跳到主要內容

臺灣博碩士論文加值系統

(3.235.227.117) 您好!臺灣時間:2021/08/01 23:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭靖修
研究生(外文):Ching-Hsiu Cheng
論文名稱:新抑癌素蛋白D79殘基負電荷對引導生色團環化路徑之影響
論文名稱(外文):Effect of D79 negative charge of neocarzinostatin protein on directing cyclization pathway of its chromophore
指導教授:金德航
指導教授(外文):Der-Hang Chin
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學系所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:87
中文關鍵詞:新抑癌素烯雙炔環化機制抗腫瘤異種核磁共振蛋白突變
外文關鍵詞:neocarzinostatinenediyneantitumorcycloaromatization mechanismHSQC NMRprotein mutanttion
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
新抑癌素是一種強力的天然抗腫瘤抗生素,由蛋白與生色團所組成,生色團具有烯雙炔的結構,能夠斷裂DNA而殺死細胞。新抑癌素生色團在沒有蛋白保護下,可以經由硫醇的活化,將烯雙炔環化,產生高活性的自由基,抓取DNA或溶劑的氫原子後,形成穩定的產物一。近年來,對於該機制已有不少研究文獻發表,不過已知的新抑癌素生色團的環化路徑並不止此,當生色團受到蛋白保護時,環化路徑受到蛋白環境的影響而改變,環化形成的主產物由產物一變為產物二,對這種蛋白內進行的失去藥物活性的環化機制,探究並不多,蛋白為何擁有引導環化路徑的能力,至今尚沒有完整的探索。
本實驗室學長偶然間發現,移除新抑癌素蛋白D79殘基的負電荷後,蛋白內環化產物一生成比例顯著上升,於是我們懷疑D79殘基的負電荷能引導生色團環化成產物二。我們利用蛋白工程技術生產數種特性不同的突變蛋白,包括D79殘基的單點突變蛋白,也包括D79以及附近殘基的雙突變蛋白。突變蛋白經過純化後,我們用液相層析、質譜、及紫外光譜等,驗證了突變蛋白分子的正確性及純度。用乙醯化反應驗證了突變蛋白的二個雙硫鍵完整結合。用圓二色光譜驗證了突變蛋白仍保留原有的二、三級結構。用熱變性的實驗測量比較了這些突變蛋白的結構穩定性。我們又選取了二種突變蛋白,生產並純化15N標記的同位素突變蛋白,用二維的核磁共振實驗檢驗蛋白的各個殘基位置,驗證了突變蛋白仍然保有結合生色團的穴口結構。最後我們將萃取的天然新抑癌素生色團與突變蛋白重新結合,置入硫醇,讓生色團在這些突變蛋白內部產生烯雙炔的環化反應,之後用高效能液相層析分析生色團環化後的產物,從產物一及產物二的生成比例變化,我們嘗試探究D79殘基上的負電荷對於新抑癌素生色團環化的影響。
分析環化產物的結果顯現,新抑癌素蛋白D79殘基的負電荷,確實會影響生色團中烯雙炔的環化路徑,我們依據分析的結果並考量電荷效應、新抑癌素生色團化學結構、環張力與混成軌域等要素,提出產生產物二的新環化機理,並藉由簡易的理論計算估計這些環化中間物的生成熱,推敲評估模型的合理性,進一步地比較環化路徑的異同之處,以解釋新抑癌素蛋白如何影響生色團環化成為不同的產物。我們期待提出的產物二的新環化機理,能提供他人以更多角度去看待並解釋烯雙炔分子的環化機制,讓大家能更了解藥物與蛋白載體之間的巧妙天然設計。
Neocarzinostatin is a natural potent antitumor antibiotic chromoprotein. It consists of a carrier protein, aponeocarzinostatin, and a biologically active enediyne chromophore. Without the protein, the enediyne nucleus of neocarzinostatin chromophore is cycloaromatized upon a thiolate attack to form product 1, and the radical precursor of which is responsible for DNA cleavage. Whereas in the holo form of neocarzinostatin, product 1 formation is highly suppressed as the protein diverts the major cycloaromatization path into a distinct one that produces product 2. How the protein directs such a chemical path is an interesting question. We produced recombinant aponeocarzinostatin that is identical to the natural one, and employed the alanine-scanning mutagenesis to probe the influence of residues around binding cleft on directing the enediyne cycloaromatization pathways. We found that mutant D79A significantly abolishes the protein directing power. In this study, we designed and performed several mutations focusing around D79. The circular dichroism spectra of all the mutants show a folded structure that is similar to that of the wild-type aponeocarzinostatin. Two-dimensional nuclear magnetic resonance spectra of purified 15N-labeled D79A and double mutant L77D/D79A demonstrate that most residues around binding site are not perturbed by mutations. The thiol-induced enediyne cycloaromatization reaction was then performed on each chromophore-reconstituted neocarzinostatin mutant, and the yield of product 1 was determined by high pressure liquid chromatographic analyses. Our results clearly show that negative charge of D79 is crucial for directing the chemical cyclization pathway of neocarzinostatin chromophore. Considering ring strain and hybrid orbitals of possible cyclized intermediates, we proposed a mechanism of formation of product 2.
目次
摘要 i
Abstract iii
目次 v
圖目錄 ix
表目錄 xiii

