跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.84) 您好!臺灣時間:2024/12/03 23:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王昱堯
研究生(外文):Yu-Yao Wang
論文名稱:短鏈型硫代氨基甲酸類化合物對乙醯膽鹼酯酵素、丁醯膽鹼酯酵素、膽固醇酯酵素、脂肪酵素、青黴素酶及凝血酶抑制效果之研究
論文名稱(外文):Inhibition Effects of Acetylcholinesterase, Butyrylcholinesterase, Cholinesterase, Lipase, Penicillinase and Thrombin by Short-chain Thiocarbamates
指導教授:林家立林家立引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:161
中文關鍵詞:硫代氨基甲酸類化合物抑制劑
外文關鍵詞:ThiocarbamatesInhibitor
相關次數:
  • 被引用被引用:1
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要的研究是合成短鍊型硫代氨基甲酸類化合物做為乙醯膽鹼酯酵素 (AChE)、丁醯膽鹼酯酵素 (BChE)、膽固醇酯酵素 (CEase)、青黴素酶、脂肪酵素和凝血酶六種絲氨酸水解酵素,利用酵素催化三元組中絲氨酸所做的親核性攻擊反應機制,探討硫代氨基甲酸類化合物對於不同酵素抑制效果的研究,藉由停時驗析得知此類化合物皆屬類受質不可逆抑制劑。透過動力學實驗分析反應速率常數 (kc)、解離常數 (Ki)及總抑制常數(ki),可以得到化合物對於絲氨酸水解酵素的抑制結果。實驗中,由氨基甲酸類化合物、硫代氨基甲酸類化合物和市售藥物對乙醯膽鹼酯酵素等六種不同酵素之抑制常數,進一步可以比較抑制效果的差異。
實驗中,就本文所合成出的O,O''-propane-1,3-diyl bis(butylcarbamothioate) (化合物8)而言,對酵素的抑制效果由好到壞依序為,脂肪酵素、丁醯膽鹼酯酵素、膽固醇酯酵素、乙醯膽鹼酯酵素、青酶素酶和凝血酶;就化合物8和氨基甲酸類化合物比較,對乙醯膽鹼酯酵素、丁醯膽鹼酯酵素、膽固醇酯酵素和脂肪酵素而言,抑制效果則是化合物8較好;對青黴素酶和凝血酶而言,氨基甲酸類化合物則有較好的抑制效果。
1-1 酵素特性 1
1-2 酵素介紹 3
1-2-1 乙醯膽鹼酯酵素 3
1-2-2 丁醯膽鹼酯酵素 6
1-2-3 膽固醇酯酵素 8
1-2-4 脂肪酵素 10
1-2-5 青黴素酶 12
1-2-6 凝血酶 14
第二章 酵素動力學原理 16
2-1 原理 16
2-2 不可逆抑制劑 18
第三章 材料與方法 30
3-1 儀器設備 30
3-2 試藥溶劑 31
3-3 抑制劑的合成與光譜數據 33
3-3-1 化合物的合成 33
3-3-2 化合物光譜數據 34
3-3-2-1 3-hydroxypropyl ethylcarbamothioate 34
3-3-2-2 3-hydroxypropyl propylcarbamothioate 35
3-3-2-3 3-hydroxypropyl butylcarbamothioate 36
3-3-2-4 3-hydroxypropyl tert-butylcarbamothioate 37
3-3-2-5 3-hydroxypropyl benzylcarbamothioate 38
3-3-2-6 O,O''-propane-1,3-diyl bis(ethylcarbamothioate) 39
3-3-2-7 O,O''-propane-1,3-diyl bis(propylcarbamothioate) 40
3-3-2-8 O,O''-propane-1,3-diyl bis(butylcarbamothioate) 41
3-3-2-9 O,O''-propane-1,3-diyl bis(tert-butylcarbamothioate) 42
3-3-2-10 O,O''-propane-1,3-diyl bis(benzylcarbamothioate) 43
