跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 10:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐毅
研究生(外文):Yi Hsu
論文名稱:橫向河工結構物對下游河川型態改變之試驗研究
論文名稱(外文):The Variation of Downstream River Morphology by Lateral Construction
指導教授:陳樹群陳樹群引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:水土保持學系所
學門:農業科學學門
學類:水土保持學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:82
中文關鍵詞:辮狀型河川渠槽試驗橫向河工結構物
外文關鍵詞:braided riverflume experimentlateral construction
相關次數:
  • 被引用被引用:1
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣地區河川中下游常常因為防洪取水目的而修建橫向河工結構物,在此河段多以辮狀河型居多,辮狀型河川河寬較廣且河身順直,水流分叉,通常有兩股或兩股以上的叉道,在縱向上,河谷比降較陡,挾帶泥砂量較多,粒徑較大,橫向上,主深槽有左右擺蕩的特性,寬深比較大,沙洲面積小且數量較多,河川型態易改變,整體外型十分散亂,而在對辮狀河川的整治往往多以兩岸堤防為主,其目的在於對主流流路的束縮使其大至受到控制以減少災害發生。然而在因工程之介入改變上游來水來砂量與河寬,造成河川未能順應其自然發展,導致河川自然棲地或工程構造物的破壞。
本研究針對河川中下游最後一個壩及其下游辮狀河川,透過室內實驗改變不同流量與河寬模擬河道束縮與來水來砂量改變後的河型發展,並探討其主深槽擺蕩、河床刷深和沙洲消長等問題,最後在將此與現地資料做比較,以驗證實驗之正確性,並發展出其大致之規律。
結果發現上游有供砂階段時河道內皆為流路散亂且零星沙洲分佈情形,加砂停止後,上游段主深槽快速下切,中下游段因有上游來砂影響使主深槽下切轉為橫向擺蕩。同流量下河寬漸寬時,主深槽形成時間漸慢且沙洲數量增加,主深槽擺蕩週期漸大。同河寬下流量漸大時,河道展寬與下切速率增加,主深槽擺蕩週期漸小。發現在給定條件下沙洲長寬經無因次後有一固定關係,當沙洲於此範圍內面積增加時,長度增加的量會大於寬度增加的量,沙洲外型變狹長,經過與模型比還原後之現地河寬沙洲資料比較,依然有此類似趨勢。最後發現同樣在給定範圍內於上游有來砂的情況下,沙洲整體形態與輸砂量跟流量有一固定關係,當輸砂量減少時,沙洲平均型態會較原來狹長。
For the purpose of flood control and water withdraw, some lateral constructions are built on the midstream and downstream in Taiwan. In this section, most of the river morphology is braided river. Braided river with large channel width and straight shape, and it usually has two or more branches. In vertical section, braided river has rapid slope with fast flow velocity, plenty sediment discharge and larger particle size. In cross section, the mainstream shows swing character and the width-to-depth is larger, the area of sand bar is small but numerous. The shape of river could be changed so easily that it looks sprawl. The majority treatment of braided river is to build dike. It can contract mainstream and reduce the disasters. However, due to the construction, it changed water quantity and sediment transportation from upstream and river width. The river can’t flow by its own natural way and this causes the damage of natural habitats and engineering structures. Therefore, this research focus on the study of braided river and the last dam in the midstream and downstream. From changing water quantity and river width to simulate the river morphology development after contracting channel and changing water quantity and sediment transportation. To discuss the issues of swinging mainstream, scouring river bed and growing sand bar. Proving the experiment by contrasting data and to develop its rule generally.
The results showed that during the sand supplying period of time the channel without mainstream and the sand bars spread sporadically. As quitting sand supplying, the mainstream of upstream cut deeply and immediately. And the midstream and downstream is effected by sediment from upstream. So their mainstream change cutting into swinging. Under the same water quantity, as the channel width gets wider, it takes longer time to form a mainstream and the mount of sand bar becomes more. The swinging cycle of mainstream gets longer. Under the same river width and water quantity gets bigger, the channel extension and rate of cutting will increase but the swinging cycle of mainstream gets shorter. As the result, the length and width of sand bar after dimensionless has a regular formula. When sand bar increases within this area, the increasing length will be bigger than the increasing width. It looks narrow. Compare with field data, it still has the similar tendency. And also found sand bar morphology has a regular relationship with sediment transportation and water quantity.
