跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 10:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳文發
研究生(外文):Wen-Fa Chen
論文名稱:改質奈米碳管及中孔洞矽材吸附二氧化碳之研究
論文名稱(外文):A study on the Adsorption of CO2 via Modified Carbon Nanotubes and Mesoporous Silica Particles
指導教授:盧重興盧重興引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:110
中文關鍵詞:CNTsMSPs吸附二氧化碳表面改質
外文關鍵詞:Carbon nanotubesMesoporous silica particlesAdsorptionCO2Surface modification
相關次數:
  • 被引用被引用:9
  • 點閱點閱:309
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討以奈米碳管(Carbon Nanotubes, CNTs)及中孔洞矽材(Mesoporous Silica Particles, MSPs)為吸附材,探討吸附二氧化碳(Carbon Dioxide, CO2)之研究。另外,亦藉由含胺化學藥劑3-aminopropyl-triethoxysilane (APTS)、N-[3-(trime-thoxysilyl)propyl] ethylenediamine (EDA)及polyethyleneemine (PEI)改質吸附材表面之 特性,以提升CO2吸附效率,並進行循環吸附效能之比較。
CNTs及MSPs經改質後物化特性皆有所改變,包括表面鹼基增加,有助於提升CO2吸附量。於溫度影響下,CNTs於低溫下有較佳之吸附效果,而隨著溫度之增加呈現遞減的關係;MSPs則於60℃下具有較佳效果。等溫吸附結果顯示,在CO2進流濃度50%時, CNTs、CNTs(APTS)於20℃、相對濕度0%時,吸附量為161.5和184.3 mg/g;MSPs和MSPs(EDA) 於60℃、相對濕度0%時,吸附量為125.3與152.4 mg/g,顯示改質後CNTs及MSPs能夠明顯提升吸附效果。在濕度影響下,CNTs和CNTs(APTS)均可在乾燥無水分或含有濕度環境下皆可有效進行CO2吸附;MSPs、MSPs(EDA)在乾燥無水分環境中,能有較佳吸附效果,隨著溼度增加吸附量有降低趨勢。循環吸附方面,CNTs(APTS)經20次循環再吸附,其吸附量仍未損失; MSPs(EDA) 經20次循環再吸附,則約有7%吸附量之損失。
Carbon nanotubes (CNTs) and Mesoporous silica particles (MSPs) were treated by APTS ((3-aminopropyl)triethoxysilane)、EDA (N-[3-(trimethoxysilyl)propyl]ethylene-
diamine) and PEI (polyethylenemine) solutions and were selected as adsorbents to study their characterizations and adsorption properties of carbon dioxide from air streams.
The physicochemical properties of adsorbents were changed after modification by different modifity agents. These modifications include the increase in surface functional groups and surface basic sites, which enhance the chemisorption capacity of CO2. The 50% CO2 inlet concentration of adsorption capacities are respectively 161.5 and 125.3 mg/g for CNTs and MSPs and 184.3 and 152.4 mg/g for CNTs(APTS) and MSPs(EDA), respectively. The CNTs(APTS) and MSPs(EDA) shows the greatest enhancement of CO2 adsorption. In the temperature range of 20 to 100℃, the adsorption capacities of CNTs and CNTs(APTS) decreased with a rise in temperature and which of MSPs and MSPs(EDA) have the best adsorption performance of CO2 at 60℃. The CNTs(APTS) was no effective in the absence and presence of water vapor, but MSPs(EDA) was not. After 20 recylic adsorptions, the recoveries of CNTs(APTS) shows no decay, but which of MSPs(EDA) decreased 7%. It is the fact that the CNTs(APTS) leads the adsorption of CO2 that has the greater adsorption capacity, no influence in present of humidity and more thermostability than MSPs(EDA).