第一章 緒論 1
第二章 材料與方法 13
(一) 材料 13
1. 新抑癌素來源 13
2. 硫醇來源 13
3. 重組質體DNA 13
4. 突變引子之設計與序列 15
5. PCR反應與突變 17
6. 勝任細胞培養與備製 17
7. 質體轉形 19
8. 質體DNA之萃取 20
9. Agarose gel DNA電泳鑑定 22
10. 重組突變質體DNA定序 24
11. 質體再轉形 24
12. 表現蛋白 24
13. 破碎勝任細胞 26
14. 以calmodulin affinity resin純化蛋白 27
15. SDS-PAGE蛋白質電泳 28
16. EK限制酵素切除CBP tag 30
17. DEAE anion exchange resin之最終純化 30
18. 15N同位素標定蛋白 31
(二) 方法 32
1. UV/Vis定量 32
2. SDS-PAGE純度鑑定 33
3. HPLC純度鑑定 33
4. MS鑑定突變蛋白分子量與雙硫鍵是否斷裂 34
5. CD光譜儀鑑定突變蛋白之二、三級結構 35
6. 突變蛋白之熱變性測試 37
7. 突變蛋白與新抑癌素生色團之再結合 38
8. 以硫醇(GSH+EMA)驅動突變蛋白內部的新抑癌素生色團進行環化反應 38
9. 以HPLC分析硫醇反應後的產物比例 40
10. 以硫醇(MPS+EMA)驅動突變蛋白內部的新抑癌素生色團進行環化反應 42
11. 以15N, 1H-HSQC NMR技術鑑定15N突變蛋白結構 43
第三章 結果 45
(一) 突變位置之挑選與預測 45
(二) 突變蛋白之二級、三級結構鑑定 52
(三) 突變蛋白之熱變性測試 53
(四) 以EMA+GSH進行硫醇反應的結果分析 54
(五) 以MPS取代GSH進行再現實驗的結果分析 58
(六) 15N, 1H-HSQC NMR鑑定突變蛋白之結構 59
第四章 討論 63
(一) Myers產物二環化機制的合理性探討 63
(二) 本文對產物二環化機理之推導 66
(三) Myers產物二環化機制與本文假設之環化機理的比較 70
(四) 產物一環化機制與本文假設之環化機理的比較 72
(五) 以MM2與MOPAC計算中間物的合理模型與生成熱 74
第五章 結論 77
引用文獻 79
1.Ishidan, N., Miyazaki, K., Kumagai, K., Rikimaru, M. Neocarzinostatin, an antitumor antibiotic of high molecular weight. Isolation, physiochemical properties and biological activites. Journal of Antibiotics (Tokyo), 1965, 18, 68-76

