跳到主要內容

臺灣博碩士論文加值系統

(3.238.135.174) 您好!臺灣時間:2021/08/05 06:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:方琦萱
研究生(外文):Chi-Hsuan Fang
論文名稱:工程構造物對河川棲地物理特性之影響
論文名稱(外文):The Influence of Engineering Structure on the Physical Characteristics of the River Habitat
指導教授:陳樹群陳樹群引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:水土保持學系所
學門:農業科學學門
學類:水土保持學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:135
中文關鍵詞:河川型態分類棲地評估
外文關鍵詞:classification of river morphologyhabitat assessment
相關次數:
  • 被引用被引用:2
  • 點閱點閱:243
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
台灣地區過去的河溪整治工程多以治水為主,施作之工程方法常沿用美國及日本等先進國家所發展出之工程技術,卻因施作背景之不同而無法配合台灣之地質與河川特性,容易遭受破壞並使棲地環境受到更為嚴重之干擾。
本研究以河川型態五層分類法作為理論基礎,利用河川物理性棲地環境評估方法於烏溪流域與濁水溪流域進行現地調查評估,並將評估之點位區分為自然棲地與人為介入之棲地,透過第一層至第四層之分析與計算分類出河川型態,第五層則用以分析棲地物理組成,以自然棲地之評估結果建立信賴區間,根據人為介入之棲地評估結果於信賴區間之落點,探討各河相下工程構造物之設置對河川物理性特性之影響程度及其原因,並分析溪流沿程評分之表現。
依河川型態五層分類法之計算與分析,兩流域共249處調查點位可分為十三種河相。在調查地點中,相同高度之橫向構造物於不同河寬下對棲地物理特性之影響程度呈現由上游向下游遞減之趨勢,相同河相下不同高度之橫向構造物對棲地物理特性之影響程度隨高度降低而遞減,高差越大對棲地縱向連續性之破壞越為顯著。設置縱向構造物對棲地物理特性之影響在上游地區較為明顯,其主要反應在植生與地形特性方面,上游地區興建縱向構造物將切斷與兩岸間之連續性,植生生長不易,部份點位因水泥護岸之剛性結構使地形之穩定度上升;至中游地區,設置縱向構造物之點位兩岸常形成邊灘,但邊灘之植生仍以草本植物為主,顯示其在棲地橫向連續性之阻斷仍具有相當程度之影響;下游地區在行水區與縱向結構物間仍有大範圍之高灘地,對棲地橫向連續性之影響不大。
In the past, most of the streams and rivers training focused on flood control in Taiwan. We often use the methods from the United States, Japan and some other advanced conturies, but the geology, river characteristic and some other qualifications in Taiwan are different from those contries, so it’s easy to harm and disturb habitat.
This research based on classification of river morphology with five levels, use river habitat physical environment assessment method to process the investigation and evaluation of Wu River and Jhuoshuei River. And divided the area into natural habitat and artificial habitat. Through level one to level four to analyze river morphology, using level five to analyze the components of physical habitat. To contribute confidence interval by the evaluate result of natural habitat. According to the result of artificial habitat and the spots in confidence interval to discuss the influence and reason of the structure in all kinds river morphology. And score along the stream.
According to the calculation and analysis of classification of river morphology with five levels, there are 249 places and 13 kinds of river morphology in the area. The influence by the same height lateral construction in different river width becomes less and less from upstream to downstream. The physical influence of lateral construction under the same river morphology but different height will decrease as the height gets less. The greater height difference the damage to the vertical continuance of habitat will be much more obviously. To set longitudinal construction on upstream has much effect to physical habitat. It showed on vegetation and landform. To build longitudinal construction will cut down the continuance between two coasts. The vegetation is not easy to grow, some places because of the strong construction of cement revetment, make safer and steadier. In the midstream area two banks of the place with longitudinal construction usually construct sand bars, but the mainly vegetation on sand bar is herb. It showed the influence to prevent the lateral continuance of habitat. In the downstream, there are big flood plains between water flowing area and longitudinal construction, the influence is not much.
