris, E.; Hernando, J.; Llabrès i Xamena, F. X.; van Hulst, N. F.; Bourdelande, J. L.; García, H., J. Phys. Chem. C , 112, 4104-4110 (2008)
[51] Plueddemann, E. P., “Silane Coupling Agents” 66-73. Plenum press, New York (1991)
[52] 楊寶旺, 雷敏宏, 廖德章, “ 化學(上) ”, 第302頁, 高立圖書有限公司, 台北, 民國八十六年六月
[53] Liu, T. Q.; Guo, R.; Shen, M.; Yu, W., Acta Phys. Chem. 12, 337 (1996)
[54] Ertl, G.; Knözinger, H.; Weitkamp, J., “ Handbook of Heterogeneous Catalysis ”, Weinheim, 1508 (1997)
[55] Arnell, J.C.; McDermott, H. L., “ Proceedings of the Second International
Congress on Surface Activity ”, p.113, Butterworths, London (1957).
[56] Wu, Z.; Xiang, H.; Kim, T.; Chun, M. S.; Lee, K., J. Colloid Interface Sci. 304, 119 (2006)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top