2.Kuromizo, K., Abe, O., Maeda, H. Location of the disulfide bonds in the antitumor protein neocarzinostatin. Archives of Biochemistry and Biophysics, 1991, 286 (2), 569-573

3.Kim, K. H., Kwon, B. H., Myers, A. G., Rees, D. C. Crystal structure of neocarzinostatin, an antitumor protein-chromophore complex. Science, 1993, 262 (5136), 1042-1046

4.Albers-Schonberg, G., Dewey, R. S., Hensens, O. D., Liesch, J. M., Napier, M. A., Goldberg, I. H. Neocarzinostatin: chemical characteriza-tion and partial structure of the non-protein chromophore. Biochemical and Biophysical Research Communications, 1980, 95, 1351-1356

5.Edo, K., Mizugaki, M., Koide, Y., Seto, H., Furihata, K., Otake, N., Ishida, N. The structure of neocarzinostatin chromophore possessing a novel bicyclo[7,3,0]dodecadiyne system. Tetrahedron Letters, 1985, 26 (3), 331-334

6.Edo, K., Katamine, S., Kitame, F., Ishida, N., Koide, Y., Kusano, G., Nozoe, S. Naphthalenecarboxylic acid from neocarzinostatin (NCS).
Journal of Antibiotics (Tokyo), 1980, 33, 347-351

7.Napier, M. A., Goldberg, I. H., Hensens, O. D., Dewey, R. S., Liesch, J. M., Schonberger, G. A. Neocarzinostatin chromophore: presence of a cyclic carbonate subunit and its modification in the structure of other biologically active forms. Biochemical and Biophysical Research Communications, 1981, 100 (4), 1703-1712

8.Hensens, O. D., Dewey, R. S., Liesch, J. M., Napier, M. A., Reamer, R. A., Smith, J. L., Schonberg, G. A., Goldberg, I. H. Neocarzinostatin chromophore: presence of a highly strained ether ring and its reaction with mercaptan and sodium borohydride. Biochemical and Biophysical Research Communications, 1983, 113 (2), 538-547

9.Goldberg, I. H. Mechanism of neocarzinostatin action: role of DNA mi-crostructure in determination of chemistry of bistranded oxidative dam-age. Accounts of Chemical Research, 1991, 24 (7), 191-198

10.Goldberg, I. H., Kappen, L.S. Neocarzinostatin: chemical and biological basis of oxidative DNA damage, in enediyne antibiotics as antitumor agents, Borders, D. B. and Doyle, T. W. Editors, 1995, Marcel Dekker: Hong Kong, 326-327

11.Povirk, L. F. DNA damage and mutagenesis by radiomimetic DNA-cleaving agents: bleomycin, neocarzinostatin and other enediynes. Mutation Research, 1996, 355 (1-2), 71-89

12.Goldberg, I. H., Kappen, L. S., Xu, Y. J., Stassinopoulos, A., Zeng, X., Xi, Z., Yang, C. F. Enediynes as probes of nucleic acid structure, in DNA and RNA cleavers and chemotherapy of cancer and viral diseases. B. Menunier, Editor., 1996, Kluwer Academic: Boston, 1-21

13.Pogozelski, W. K., Tullius, T. D. Oxidative strand scission of nucleic ac-ids: routes initiated by hydrogen abstraction from the sugar moiety. Chemical Reviews, 1998, 98, 1089-1108

14.Xi, Z., Goldberg, I. H. DNA-damaging enediyne compounds, in com-prehensive natural products chemistry, Barton, D. S. and Nakanishi, K. Editors, 1999, Elsevier: New York., 553-592

15.Ordoukhanian, P., Taylor, J. S. Caged single and double strand breaks. Bioconjugate Chemistry, 2000, 11, 94-103

16.Maeda, H. SMANCS and polymer-conjugated macromolecular drugs: advantages in cancer chemotherapy. Advanced Drug Delivery Reviews, 2001, 46 (1-3), 169-185