摘要 I
ABSTRACT II
目錄 IV
圖目錄 VI
表目錄 VII
第一章 前言 1
1.1 研究動機 1
1.2 研究流程 2
第二章 前人研究 3
2.1 河川分類系統 3
2.1.1 Rosgen之河川分類系統 3
2.1.2 河川型態五層分類法 7
2.2 棲地評估指標 14
2.2.1 定性棲地評估指標(QHEI) 14
2.2.2 溪流狀況指標(ISC) 15
2.2.3 加州河川生態評估準則(CSBP) 16
2.2.4 河溪環境快速評估系統(SERAS) 17
2.2.5 可跨越性溪流快速生物評估法(RBP) 19
2.2.6 河溪物理性棲地環境評估 20
2.2.7 棲地評估指標優劣之比較 21
第三章 研究方法 23
3.1 河川型態五層分類法 23
3.1.1 第一層流域特性 29
3.1.2 第二層水系特性 31
3.1.3 第三層主流特性 35
3.1.4 第四層河道特性 39
3.1.5 第五層棲地特性 41
3.2 河川物理性棲地評估指標 43
3.3 統計分析 45
3.3.1 正規化 45
3.3.2 信賴區間 46
第四章 實例分析 47
4.1 流域特性 47
4.1.1 烏溪流域特性 47
4.1.2 濁水溪流域特性 49
4.1.3 調查點位分佈圖 50
4.2 河川型態分類 51
4.2.1 烏溪流域調查點位河川型態分類 51
4.2.1.1 眉溪及南港溪水系 51
4.2.1.2 北港溪水系 56
4.2.1.3 貓羅溪水系 60
4.2.1.4 大里溪水系 66
4.2.1.5 烏溪主流 72
4.2.2 濁水溪流域調查點位河川型態分類 77
4.2.2.1 清水溪水系 77
4.2.2.2 陳有蘭溪水系 81
4.2.2.3 濁水溪主流 84
4.2.3 小結 88
4.3 工程構造物介入對棲地物理特性之影響 89
4.3.1 山區辮狀粗顆粒U型河谷 89
4.3.2 丘陵順直粗顆粒V型河谷 90
4.3.3 丘陵蜿蜒粗顆粒V型河谷 95
4.3.4 丘陵順直粗顆粒U型河谷 96
4.3.5 丘陵蜿蜒粗顆粒U型河谷 101
4.3.6 丘陵辮狀粗顆粒U型河谷 105
4.3.7 台地辮狀粗顆粒多岔型河段 108
4.3.8 平原順直粗顆粒窄深型河段 111
4.3.9 平原順直粗顆粒寬淺型河段 114
4.3.10 平原辮狀粗顆粒多岔型河段 117
4.3.11 平原辮狀細顆粒多岔型河段 120
4.3.12 河口感潮順直粗顆粒寬淺型河段 121
4.3.13 河口感潮順直細顆粒寬淺型河段 121
4.3.14 小結 123
4.4 溪流沿程評估結果 126
4.4.1 橫向構造物介入之點位沿程變化 126
4.4.2 縱向構造物介入之點位沿程變化 130
第五章 結論 133
參考文獻 134
附錄 137
1.方偉(2001),「河川滿槽流量估算方法研究」,中興大學水土保持學系碩士論文。
2.巨廷工程顧問股份有限公司(2005),「河溪生態工法參考手冊」,行政院公共工程委員會。
3.朱菱強(2002),「水力幾何型態因子與河相關係之探討」,中興大學水土保持學系碩士論文。
4.陳樹群(2005),「台灣地區河川型態分類技術手冊研擬(2/2)」,經濟部水利署水利規劃試驗所。
5.陳樹群(2006),「河川型態應用於棲地環境復育之研究(1/2)」,經濟部水利署。
6.陳樹群(2007),「河川型態應用於棲地環境復育之研究(2/2)」,經濟部水利署。
7.陳樹群、彭思顯(2002),「台灣河川型態五層分類法研究」,中華水土保持學報33(3):175-190。
8.楊景春(1998),「地貌學教程」,明文書局。
9.錢寧、張仁、周志德(1987),「河床演變學」,科學出版社,pp:19-33、339-385。
10.錢寧、萬兆惠(1981),「泥砂運動力學」,科學出版社。
11.謝鑒衡、丁君松、王運輝(1987),「河床演變與整治」,水利電力出版社,pp:4-35。
12.羅文琴(2007),「烏溪水系河川型態於物理性棲地特性之探討」,中興大學水土保持學系碩士論文。
13.Barbour, M. T., Gerritsen J., Snyder B. D., and Stribling J.B. (1999), Rapid bioassessment protocols for use in streams and wadeable rivers: Periphyton, benthic macroinvertebrates and fish. 2nd. ed. EPA 841-B- 99-002. US. Environmental Protection Agency, Office of Water, Washington.
14.Gippel, C. J. and M. J. Stewardson (1998), “Use of Wetted Perimeter in Defining Minimum Environmental Flows,” Regul. Rivers: Res. Mgmt., 14: 53-67.
15.Leopold, L.B., Wolman, M.G. and Miller, J.P. (1964), Fluvial Processes in Geomorphology, San Francisco, W. H. Freeman and C., pp: 552
16.Ladson,A.R., White L.J., Doolan J.A., Finlayson B.L., Hart B.T., Lake P.S., and Tilleard J.W., (1999), “Development and testing of an Index of Stream Condition for waterway management in Australia”. Freshwater Biology, 41: 453-468.
17.Plafkin, J. L., Barbour M. T., Porter K. D., Gross S. K. and Hughes R. M. (1989), Rapid bioassessment protocols for use in streams and rivers : Benthic macroinvertebrates and fish. EPA/444/4-89-001. US. Environmental Protection Agency, Washington, DC.
18.Rankin, E. T., (1989), The qualitative habitat evaluation index (QHEI), rationale, methods, andapplication, Ohio EPA, Division of Water Quality Planning and Assessment, Ecological Assessment Section, Columbus, Ohio.
19.Rosgen, D. (1996), Applied River Morphology, Printed Media Companies.Schumm, S. A. (1977), The Fluvial System, Wiley and Sons, New York.United States Department of Agriculture(1998),「Stream Visual Assessment Protocol」
20.Vannote, R. L., Minshall, G. W., Cummins, K. W., Sedell, J. R. & Cushing, C. E.(1980). ”The river continuum concept. Canadian Journal of Fisheries and Aquatic Science” 37: 130-137.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top