摘 要 I
ABSTRACT II
目 錄 IV
圖 目 錄 VI
表 目 錄 VIII
第一章 前言 1
1.1 研究目的 1
1.2 研究流程 2
第二章 前人研究 3
2.1 沖積河川自我調整模式 3
2.2 辮狀型河川成因 6
2.3 河型轉化模型實驗 9
2.4 辮狀型河川沙洲型態與長寬關係 15
2.5 大型橫向結構物下游河床演變實例 16
第三章 實驗設計及實驗流程 19
3.1 實驗目的 19
3.2 實驗材料 20
3.2.1 實驗渠槽 20
3.2.2 床型量測設備 21
3.2.3 實驗泥砂 21
3.2.4 供砂系統 22
3.3 解決進水口下游沖刷問題 23
3.4 實驗基本配置 24
3.5 實驗條件 25
3.6 實驗步驟 26
第四章 實驗結果與分析 29
4.1 實驗現象 29
4.1.1 各河寬兩年洪水頻率之實驗過程 29
4.1.1.1 Case 2Y-04W 29
4.1.1.2 Case 2Y-05W 32
4.1.1.3 Case 2Y-06W 34
4.1.1.4 Case 2Y-07W 35
4.1.1.5 主深槽擺蕩現象 37
4.1.2 各河寬五年洪水頻率之實驗過程 40
4.1.2.1 Case 5Y-04W 40
4.1.2.2 Case 5Y-05W 42
4.1.2.3 Case 5Y-06W 43
4.1.2.4 Case 5Y-07W 45
4.1.2.5 主深槽擺蕩現象 46
4.1.3 各河寬十年洪水頻率之實驗過程 49
4.1.3.1 Case 10Y-04W 49
4.1.3.2 Case 10Y-05W 51
4.1.3.3 Case 10Y-06W 52
4.1.3.4 Case 10Y-07W 54
4.1.3.5 主深槽擺蕩現象 55
4.1.4 小結 57
4.2 沖刷深度與時間之關係 58
4.2.1 上游段沖刷深度與時間之關係 58
4.2.2 中游段沖刷深度與時間之關係 60
4.2.3 下游段沖刷深度與時間之關係 62
4.2.4 整體床砂在各條件下沖淤情形之探討 64
4.2.5 小結 68
4.3 主深槽擺蕩週期 69
4.3.1 主深槽擺蕩一次定義 69
4.3.2 各組實驗之主深槽擺蕩週期 69
4.4 實驗沙洲數量與沙洲長寬關係之比較 70
4.4.1 沙洲定義 70
4.4.2 沙洲數量與河寬之關係 71
4.4.3 沙洲長寬之關係 72
4.5 沙洲型態與流量、輸砂量之關係 78
第五章 結論 80
參考文獻 82
1.山本晃一(2004),「構造沖積河川學」,山海堂。
2.吳保生、馬吉明、張仁、府仁壽(2003),「水庫及河道整治對黃河下游遊蕩性河道河勢演變的影響」,水利學報,12:12-20。
3.李保如、華正本(1980),「三門峽攔沙期下游河道變化」,河流泥沙國際學術討論會論文集,407-416。
4.張紅武、趙連軍、曹豐生(1996),「遊蕩河型成因及其河型轉化問題的研究」,人民黃河,10:11-15。
5.張歐陽、金德生、陳浩(2000),「遊蕩河型造床實驗過程中河型的時空演替和複雜響應現象」,地理研究,19(2):180-188。
6.錢意穎,郭青超,周文浩(1993),「黃河幹流水沙變化與河床演變」,中國建材工業出版社。
7.錢寧、周文浩(1965),「黃河下游河床演變」,科學出版社。
8.錢寧、張仁、周志德(1987),「河床演變學」,科學出版社。
9.謝鑒衡(1982),「河流泥沙工程學(上冊)」,水利出版社。
10.Gilbert, G. K. (1914), “The Transportation of Debris by Running Water,” U. S. Geol. Survey, Prof. 86: 259.
11.Kelly, S. (2006), “Scaling and hierarchy in braided rivers and their deposits: examples and implications for reservoir modelling,” Special publication number 36 of the international association of sedimentologists, 75-106.
12.Knighton, D., (1984), Fluvial Forms and Processes.
13.Lane, E. W. (1955), “The Importance of Fluvial Morphology in Hydraulic Engineering,” Proc., ASCE, 745(81): 17.
14.Li, Ruh-Ming and Simons, D. B., (1982), “Geomorphological and Hydraulic Analysis of Mountain Streams,” Gravel Bed Rivers, 425-441.
15.Marti, C. and Bezzola G. R. (2006), “Bed load transport in braided gravel-bed rivers,” Special publication number 36 of the international association of sedimentologists, 199-215.
16.Phillips, J. D., Slattery, M. C. and Musselman, Z. A. (2005), “Channel adjustments of the lower Trinity River, Texas, downstream of Livingston Dam,” Earth Surface Processes and Landforms, 30: 1419-1439.
17.Schumm, S. A., (1977), The Fluvial System, 338.
18.Walsh, J. and Hicks, D. M. (2002), “Braided channels: Self-similar or self-affine?” Water Resources Research, 38(6): 1801-1806.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top