3-4 酵素動力學的材料與方法 44
3-4-1 乙醯膽鹼酯酵素 44
3-4-2 丁醯膽鹼酯酵素 45
3-4-3 膽固醇酯酵素 46
3-4-4 脂肪酵素 47
3-4-5 青黴素酶 48
3-4-6 凝血酶 49
3-5 動力學實驗 50
3-5-1 停時驗析法 50
3-5-2 不可逆型抑制劑動力學反應 51
第四章 結果與討論 54
4-1 停時驗析法 54
4-2 動力學實驗結果 58
4-2-1 類受質抑制劑動力學中吸收度對時間作圖 58
4-2-1-1 乙醯膽鹼酯酵素 58
4-2-1-2 丁醯膽鹼酯酵素 63
4-2-1-3 膽固醇酯酵素 68
4-2-1-4 脂肪酵素 73
4-2-1-5 青黴素酶 78
4-2-1-6 凝血酶 83
4-2-2 類受質抑制劑動力學中Kapp對時間作圖 88
4-2-2-1 乙醯膽鹼酯酵素 88
4-2-2-2 丁醯膽鹼酯酵素 94
4-2-2-3 膽固醇酯酵素 99
4-2-2-4 脂肪酵素 104
4-2-2-5 青黴素酶 109
4-2-2-6 凝血酶 114
4-3 酵素動力學反應相關數據 119
4-3-1 乙醯膽鹼酯酵素 119
4-3-2 丁醯膽鹼酯酵素 121
4-3-3 膽固醇酯酵素 123
4-3-4 脂肪酵素 125
4-3-5 青黴素酶 127
4-3-6 凝血酶 129
第五章 結論 131
附錄 抑制劑光譜圖 136
參考文獻 156
H. R. Horton, L. A. Moran, R. S. Ochs, J. D. Rawn & K. G. Scrimgeour, Principles of Biochemistry, 4th ed., Prentice-Hall, 2002, pp.2- 24
D. M. QUINN, Acetylcholinesterase: Enzyme Structure, Reaction Dynamics, and Virtual Transition States, Chem. Rev., 1987, 955-979
Ji Young Son, Sook Shin, Kwang Ho Choi and In Kook Parkl, Purification of soluble acetylcholinesterase from Japanesequail brain by affinity chromatography, Int. J. Biochem. Cell Biol., 34, 2002, 204–210
D. L. Nelson, M. M. Cox ,Lehninger principles of biochemistry, 4th ed., New York: WH Freeman and Company, 2005, pp.72
Atsuo Miyazawa, Yoshinori Fujiyoshi, Nigel Unwin Structure and gating mechanism of the acetylcholine receptor pore, NATURE, 423, 2003, 949-955
T. L. Rosenberry, Acetylcholinesterase, Adv Enzymol Relat Areas Mol Biol., 1975, 43, 103–218
E. Giacobini, In Alzheimer_s Disease: Molecular Biology to Therapy; R. Becker, E. Giacobini, Eds. Boston;, Birkhauser,1997, 187–204.
E. Giacobini, Cholinergic functions in Alzheimer’s disease, Int. J. Geriatr. Psychiatry, 2003, 18, S1-S5
W. K. Summers, L. V. Majovski, G. M. Marsh, K. Tachiki, A. N. Kling, Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer type, Engl. J. Med. 1986, 315, 1241-1245.