17.Singh, S., Hager, M. H., Zhang, C., Griffith, B. R., Lee, M. S., Hallenga, K., Markley, J. L., Thorson, J. S. Structural insight into the self-sacrifice mechanism of enediyne resistance. ACS Chemical Biology, 2006, 1 (7), 451-460

18.Lee, M. D., Dunne, T. S., Chang, C. C., Ellestad, G. A., Siegel, M. M., Morton, G. O., McGahren, W. J., Borders, D. B. Calichemicins, a novel family of antitumor antibiotics. 2. Chemistry and structure of calichemicin γ11. Journal of the American Chemical Society, 1987, 109 (11), 3466-3468

19.Oku, N., Matsunaga, S., Fusetani, N. Fusetani, shishijimicins A-C, novel enediyne antitumor antibiotics from the ascidian didemnum proliferum. Journal of the American Chemical Society, 2003, 125, 2044-2045

20.McDonald, L. A., Capson, T. L., Krishnamurthy, G., Ding, W. D., Ellestad, G. A., Bernan, V. S., WM, M. A., Lassota, P., Discafani, C., Kramer, R. A., Ireland, C. M. Namenamicin, a new enediyne antitumor antibiotic from the marine ascidian Polysyncraton lithostrotum. Journal of the American Chemical Society, 1996, 118 (44), 10898-10899

21.Konishi, M., Ohkuma, H., Saitoh, K., Kawaguchi, H., Golik, J., Dubay, G., Groenewold, G., Krishnan, B., Doyle, T. W. Esperamicins, a novel class of potent antitumor antibiotics. I. Physico-chemical data and partial structure. Journal of Antibiotics (Tokyo), 1985, 38 (11), 1605-1609

22.Konishi, M., Ohkuma, H., Matsumoto, K., Tsuno, T., Kamei, H., Miyaki, T., Oki, T., Kawaguchi, H., Vanduyne, G. D., Clardy, J. Dynemicin a, a novel antibiotic with the anthraquinone and 1,5-diyn-3-ene subunit. Journal of Antibiotics (Tokyo), 1989, 42 (9), 1449-1452

23.Davies, J., Wang, H., Taylor, T., Warabi, K., Huang, X. H., Andersen, R. J. Uncialamycin, a new enediyne antibiotic. Organic Letters, 2005, 7, 5233-5336

24.Yoshida, K., Minami, Y., Azuma, R., Saeki, M., Otani, T. Structure and cycloaromatization of a novel enediyne, C-1027 chromophore. Tetrahe-dron Letters, 1993, 34 (16), 2637-2640

25.Leet, J. E., Schroeder, D. R., Hofstead, S. J., Golik, J., Colson, K. L., Huang, S., Klohr, S. E., Doyle, T. W., Matson, J. A. Kedarcidin, a new chromoprotein antitumor antibiotic: structure elucidation of kedarcidin chromophore. Journal of the American Chemical Society, 1992, 114 (20), 7946-7948

26.Hanada, M., Ohkuma, H., Yonemoto, T., Tomita, K., Ohbayashi, M., Kamei, H., Miyaki, T., Konishi, M., Kawaguchi, H., Forenza, S. Madu-ropeptin, a complex of new macromolecular antitumor antibiotics. Journal of Antibiotics (Tokyo), 1991, 44 (4), 403-414

27.Ando, T., Ishii, M., Kajiura, T., Kameyama, T., Miwa, K., Sugiura, Y. A new non-protein enediyne antibiotic N1999A2: Unique enediyne chromophore similar to neocarzinostatin and DNA cleavage feature. Tetrahedron Letters, 1998, 39 (36), 6495-6498

28.Maeda, H. Neocarzinostatin in cancer chemotherapy. Anticancer Research, 1981, 1, 175-186

