跳到主要內容

臺灣博碩士論文加值系統

(3.229.142.104) 您好!臺灣時間:2021/07/27 05:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉志偉
研究生(外文):Chih-Wei Liu
論文名稱:不同水源復育黃緣螢
論文名稱(外文):Restoration of Luciola ficta Olivier Hibitats with Different Water Sources
指導教授:梁昇梁昇引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:水土保持學系所
學門:農業科學學門
學類:水土保持學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:29
中文關鍵詞:棲地自衛能力環境干擾地下水源
外文關鍵詞:self-protection process of the habitatenvironmental interferencegroundwater sources
相關次數:
  • 被引用被引用:0
  • 點閱點閱:327
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本試驗採用家用潔淨水源,分別為靜置五天的自來水與抽取的地下水。養殖箱內土壤與植被在3月1日均移自原黃緣螢棲地,在60cm(長) x 45cm(寬)x 43cm(高)透明強力玻璃箱內水深維持1.5cm到 3.0cm水位的人工復育方式。養殖箱內枯葉等有機物為全生態系的起動力,有機氮分解後主要以有毒的氨(ammonia, NH3 )存在,幸兩者水源PH值均為7.0,在水中NH3轉變成NH4+,成為養殖箱主要養分供應者,水族箱內水生棲地得以安全地蓬勃發展。大量自然生成自營性厭氧的亞硝酸菌(the aerobic bacterium Nitrosomonas sp.)接著氧化氨離子成為有毒的NO2-; 硝酸菌(Nitrobacter sp.) 進一步化NO2-為NO3-。長期浸水維持厭氧狀況下,底泥還原NO3-為氮順利進入空中。水生植物根系十分茂盛得以維持良好微生物過程(microbial process)而具有良好淨水功能。也使黃緣螢食源大量供應方式為可能。每箱放養150隻不到三齡的幼蟲,不換水、不曝氣,兩重複進行羽化成蟲的觀察比較。自2008年4/1起到7/10止共101天觀查期得到如下結果:
1.地下水水源,PH值波動較大,水域較早羽化(5/18起)且數量提前,到7/10止羽化成成蟲數已分別達88隻與61隻。比起自來水源的53隻與36隻顯然高出甚多,尚無不適做為黃緣螢水域情況發生。
2. 成蟲求偶交配,深受外來光源與露水有無的影響。外來光源影響下,成蟲飛翔幾乎停止。在有露水形成的夜晚,求偶時間集中在19:00 到21:00,其他時間較少,但本試驗在23:30也觀查到;沒有露水形成的夜晚求偶活動時程縮短一半,可知黃緣螢對人造環境的干擾反應強烈。
3.飼養箱內在水深1.5cm到3.0cm水位範圍內水質變化極小,水量因蒸發加以補充有利良好棲地淨化功能,塵灰落進箱內多浮留水面,雨水或露水的干擾下箱內水質一直清澈。全過程的主角竟然是氮循環,黃緣螢的成功復育僅是氮循環的副產品,氮循環完成是棲地自衛能力的保障,在本研究試驗條件操作下似存在。
The sources of clean water for homes used in this study are tap water and deep well water set aside for settling for five days. The soil and vegetation contained in the culture box were transplanted from the Luciola ficta habitat on March 1 and placed in a transparent reinforced glass box measuring 60 cm (L) x 45 cm (W) x 43 cm (H) for artificial remediation. Depth of water in the box was maintained between 1.5 cm and 3.0 cm. The organic matters, such as withered leaves and other materials, in the culture box became the promoter (起動力) of the entire ecosystem. The decomposed organic nitrogen mainly turned into toxic ammonia (NH3). Fortunately the pH levels of the two water sources were at 7.0; hence, the NH3 in the water was converted into NH4, the principal nutrient supplier of the culture box. Thus the habitat of the aquatic organisms in the aquarium flourished and developed naturally. Contact with oxidized ammonia ions turned the aerobic bacterium Nitrosomonas sp. into toxic NO2, but the Nitrobacter sp. further metabolizes the NO2 into NO3. Long period of immersion allows them to maintain their aerobic state, and the base mud is reconverted the NO3 back to nitrogen, which then easily entered the atmosphere. Aquatic plants have an abundant root system may be maintained through a good microbial process and excellent clean water process, thus making it possible to provide massive supplies of Luciola ficta food sources. Around 150 third-instar larva were placed in each box. No water change or aeration was conducted. A comparative study of the two repeatedly conducted adult eclosion. Findings of the 101-day observation period (from April 1 to July 10, 2008) are as follows:

1. Fluctuations in the pH levels of groundwater sources are more dramatic. Those in water areas emerged into adults earlier (starting from May 18) and the populations increase ahead of schedule. As of July 10, populations of emerged adults were 88 and 61, respectively, quite significantly higher than the populations in tap water sources, 53 and 36 adults respectively. Apparently, both are adaptable to the conditions occurring in the Luciola ficta water areas.
2. The mating of adults is strongly affected by the presence of external light source and dew. Where external light is present, the adults nearly stopped flying. On nights with dew fall, mating period is mainly concentrated between 19:00 hr and 21:00 hr. Mating activity after this period is scarce. However, the experiment noticed that at 23:30 hr, at the absence of dew fall, nighttime mating period is shortened by half. This indicates that the Luciola ficta reacts strongly to the disturbances or interferences in the artificial environment.
3. Water quality changes in nursing boxes with water depths maintained between 1.5 cm and 3.0 cm are minimal. The replenishment of vaporized water had an excellent habitat purifying effect. Dust falling into the boxes mostly float on the water surface. Rainwater or dew interference kept the water quality in the boxes crystal clear. The principal player in the entire process is the nitrogen cycle. The success of the Luciola ficta cultivation is merely a byproduct of the nitrogen cycle. The nitrogen cycle is the self-protection process of the habitat, and in this study, the cycle was found to be present in the conditions created by the experiment.
謝 誌 Ⅰ
摘 要 Ⅱ
Abstract Ⅳ
目 次 Ⅵ
表 目 次 Ⅷ
圖 目 次 Ⅸ
第一章 前言 1
第二章 文獻回顧 2
第一節 螢火蟲的分類 2
一、陸生型種類 2
二、水生型種類 2
三、半水生型種類 3
第二節 螢火蟲生態金字塔結構關係 3
第三節 螢火蟲復育 4
一、水生型螢火蟲 5
二、陸生型螢火蟲 5
三、黃緣螢 6
(一) 卵期 6
(二) 幼蟲期 6
(三) 蛹期 7
(四) 成蟲期 7
四、天 敵 7
(一) 幼蟲期 7
(二) 成蟲期 7
(三) 人為破壞 8
第三章 研究材料與方法 9
第一節 研究架構 9
第二節 水源 10
第三節 水域生態系一個已知的過程 10
第四節 飼養箱 12
第五節 觀測 13
第四章 結果與討論 14
第一節 不同水源對黃緣蟲育成數量觀測 14
第二節 PH值分別對NH4+與NO3-產生量之關係 16
第三節 氮循環完成的證據 20
第四節 其他觀測 25
第五章 結論 26
參考文獻 27

表 目 次
頁數
表1 本試驗兩種水源水質特性 10
表2 兩種水源復育黃緣螢成果比較 15
表3 地下水一養殖箱水質觀測資料 16
表4 地下水二養殖箱水質觀測資料 17
表5 自來水一養殖箱水質觀測資料 18
表6 自來水二養殖箱水質觀測資料 19