J. L. Sussman, M. Harel, F. Frolow, C. Oefner, A. Goldman, L. Toker, and I. Silman, Atomic Structure of Acetylcholinesterase from Torpedo californica: A Prototpic Acetylcholine-Binding, Science, 1991, 253, 872-879
G. l. Lin, H. C. Tseng, A. C. Chio, T. M. Tseng and B. Y. Tsai, A rate determining step change in the pre-steady state of acetylcholinesterase inhibitions by 1,n-alkane-di-N-butylcarbamates, Bioorg. Med. Chem. Lett. , 15, 4, 2005, 951-955
D. M. QUINN, Acetylcholinesterase: Enzyme Structure, Reaction Dynamics, and Virtual Transition States; Chem. Rev., 1987. 955-979
A. Silver, The Biology of Cholinesterases, Elsevier, Asterdam, 1974
E. STEDMAN, L. H. EASSON, Choline esterase. An enzyme present in the bloodserum of the horse, Biochem. J., 26, 1932, 2056-2066
B. Mendel, H. Rudney, Studies on cholinesterase: Cholinesterase and pseudo-cholinesterase, Biochem J., 37, 1943, 59–63
G. L. Lin, W. C. Liaoa and S. Y. Chiou, Quantitative structure–activity relationships for the pre-steady-state inhibition of cholesterol esterase by 4-nitrophenyl-n- substituteed carbamates, Bioorg. Med. Chem. , 2000, 2601-2607
O. Lockridge, H. W. Eckerson, B. N. La Du, Interchain disulfide bonds and subunit organization in human serum cholinesterase. J Biol Chem., 1979, 254, 8324–8330
Lockridge, O. et al. Complete amino acid sequence of human serum cholinesterase, J. Biol. Chem., 1987, 262, 549–557
D Grob, JL Lilienthal Jr, AM Harvey, BF Jones - Bull. Johns Hopkins Hosp The administration of di-isopropyl fluorophosphates (DFP) to man. I.Effect on plasma and erythrocyte cholinesterase; general systemic effects; use in study of hepatic function and erythropoiesis; and some properties of plasma cholinesterase. Bull John Hopkins Hosp 81:217-244
S. Darvesh, D. A. Hopkins, C. Geula, Neurobiology of butyrylcholinesterase, Nat. Rev. Neurosci, 2003, 4, 131-138
L. L. Gallo, S. B. Clark, S. Myers, and G.V. Vahouny, Cholesterol absorption in rat intestine: role of cholesterol esterase and acyl coenzyme A:cholesterol acyltransferase, J. Lipid Res., 1984, 25, 604-612
S. G. Bhat, H. L. Brockman, The role of cholesteryl ester hydrolysis and. Purification and characterization, Eur. J. Biochem., 1982., 116, 221-225
Myers-Payne SC, D. Y. Hui, H. L. Brockman, F. Schroeder, Cholesterol esterase: a cholesterol transfer protein, Biochemistry, 1995, 34, 3942–3947
G. L. Lin, W. C. Liaoa and S. Y. Chiou, Quantitative structure–activity relationships for the pre-steady-state inhibition of cholesterol esterase by 4-nitrophenyl-n- substituted carbamates, Bioorg. Med. Chem., 2000, 2601-2607
A. R. Macrae, R. C. Hammond, Present and future applications of lipases. Biotechnol. Genetic Eng. Reviews, 1985, 193–217.
D. L. Nelson, M. M. Cox ,Lehninger principles of biochemistry, 4th ed., New York: WH Freeman and Company, 2005, pp. 782
Hamosh, Margit, Scow, Robert O. Lingual Lipase and Its Role in the Digestion of Dietary Lipid, J. Clin. Invest., 1973, 52, 88–95
U. Derewenda, A. M. Brzozowski, D. M. Lawson, Z. S. Derewenda, Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase, Biochemistry, 1992, 31, 1532–1541
G. L. Lin, W. C. Liaoa and S. Y. Chiou, Quantitative structure–activity relationships for the pre-steady-state inhibition of cholesterol esterase by 4-nitrophenyl-n- substituted carbamates, Bioorg. Med. Chem., 2000, 2601-2607
E. J. Lietz, H. Truher , D. Kahn, M. J. Hokenson, A. L. Fink, Lysine-73 is involved in the acylation and deacylation of beta- lactamase, Biochemistry, 2000, 39, 4971-4981.