29.Takahashi, M., Toriyama, K., Maeda, H., Kikuchi, M., Kumagai, K. Clin-ical trails of a new antitumor polypeptide: Neocarzinostatin (NCS). To-hoku Journal of Experimental Medicine, 1969, 98, 273-280

30.Kimura, I. Clinical investigations of neocarzinostatin in Japan.( Review) Recent Results in Cancer Research, 1978, 63, 252-260

31.Maeda, H., Takeshita, J., Kanamaru, R. A lipophilic derivative of neo-carzinostatin. A polymer conjugation of an antitumor protein antibiotic. International Journal of Peptide and Protein Research, 1979, 14, 81-87

32.Meienhofer, J., Maeda, H., Charles, B. G., Czombos, J., Kuromizu, K. Primary structure of neocarzinostatin, an antitumor protein. Science, 1972, 178 (4063), 875-876

33.Maeda, H., Glaser, C. B., Czombos, J., Meienhofer J. Structure of anti-tumor protein neocarzinostatin, purification,amino-acid composition, disulfide reduction, and isolation and composition of tryptic peptides. Archives of Biochemistry and Biophysics, 1974, 164 (2), 369-378

34.Gibson, B. W., Herlihy, W. C., Samy, T. S., Hahm, K. S., Maeda, H., Meienhofer, J., Biemann, K. A revised primary structure for neocarzi-nostatin based on fast atom bombardment and gas chromatograph-ic-mass spectrometry. Journal of Biological Chemistry, 1984, 259 (17), 10801-10806

35.Kuromizu, K., Tsunasawa, S, Maeda, H., Abe, O., Sakiyama, F. Reex-amination of the primary structure of an antitumor protein, neocarzinostatin. Archives of Biochemistry and Biophysics, 1986, 246 (1), 199-205

36.Sakata, N., Minamitani, S., Kanbe, T., Hori, M., Hamada, M., Edo, K. The amino-acid-sequence of neocarzinostatin apoprotein deduced from the base sequence of the gene. Biological & Pharmaceutical Bulletin, 1993, 16 (1), 26-28

37.Teplyakov, A., Obmolova, G., Wilson, K., Kuromizu, K. Crystal structure of apo-neocarzinostatin at 0.15-nm resolution. European Journal of Bio-chemistry, 1993, 213 (2), 737-741

38.Remerowski, M. L., Glaser, S. J., Sieker, L.C., Samy, T. S., Drobny, G. P. Sequential 1H NMR assignment and secondary structure of aponeocarzinostatin in solution. Biochemistry, 1990, 29, 8401

39.Adjadj, E., Mispetlter, J., Quiniou, E., Dimicoli, J. L., Favaudon, V., Lhoste, J. M. Protein NMR studies of apo-neocarzinostatin from Strep-tomyces carzinostaticus. Sequence-specfic assignment and secondary structure. Biochemistry, 1990, 29, 8401

40.Gao, X. L., Burkhart, W. Two- and three-dimernsional protein NMR studies of apo-neocarzinostatin. Biochemistry, 1991, 30, 7730

41.Napier, M. A., Holmquist, B., Strydom, D. J., Goldberg, I. H. Neocarzi-nostatin: spectral characterization and separation of a non-protein chromophore. Biochemical and Biophysical Research Communications, 1979, 89, 635-642

42.Kappen, L. S., Goldberg, I. H. Mechanism of the effect of organic sol-vents and other protein denaturants of neocarzinostatin activity. Biochemistry, 1979, 18 (25), 5647-5653

43.Kappen, L. S., Goldberg, I. H. Stabilization of neocarzinostatin non-protein chromophore activity by interaction with apoprotein and with HeLa cells. Biochemistry, 1980, 19, 4786-4790

44.Povirk, L. F., Goldberg, I. H. Binding of the nonprotein chromophore of neocarzinostatin to deoxyribonucleic acid. Biochemistry, 1980, 19, 4773-4780

45.Jung, G., Kohnlein, W. Neocarzinostatin: controlled release of chromo-phore and its interaction with DNA. Biochemical and Biophysical Research Communications, 1981, 98 (1), 176-183