圖 目 次
頁數
圖1 黃緣螢棲地生態金字塔結構關係 4
圖2 黃緣螢有四生育期 8
圖3 本研究全程流程 9
圖4 養殖用玻璃箱實況照片圖 12
圖5 生態系永續養殖水箱環境實況照片圖 13
圖6 地下水一養殖水箱中水質NH4+與PH之關係 21
圖7 地下水一養殖水箱中水質NO3-與PH之關係 21
圖8 地下水二養殖水箱中水質NH4+與PH之關係 21
圖9 地下水二養殖水箱中水質NO3-與PH之關係 22
圖10 自來水一養殖水箱中水質NH4+與PH之關係 22
圖11 自來水一養殖水箱中水質NO3-與PH之關係 22
圖12 地下水二養殖水箱中水質NH4+與PH之關係 23
圖13 自來水二養殖水箱中水質NO3-與PH之關係 23
圖14 地下水一養殖水箱中短距時段水質變化循環 24
圖15 自來水一養殖水箱中短距時段水質變化循環 24
圖16 養殖水箱中一次氮循環的理想化水質變化圖 25
1、呂淑珍、劉騰謙等,2005,「點點螢光閃閃現生機-黃緣螢的觀察與人工復育方法探討」,中華民國十七屆中小學科學展覽會作品說明書081544。
2、何健鎔、蘇宗宏,2002,「」,2000年海峽兩岸生物多樣性與保育研討會論文集,517-530頁。國立自然科學博物館印。
3、何健鎔、姜碧惠,2002,「螢光水影。行政院農業委員會特有生物研究保育中心出版 156頁。南投縣。
4、何健鎔,2003,「台灣螢火蟲之鑑定」,921重建螢火蟲生態資源教育訓練研習會,11-27頁。行政院農業委員會特有生物研究保育中心印。
5、何健鎔,2003,「台灣螢火蟲生物學特色」,921重建螢火蟲生態資源教育訓練研習會,28-45頁。行政院農業委員會特有生物研究保育中心印。
6、何健鎔,2003,「螢火蟲飼養與管理」,921重建螢火蟲生態資源教育訓練研習會,51-65頁。行政院農業委員會特有生物研究保育中心印。
7、吳加雄,2002,「東勢林場螢火蟲生態研究」。國立台灣大學昆蟲學研究所碩士論文,121頁。
8、林斯正,2003,「水生螢火蟲棲地水質分析」。921重建螢火蟲生態資源教育訓練研習會,46-50頁。行政院農業委員會特有生物研究保育中心印。
9、柯清水,2004,「養殖池中硝化濾床對石斑稚魚育成之影響」。國立中山大學海洋資源系研究所碩士論文。
10、陳仁昭,1992,「休閒農業區螢火蟲及蝴蝶飼養及復育計畫」,農業委員會期末報告。20頁。
11、陳燦榮,1999,「螢火蟲生態導覽」。田野影像出版社 191頁。台北市。
12、張錦洲,1994,「台灣產黃緣螢人工飼育之研究」,國立中興大學昆蟲學研究所碩士論文48頁。
13、蔡火成、許仁財,2003,「東勢林場螢火蟲棲地隻經營管理與導覽」,921重建螢火蟲生態資源教育訓練研習會,84-88頁。行政院農業委員會特有生物研究保育中心印。
14、楊平四,1998,「火金姑-螢火蟲」,中華民國自然生態保育協會出版82頁。台北市。
15、陳仁昭,2003,「台灣螢火蟲保育與休閒農業之發展」,921重建螢火蟲生態資源教育訓練研習會,3-10頁。行政院農業委員會特有生物研究保育中心印。
16、葉淑丹,1999,「黃緣螢(鞘翅目:螢科)之棲地管理及食物偏好性」。國立台灣大學植物病蟲害研究所碩士論文。101頁。
17、梁昇、許仁財,2007,「水泥池螢火蟲復育」,中華水土保持學會96年年會研討會。
18、許仁財,2008,「東勢林場內黃緣螢棲地多樣性復育」。國立中興大學水菟土保持學系碩士論文。
19、Mitsch, William J., Sven Erik, Jorgensen, 2004, Ecological engineering and ecosystem restoration 。
20、Branham, M.A. and M.D. Greenfield 1996. Flashing males win mate success. Nature 381:745-746.
21、Buck, J. and E. Buck 1976 May. Synchronous Fireflies. Scientific American: 74-85.
22、http://www.tesri.gov.tw/content/planet/pla_aquatic_2.asp
23、http://www.gold-joint.com/cht/technique-pro.html
24、http://eem.pcc.gov.tw/eemadm/files/product_1/ws_29/04.doc
25、Mitsch, J.W. and J. G. Gosselink. 1986. Wetlands. Van Nostrand Reinhold Company, New York. p. 536.
26、Wetzel, R.G. 1983. Limnology. Pp. 255-297. Saunders college publishing. Orlando.
27、Klopatek, J.M. 1978. Nutrient dynamics of Freshwater Riverine marshes and the role of emergent macrophytes. Pp.195-217. In Freshwater wetlands, ecological processes and management potential. R.E. Good, and D.F. Whigham, R.L. Simpson, eds. Academic Press, New York
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top