H. R. Horton, L. A. Moran, R. S. Ochs, J. D. Rawn & K. G. Scrimgeour, Principles of Biochemistry, 4th ed., Prentice-Hall, 2002, pp.2- 24
D. M. QUINN, Acetylcholinesterase: Enzyme Structure, Reaction Dynamics, and Virtual Transition States, Chem. Rev., 1987, 955-979
Ji Young Son, Sook Shin, Kwang Ho Choi and In Kook Parkl, Purification of soluble acetylcholinesterase from Japanesequail brain by affinity chromatography, Int. J. Biochem. Cell Biol., 34, 2002, 204–210
D. L. Nelson, M. M. Cox ,Lehninger principles of biochemistry, 4th ed., New York: WH Freeman and Company, 2005, pp.72
Atsuo Miyazawa, Yoshinori Fujiyoshi, Nigel Unwin Structure and gating mechanism of the acetylcholine receptor pore, NATURE, 423, 2003, 949-955
T. L. Rosenberry, Acetylcholinesterase, Adv Enzymol Relat Areas Mol Biol., 1975, 43, 103–218
E. Giacobini, In Alzheimer_s Disease: Molecular Biology to Therapy; R. Becker, E. Giacobini, Eds. Boston;, Birkhauser,1997, 187–204.
E. Giacobini, Cholinergic functions in Alzheimer’s disease, Int. J. Geriatr. Psychiatry, 2003, 18, S1-S5
W. K. Summers, L. V. Majovski, G. M. Marsh, K. Tachiki, A. N. Kling, Oral tetrahydroaminoacridine in long-term treatment of senile dementia, Alzheimer type, Engl. J. Med. 1986, 315, 1241-1245.
J. L. Sussman, M. Harel, F. Frolow, C. Oefner, A. Goldman, L. Toker, and I. Silman, Atomic Structure of Acetylcholinesterase from Torpedo californica: A Prototpic Acetylcholine-Binding, Science, 1991, 253, 872-879
G. l. Lin, H. C. Tseng, A. C. Chio, T. M. Tseng and B. Y. Tsai, A rate determining step change in the pre-steady state of acetylcholinesterase inhibitions by 1,n-alkane-di-N-butylcarbamates, Bioorg. Med. Chem. Lett. , 15, 4, 2005, 951-955
D. M. QUINN, Acetylcholinesterase: Enzyme Structure, Reaction Dynamics, and Virtual Transition States; Chem. Rev., 1987. 955-979
A. Silver, The Biology of Cholinesterases, Elsevier, Asterdam, 1974
E. STEDMAN, L. H. EASSON, Choline esterase. An enzyme present in the bloodserum of the horse, Biochem. J., 26, 1932, 2056-2066
B. Mendel, H. Rudney, Studies on cholinesterase: Cholinesterase and pseudo-cholinesterase, Biochem J., 37, 1943, 59–63
G. L. Lin, W. C. Liaoa and S. Y. Chiou, Quantitative structure–activity relationships for the pre-steady-state inhibition of cholesterol esterase by 4-nitrophenyl-n- substituteed carbamates, Bioorg. Med. Chem. , 2000, 2601-2607
O. Lockridge, H. W. Eckerson, B. N. La Du, Interchain disulfide bonds and subunit organization in human serum cholinesterase. J Biol Chem., 1979, 254, 8324–8330
Lockridge, O. et al. Complete amino acid sequence of human serum cholinesterase, J. Biol. Chem., 1987, 262, 549–557
D Grob, JL Lilienthal Jr, AM Harvey, BF Jones - Bull. Johns Hopkins Hosp The administration of di-isopropyl fluorophosphates (DFP) to man. I.Effect on plasma and erythrocyte cholinesterase; general systemic effects; use in study of hepatic function and erythropoiesis; and some properties of plasma cholinesterase. Bull John Hopkins Hosp 81:217-244
S. Darvesh, D. A. Hopkins, C. Geula, Neurobiology of butyrylcholinesterase, Nat. Rev. Neurosci, 2003, 4, 131-138
L. L. Gallo, S. B. Clark, S. Myers, and G.V. Vahouny, Cholesterol absorption in rat intestine: role of cholesterol esterase and acyl coenzyme A:cholesterol acyltransferase, J. Lipid Res., 1984, 25, 604-612
S. G. Bhat, H. L. Brockman, The role of cholesteryl ester hydrolysis and. Purification and characterization, Eur. J. Biochem., 1982., 116, 221-225
Myers-Payne SC, D. Y. Hui, H. L. Brockman, F. Schroeder, Cholesterol esterase: a cholesterol transfer protein, Biochemistry, 1995, 34, 3942–3947
G. L. Lin, W. C. Liaoa and S. Y. Chiou, Quantitative structure–activity relationships for the pre-steady-state inhibition of cholesterol esterase by 4-nitrophenyl-n- substituted carbamates, Bioorg. Med. Chem., 2000, 2601-2607
A. R. Macrae, R. C. Hammond, Present and future applications of lipases. Biotechnol. Genetic Eng. Reviews, 1985, 193–217.