46.Heyd, B., Fre´de´ric Pecorari, Collinet, B., Adjadj, E., Desmadril, M., Minard, P. In vitro evolution of the binding specificity of neocarzinostatin, an enediyne-binding chromoprotein. Biochemistry, 2003, 42, 5674-5683

47.Mohanty, S., Sieker, L. C., Drobny, G. P. Sequential 1H NMR assign-ment of the complex of aponeocarzinostatin with ethidium bromide and Investigation of protein-drug interactions in the chromophore binding site. Biochemistry, 1994, 33, 10579-10590

48.Napier, M. A., Holmquist, B., Strydom, D. J., Goldberg I. H. Neocarzi-nostatin chromophore: purification of the major active form and charac-terization of its spectral and biological properties. Biochemistry, 1981, 20 (19), 5602-5608

49.Koide, Y., Ito, A., Ishii, F., Koyama, Y., Edo, K., Ishida, N. Rconstitutition of neocarzinostatin (NCS). Journal of Antibiotics (Tokyo), 1982, 35, 766-769

50.Povirk, L. F., Dattagupta, N., Warf, B. C., Goldberg, I. H. Neocarzinosta-tin chromphore binds to deoxyribouncleic acid by intercalation. Bioche-mistry, 1981, 14, 4007-4014

51.Myers, A. G. Proposed structure of the neocarzinostatin chromo-phore-methyl thioglycolate adduct: A mechanism for the nucleophilic activation of neocarzinostatin. Tetrahedron Letters, 1987, 28 (39), 4493-4496

52.Chin, D.-H., Zeng, C.-H., Costello, C. E., Goldberg, I. H. Sites in the di-yne-ene bicyclic core of neocarzinostatin chromophore responsible for hydrogen abstraction from DNA. Biochemistry, 1988, 27, 8107-8114

53.Myers, A. G., Cohen, S. B., Kwon, B. M. DNA cleavage by neocarzi-nostatin chromophore: Establishing the intermediacy of chromo-phore-derived cumulene and biradical species and their role in se-quence-specific cleavage. Journal of the American Chemical Society, 1994, 116 (5), 1670-1682

54.Chin, D.-H., Goldberg, I. H. Sources of hydrogen abstraction by acti-vated neocarzinostatin chromophore. Biochemistry, 1993, 32, 3611-3616

55.Chin, D.-H., Goldberg, I. H. Internal hydrogen abstraction by activated neocarzinostatin: Quenching of the radical at C2 by hydrogen atom transfer from the carbon of the adducted thiol. Journal of the American Chemical Society, 1992, 114, 1914-1915

56.Sugiyama, H., Yamashita, K., Nishi, M., Saito, I. A novel cyclization pathway in activation of neocarzinostatin chromophore by thiol under physiological conditions. Tetrahedron Letters, 1992, 33 (4), 515-518

57.Sugiyama, H., Yamashita, K., Fujiwara, T., Saito, I. Apoprotein-assisted unusual cyclization of neocarzinostatin chromophore. Tetrahedron, 1994, 50 (5), 1311-1325

58.Chin, D.-H., Goldberg, I. H. Identification of the active species responsi-ble for holo-neocarzinostatin-induced DNA cleavage. Journal of the American Chemical Societ., 1993, 115, 9341-9342

59.Myers, A. G., Arvedson, S. P., Lee, R. W. A new and unusual pathway for the reaction of neocarzinostatin chromophore with thiols. Revised structure of the protein-directed thiol adduct. Journal of the American Chemical Society, 1996, 118 (19), 4725-4726

60.Chin, D.-H. Rejection by neocarzinostatin protein through charges rather than sizes. Chemistry-A European Journal, 1999, 5, 1084-1090

61.Tanaka, T., Hirama, M., Fujita, K., Imajo, S., Ishiguro, M. Solution structure of the antitumor antibiotic neocarzinostatin; a chromophore protein complex. Journal of the Chemical Society-Chemical Communications, 1993, 15, 1205-1207