J. D. Hayes, C. R.Wolf, Molecular mechanisms of drug resistance. Biochem. J., 1990 , 272, 281-295
D. L. Nelson, M. M. Cox ,Lehninger principles of biochemistry, 4th ed., New York: WH Freeman and Company, 2005, pp. 779-780
C. Oefner, A. D''Arcy, J. J. Daly, K. Gubernator, R. L. Charnas, I. Heinze, C. Hubschwerlen, Winkler FK. Refined crystal structure of beta-lactamase from Citrobacter freundii indicates a mechanism for beta-lactam hydrolysis, Nature, 1990 , 343, 284-288
W. Charles, M. D. Stratton, The Role of 13-Lactamases, AIDIEX, 15, 17-28, 1996
Z. Wang, W. Fast, A. M. Valentine, and S. J. Benkovic, Metallo-β-lactamase: structure and mechanism, Curr. Opin. Chem. Biol., 3, 1999, 614-622
Gregor Mlinsek, Marjana Novic, Milan Hodoscek, Tomaz Solmajer: Prediction of Enzyme Binding: Human Thrombin Inhibition Study by Quantum Chemical and Artificial Intelligence Methods Based on X-ray Structures, J. Chem. Inf. Comput. Sci., 41, 2001, 1286-1294
J. W. Fenton 2nd, F. A. Ofosu, D. G. Moon, J. M. Maraganore, Thrombin structure and function: why thrombin is the primary target for antithrombotics, Blood Coagul Fibrinolysis, 1991, 2(1), 69–75
G. Mlinsek, M. Novic, M. Hodoscek, T. Solmajer, J. Chem. Prediction of Enzyme Binding: Human Thrombin Inhibition Study by Quantum Chemical and Artificial Intelligence Methods Based on X-ray Structures Inf. Comput. Sci. 2001, 41, 1286–1294
J. Ye, N. L. Esmon, C. T. Esmon and A. E. Johnson, The active site of thrombin is altered upon binding to thrombomodulin. J Biol Chem, 1991, 266, 23016–23021
Anna Linusson, Johan Gottfries, Thomas Olsson, Eivor Ornskov, Staffan Folestad, Bo Norde´n, and Svante Wold, Statistical Molecular Design, Parallel Synthesis, and Biological Evaluation of a Library of Thrombin Inhibitors, J. Med. Chem., 2001, 44, 3424-3439
CPR Walker and D. Royston, Thrombin generation and its inhibition: a review of the scientific basis and mechanism of action of anticoagulant therapies, Br. J. Anaesth., 2002; 88, 848 - 863
D. L. Nelson, M. M. Cox ,Lehninger principles of biochemistry, 4th ed., New York: WH Freeman and Company, 2005, pp. 206
D. Lombardo, O. Guy, Studies on the substrate specificity of a carboxyl ester hydrolase from human pancreatic juice. II action on cholesterol esters and lipid-soluble vitamin esters, Biochim. Biophys. Acta., 1980, 611:147–155
R. H. Abeles and A. L. Maycock. Suicide Enzyme Inactivators, Acc. Chem. Res., 9 1976, pp. 313–319.
W. E. Momsen and H. L. Brockman , Purification and characterization of cholesterol esterase from porcine pancreas, Biochem. Biophys. Acta., 1997, 486, 103-113.
D. L. Nelson, M. M. Cox ,Lehninger principles of biochemistry, 4th ed., New York, WH Freeman and Company, 2005, pp. 209-211
T. P. Kenakin, Pharmacologic Analysis of Drug–Receptor Interaction, 3rd edn., Lippincott-Raven, Philadelphia, 1997.
H. R. Horton, L. A. Moran, R. S. Ochs, J. D. Rawn & K. G. Scrimgeour, Principles of Biochemistry, 4th ed., Prentice-Hall, 2002, pp. 147-148
蔡泊宜,二醇類之單、雙取代-氮-正丁基氨基甲酸類抑制劑對乙、丁醯膽鹼酯酵素、膽固醇酯酵素及脂肪酵素抑制機理之研究,國立中興大學化學研究所碩士論文,2001
賴毓璿,長鏈氨基甲酸類化合物對凝血酶及青黴素酶抑制機理之研究,國立中興大學化學研究所碩士論文,2005
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