D. L. Nelson, M. M. Cox ,Lehninger principles of biochemistry, 4th ed., New York: WH Freeman and Company, 2005, pp. 782
Hamosh, Margit, Scow, Robert O. Lingual Lipase and Its Role in the Digestion of Dietary Lipid, J. Clin. Invest., 1973, 52, 88–95
U. Derewenda, A. M. Brzozowski, D. M. Lawson, Z. S. Derewenda, Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase, Biochemistry, 1992, 31, 1532–1541
G. L. Lin, W. C. Liaoa and S. Y. Chiou, Quantitative structure–activity relationships for the pre-steady-state inhibition of cholesterol esterase by 4-nitrophenyl-n- substituted carbamates, Bioorg. Med. Chem., 2000, 2601-2607
E. J. Lietz, H. Truher , D. Kahn, M. J. Hokenson, A. L. Fink, Lysine-73 is involved in the acylation and deacylation of beta- lactamase, Biochemistry, 2000, 39, 4971-4981.
J. D. Hayes, C. R.Wolf, Molecular mechanisms of drug resistance. Biochem. J., 1990 , 272, 281-295
D. L. Nelson, M. M. Cox ,Lehninger principles of biochemistry, 4th ed., New York: WH Freeman and Company, 2005, pp. 779-780
C. Oefner, A. D''Arcy, J. J. Daly, K. Gubernator, R. L. Charnas, I. Heinze, C. Hubschwerlen, Winkler FK. Refined crystal structure of beta-lactamase from Citrobacter freundii indicates a mechanism for beta-lactam hydrolysis, Nature, 1990 , 343, 284-288
W. Charles, M. D. Stratton, The Role of 13-Lactamases, AIDIEX, 15, 17-28, 1996
Z. Wang, W. Fast, A. M. Valentine, and S. J. Benkovic, Metallo-β-lactamase: structure and mechanism, Curr. Opin. Chem. Biol., 3, 1999, 614-622
Gregor Mlinsek, Marjana Novic, Milan Hodoscek, Tomaz Solmajer: Prediction of Enzyme Binding: Human Thrombin Inhibition Study by Quantum Chemical and Artificial Intelligence Methods Based on X-ray Structures, J. Chem. Inf. Comput. Sci., 41, 2001, 1286-1294
J. W. Fenton 2nd, F. A. Ofosu, D. G. Moon, J. M. Maraganore, Thrombin structure and function: why thrombin is the primary target for antithrombotics, Blood Coagul Fibrinolysis, 1991, 2(1), 69–75
G. Mlinsek, M. Novic, M. Hodoscek, T. Solmajer, J. Chem. Prediction of Enzyme Binding: Human Thrombin Inhibition Study by Quantum Chemical and Artificial Intelligence Methods Based on X-ray Structures Inf. Comput. Sci. 2001, 41, 1286–1294
J. Ye, N. L. Esmon, C. T. Esmon and A. E. Johnson, The active site of thrombin is altered upon binding to thrombomodulin. J Biol Chem, 1991, 266, 23016–23021
Anna Linusson, Johan Gottfries, Thomas Olsson, Eivor Ornskov, Staffan Folestad, Bo Norde´n, and Svante Wold, Statistical Molecular Design, Parallel Synthesis, and Biological Evaluation of a Library of Thrombin Inhibitors, J. Med. Chem., 2001, 44, 3424-3439
CPR Walker and D. Royston, Thrombin generation and its inhibition: a review of the scientific basis and mechanism of action of anticoagulant therapies, Br. J. Anaesth., 2002; 88, 848 - 863
D. L. Nelson, M. M. Cox ,Lehninger principles of biochemistry, 4th ed., New York: WH Freeman and Company, 2005, pp. 206
D. Lombardo, O. Guy, Studies on the substrate specificity of a carboxyl ester hydrolase from human pancreatic juice. II action on cholesterol esters and lipid-soluble vitamin esters, Biochim. Biophys. Acta., 1980, 611:147–155
R. H. Abeles and A. L. Maycock. Suicide Enzyme Inactivators, Acc. Chem. Res., 9 1976, pp. 313–319.
W. E. Momsen and H. L. Brockman , Purification and characterization of cholesterol esterase from porcine pancreas, Biochem. Biophys. Acta., 1997, 486, 103-113.
D. L. Nelson, M. M. Cox ,Lehninger principles of biochemistry, 4th ed., New York, WH Freeman and Company, 2005, pp. 209-211
T. P. Kenakin, Pharmacologic Analysis of Drug–Receptor Interaction, 3rd edn., Lippincott-Raven, Philadelphia, 1997.
H. R. Horton, L. A. Moran, R. S. Ochs, J. D. Rawn & K. G. Scrimgeour, Principles of Biochemistry, 4th ed., Prentice-Hall, 2002, pp. 147-148
蔡泊宜,二醇類之單、雙取代-氮-正丁基氨基甲酸類抑制劑對乙、丁醯膽鹼酯酵素、膽固醇酯酵素及脂肪酵素抑制機理之研究,國立中興大學化學研究所碩士論文,2001賴毓璿,長鏈氨基甲酸類化合物對凝血酶及青黴素酶抑制機理之研究,國立中興大學化學研究所碩士論文,2005