62.Igor, V. A., Mariappan M. Radical-anionic cyclizations of enediynes: remarkable effects of benzannelation and remote substituents on cyc-lorearomatization reactions. Journal of the American Chemical Society, 2003, 125, 4495-4509

63.Peter, R. S., Armando Navarro-Va´Zquez, Matthias, P. Computational studies on the cyclizations of enediynes, enyne-allenes, and related polyunsaturated systems. Accounts of Chemical Research, 2005, 38, 29-37

64.Paul, G. W., Mark, A. L. A density functional molecular orbital study of the C2-C7 and C2-C6 cyclization pathways of 1,2,4-heptatrien-6-ynes. the role of benzannulation. Journal of the American Chemical Society, 2000, 122, 9265-9270

65.Peter, R. S., Matthias, P. Myers-saito versus C2-C6 (“schmittel”) cycli-zations of parent and monocyclic enyne-allenes: challenges to chemistry and computation. Journal of the American Chemical Society, 1999, 121, 8615-8627

66.Engels, B., Hanrath, M. A theoretical comparison of two competing di-radical cyclizations in enyne-allenes: the myers-saito and the novel C2-C6 cyclization. Journal of the American Chemical Society, 1998, 120, 6356-6361

67.Patrick, W. M., Engels, B. The importance of the ene reaction for the C2-C6 cyclization of enyne-allenes. Journal of the American Chemical So-ciety, 2001, 123, 5557-5562

68.Matthias, P., Alexander, W., Peter, R. S. Can fulvenes form from ene-diynes? a systematic high-level computational study on parent and benzannelated enediyne and enyne-allene cyclizations. Journal of Physical Chemistry A, 2001, 105, 9265-9274

69.Zhongguo W., Kung, K. W. Stereoselective synthesis of enediynes and enyne-allenes having a tetrasubstituted central carbon-carbon double bond. Journal of Organic Chemistry, 1994, 59, 4738-4742

70.Matthew, E. C., Thomas, S. H., Barry, K. C. Mechanistic studies on the cyclization of(z)-1,2,4-heptatrien-6-yne in methanol: a possible non-adiabatic thermal reaction. Journal of the American Chemical Society, 2005, 127, 6652-6661

71.Michelle, K. W., Tefsit, B., Mark, A. L. Ring size and substituent effects in oxyanion-promoted cyclizations of enyne-allenes: observation of a myers-saito cycloaromatization at cryogenic temperature. Journal of Or-ganic Chemistry, 2006, 71, 8372-8377

72.Koide, Y., Ishii, F., Hasuda, K., Koyama, Y., Edo, K., Katamine, S., Ki-tame, F., Ishida, N. Isolation of a non-protein component and a protein component from neocarzinostatin (NCS) and their biological activities. Journal of Antibiotics (Tokyo), 1980, 33 , 342-346

73.Chin, D.-H., Tseng, M.-C., Chuang, T.-C., Hong, M.-C. Chromatographic and spectroscopic assignment of thiol induced cycloaromatizations of enediyne in neocarzinostatin. Biochimica et Biophysica Acta, 1997, 1336, 43-50

74.Urbaniak, M. D., Muskett, F. W., Finucane, M. D., Caddick, S., Woolfson, D. N. Solution structure of a novel chromoprotein derived from aponeocarzinostatin and a synthetic chromophore. Biochemistry, 2002, 41, 11731-11739

75.Wittig, G., Fritze, P. On the intermediate occurrence of 1,2-cyclohexadiene. Angewandte Chemie-International Edition, 1966, 5(9), 846

76.Hirama, M., Fujiwara, K., Shigematu, K., Fukazawas, Y. The 10-membered ring analogues of neocarzinostatin chromophore: design, synthesis, and mode of decomposition. Journal of the American Chemical Society, 1989, 111, 4120-4122
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top