摘 要................................................i
ABSTRACT..............................................ii
目 錄................................................iii
圖目錄................................................v
表目錄................................................vii
第一章 緒論...........................................1
1.1 研究緣起..........................................1
1.2 研究目的..........................................2
第二章 文獻回顧.......................................5
2.1 二氧化碳之來源與性質..............................5
2.2 二氧化碳之濃縮捕獲技術............................6
2.3 奈米吸附材之特性..................................10
2.3.1 沸石材料........................................10
2.3.2 沸石與中孔洞吸附材..............................11
2.3.3 奈米碳管........................................14
2.3.4 奈米多孔洞吸附材應用於CO2捕獲...................21
2.4 影響吸附能力因子..................................25
第三章 實驗設備與方法.................................29
3.1 研究流程..........................................29
3.2 吸附材料..........................................31
3.2.1 觸媒製備步驟....................................31
3.2.2 碳管製備步驟....................................31
3.2.3 中孔洞矽材製備程序..............................32
3.2.4 實驗試藥與材料..................................33
3.3 吸附材處理程序....................................34
3.4 吸附實驗..........................................36
3.4.1 實驗設備與試劑..................................36
3.4.2 實驗方法........................................39
3.4.3 分析方法........................................41
3.5 吸附材改質前後特性分析與方法......................42
3.5.1 穿透式電子顯微鏡................................42
3.5.2 比表面積分析儀..................................43
3.5.3 熱重分析儀......................................43
3.5.4 X射線繞射分析...................................44
3.5.5 拉曼光譜........................................45
3.5.6 傅立葉轉換紅外線光譜............................46
3.5.7 表面官能基定量分析 (Boehm’s titration method)..47
3.5.8 物理/化學性吸附.................................48
第四章 結果與討論.....................................49
4.1 不同化學改質劑吸附CO2之研究.......................49
4.1.1 溫度對吸附效能比較..............................49
4.1.2 吸附貫穿曲線....................................52
4.2 奈米碳管及中孔洞矽材表面特性分析結果..............54
4.2.1 物理性/化學性吸附量探討.........................54
4.2.2 穿透式電子顯微鏡................................58
4.2.3 比表面積及孔洞分佈分析..........................61
4.2.4 熱重量分析......................................67
4.2.5 X光繞射分析.....................................69
4.2.6 拉曼光譜分析....................................71
4.2.7 傅立葉轉換紅外線光譜分析........................72
4.2.8 表面鹼性官能基定量分析..........................75
4.2.9 化學性之吸附機制................................77
4.3 吸附平衡實驗結果..................................78
4.3.1 等溫吸附實驗....................................78
4.3.2 等溫貫穿曲線....................................83
4.3.3 熱力學、動力學..................................86
4.3.4 濕度之影響......................................89
4.4 循環吸附..........................................92
4.5 文獻之比較........................................96
第五章 結論與建議.....................................97
5.1結論...............................................97
5.2建議...............................................100
參考文獻..............................................101
英文參考文獻..........................................101
中文參考文獻..........................................109
Aaron, D. and Tsouris, C. (2005). “Separation of CO2 from Flue Gas: A Review.” Separation Science and Technology, Vol. 40: 321-348.
Bai, H. and Wei, J. H., (1996) “The CO2 Mitigation Options for the Electric Sector : A Gas Study of Taiwan .” Energy Policy, Vol. 24 , No.3, 221-228.
Barrett, E., P.,Joyner, L. G. and Halenda, P. P. (1951). “The Determination of Pore Volume and Area Distributions in Porous Substances. I. Computations from Nitrogen Isotherms.“ American Chemical Society, Vol. 73: 373-880.
Boehm, H. P. (1994). “Some Aspects of The Surface Chemistry of Carbon Blacks and Other Carbons.” Carbon, Vol. 32: 759-769.
Booras, G. S. and Smelser, S. C., (1991) “An Engineering and Economic Evaluation of CO2 Removal from Fossil-Fuel-Fired Power Plants.” Energy, Vol. 16: 1295-1305.
Chang, A. C. C., Chuang, S. S. C., Gray, M. and Soong, Y. (2003). “In-Situ Infrared Study of CO2 Adsorption on SBA-15 Grafted with r-(Aminopropyl)triethoxysilane.” Energy & Fuels, Vol. 17: 468-473.
Chen, J. P. and Wu, S. (2004). “Acid/Base-Treated Activated Carbons:Characterization of Function Groups and Metal Adsorption Properties.” Langmuir, Vol. 20: 2233-2242.
Chen, P., Wu, X., Lin, J., (1999). “High H2 uptake by alkali doped carbon nanotubes under ambient pressure and moderate temperature.” Science Magazine, Vol. 285: 91-93.
Cinke, M., Charles, J.L., W., B. Jr.,Ricca, A. and Meyyappan, M. (2003). “CO2 adsorption in single-walled carbon nanotubes.” Chemical Physics Letters, Vol. 376: 761-766.
Coquay, P., Vandenberghe, R.E., De Grave,E., Fonseca,A., Piedigrosso, P. ,Nagy,J.B. (2002). “X-ray diffraction and Mossbauer characterization of an FeSiO2 catalyst for the synthesis of carbon nanotubes.” Journal of Applied Physics, Vol. 92: 1286-1291.
Dean, J. A., (1987) “Lange’s Handbook of Chemistry.” Mc Graw-Hill, New York.
DOE, NETL Report. (2006). “Carbon Sequestration Technology Roadmap.” p.15.
Dubinin, M. M., (1989). “Fundamental of the theory of adsorption in micropores of carbon adsorbents: characteristics of their adsorption properties and microporous structures.” Carbon, Vol. 27: 457-467.
Flagan, R. C. and John, H. S., (1988). “Fundamentals of air pollution enginerring.” Prentice-Hall, New Jersey.
Gao, W., Butler, D. and Tomasko, D.L. “High-Pressure Adsorption of CO2 on NaY Zeolite and Model Prediction of Adsorption Isotherms” Langmuir, Vol. 20: 8083-8089.
Gollakota, S. V. and Chriswell, C. D., (1988). “Study of Adsorption Process Using Silicalite for Sulfur Dioxide Removal form Combustion Gases.” Industrial &Engineering Chermistry Research, Vol. 27: 139-143.
Granite, E.J., O’Brien, T., (2005). “Review of novel methods for carbon dioxide separation from flue and fuel gases.” Fuel Processing Technology, Vol. 86: 1423-1434.
Gray, M. L.,Soong, Y.,Champagne, K. J.,Baltrus, J.,R.W., S. J.,Toochinda, P. and S.S.C., C. (2004). “CO2 capture by amine-enriched fly ash carbon sorbents.” Separation and Purification Technology, Vol. 35: 31-36
Gray, M.L., Soong, T., Champagne, K.J., Pennline, H., Baltrus, J.P. and Stevens R.W. (2005). “Improved immobilized carbon dioxide capture sorbents.” Fuel Processing Technology, Vol. 86: 1449-1455.
Gregg, S.J., Sing, K.S.W. (1982). Adsorption, surface area and porosity, Academic Press, New York.
Heubach, D., Beucker, S. (2004). “Application of nanotechnology in environmental technology – innovation potential for companies? Insights from two German surveys.” International symposium on environmental nanotechnology, Taipei, Dec.1-3, 19-32.
Hiyoshi, N., Yogo, K. and Yashima, T., (2005) “Adsorption characteristics of carbon dioxide on organically functionalized SBA-15.” Microporous and Mesoporous Materials, Vol. 84: 357-365.
Hone, J., Zetl, A. and Whitney, M. (1999). “Thermal conductivity of single-walled carbon Nanotubes” Synthetic Metals, Vol. 103: 2498-2499.
Huang, H. Y.,Yang, R. T.,Chinn, D. and Munson, C. L. (2003). “Amine-Grafted MCM-48 and Silica Xerogel as Superior Sorbents for Acidic Gas Removal from Natural Gas.” Industrial & Engineering Chermistry Research, Vol. 42: 2427-2433
Iijima, S., (1991). “Helical microtubules of graphitic carbon.” Nature, Vol. 354: 56-58.
IPCC (2005). “Special Report on Carbon dioxide Capture and Storage”, Chapter 3 (CO2 Capture) and Chapter 8 (CCS Cost).
Knowles, G. P., Delaney, S. W. and A.L., C. (2006). “Diethylene- triamine[propyl(silyl)]-Functionalized (DT) Mesoporous Silicas as CO2 Adsorbents.” Industrial & Engineering Chermistry Research. Vol. 45: 2626-2633.
Knowles, G. P.,Graham, J. V.,Delaney, S. W. and L., C. A. (2005). “Aminopropyl-functionalized mesoporous silicas as CO2 adsorbents.” Fuel Processing Technology, Vol. 86: 1435-1448.
Kroto, H.W., (1989). “C60B Buckminsterfullerene, other fullerenes and the icospiral shell.” Computers & Mathematics with Applications, Vol. 17(1-3): 417-423.
Lau, K. T. and Hui, D. (2002). “The revolutionary creation of new advanced materials - carbon nanotubes composites.” Composites Part B: Engineering, Vol. 33: 263-277.
Li, Y., Wang, S., Cao, A., Zhao, D., Zhang, X., Xu, C., Luan, Z., Ruan, D., Liang, J., Wu, D., Wei, B. (2001). “Adsorption of fluoride from water by amorphous alumina supported on carbon nanotubes.” Chemical Physics Letters, Vol. 350: 412-416.
Li, Y., Wang, S., Wei, J., Zhang, X., Xu, C., Luan, Z., Wu, D., Wei, B. (2002). “Lead adsorption on carbon nanotubes.” Chemical Physics Letters, Vol. 357: 263-266.
Lillo-Rodenas, M. A., Cazorla-Amoros, D. and Linares-Solano, A., (2005). "Behaviour of activated carbons with different pore size distributions and surface oxygen groups for benzene and toluene adsorption at low concentrations.” Carbon, Vol. 43: 1758-1767
Lin, Y.-C., Bai, H., Chang, C.-L. (2005). “Applying Hexagonal Nanostructured Zeolite Particles for Acetone Removal.” J. of Air &Waste Management Association, Vol. 55: 834-840,
Lin, Y-C, Bai, H. (2006). “Temperature Effect on Pore Structure of Nanostructured Zeolite Particles Synthesized by Aerosol Spray Method.” Aerosol and Air Quality Research, Vol. 6: No 1, 43-53.
Liu, X., Li, J., Zhou, L., Huang, D., Zhou, Y. (2005). “Adsorption of CO2, CH4 and N2 on ordered mesoporous silica molecular sieve.” Chemical Physics Letters, Vol. 415: 198-201.
Liu, Z.J., Yuan, Z.Y., Zhou, W., Peng, L.M., Xu, Z.,(2001). “Co/carbon-nanotube monometallic system: the effects of oxidation by nitric acid.” Phys. Chem, Vol. 3: 2518-2521.
Lu, C., Bai, H., Wu, B., Su, F. And Hwang, J.F. (2008). “a comparative study of CO2 capture by carbon nanotubes, Activated carbon and Zeolites” Energy & Fuels, in press.
Lu, C., Chung, Y.-L., Chang, K.-F. (2006). “Adsorption thermodynamic and kinetic studies of trihalomethanes on multiwalled carbon nanotubes.” Journal of hazardous materials, Vol. 138: 304-310.
Merkulov, V. I., Guillorn, M. A., Lowndes, D. H., Simpson, M. L., Voelkl, E. (2001). “Shaping carbon nanostructures by controlling the synthesis process.” Applied Physics Letters, Vol.79(8): 1178-1180.
Millward and Yaghi (2005). “Metal Organic Frameworks with Exceptionally High Capacity for Storage of Carbon Dioxide at Room Temperature” Journal of the American Chemical Society, Vol. 127: 17998-17999.
Prylutskyy, Y. I., Durov, S. S., Ogloblya, O. V., Buzaneva, E. V. and Scharff, P. (2000). “Molecular dynamics simulation of mechanical, vibrational and electronic properties of carbon nanotubes” Computational Materials Science, Vol. 17, 352-355.
Przepiorski, J.,Skrodzewicz, M. and Morawski, A. W. (2004). "High temperature ammonia treatment of activated carbon for enhancement of CO2 adsorption." Applied Surface Science, Vol. 225: 235-242.
Rangwala, H. A. (1996). “Absorption of Carbon Dioxide into Aqueous Solution Using Hollow Fiber Membrane Contractors.” Journal of Membrane Science, Vol. 112: 229-240
Ribeiro Carrott, M. M. L., Esteˆva˜o Candeias, A. J., Carrott, P. J. M., Unger, K. K.(1999). “Evaluation of the Stability of Pure Silica MCM-41 toward Water Vapor.” Langmuir, Vol.15: 8895-8901.
Ribeiro Carrott, M. M. L., Esteva˜o Candeias, A. J., Carrott, P. J. M., Sing, K. S. W. and Unger, K. K., (2000). “Stabilization of MCM-41 by Pyrolytic Carbon Deposition” Langmuir, Vol.16: 9103-9105.
Richard, Q.L., Ralph, T.Y., (2001). “Carbon nanotubes as superior sorbent for dioxin removal.” Journal of the American Chemical Society, Vol.123: 2058-2059.
Ronald, J.G., David, A.H., Colin, B.N. and Edward, A.R. (1986). “Chemistry,” Allyn and Bacon, New York.
Siriwardane, R. V., Shen, M. S. and Fisher E. P. (2005). “Adsorption of CO2 on Zeolites at Moderate Temperatures “ Energy & Fuels, Vol. 19: 1153-1159.
Siriwardane, R. V., Shen, M. S. and Fisher, E. P. (2003) “Adsorption of CO2, N2 and O2 on Natural Zeolite.” Energy & Fuels, Vol. 17: 571-576.
Stenzel, M. H. (1993) “Remove Organics by Activated Carbon Adsorption.” Chemical Engineering Progress, Vol. 89: 36-43.
Takcuchi, Y., Iwamoto, H., Miyata, N., Asano, S. and Harada, M. (1995) “Adsorption of 1-butanol and p-xylene Vapor and their Mixtures with High Silica Zeolites.” Separations Technology, Vol. 5: 23-34.
Xu, X.,Song, C.,Miller, B. G. and Scaroni, A. W. (2005). “Adsorption separation of carbon dioxide from flue gas of natural gas-fired boiler by a novel nanoporous bmolecular basket adsorbent.” Fuel Processing Technology, Vol. 86: 1457-1472.
Yeh, A. C. and Bai, H. (1999). “Comparison of Ammonia and Monoethanolamine Solvents to Reduce CO2 Greenhouse Gas Emissions.” The Science of the Total Environment, Vol.24 121-133.
Yong, Z., Zhu, Z., Wang, Z., Hu, J., Pan, Q. (2007). “One-dimensional carbon nanotube-FexCy nanocrystal composite.” Nanotechnology, Vol.18: 105602.1-105602.4.
Zhang, A., Xie, D., Wang, Y. (2000) “The catalytic cracking capability of Co/CNT.” Shanxi publishing company of technology, 363-364.
Zheng, F.,Tran, D. N.,Busche, B. J.,Fryxell, G. E.,Addleman, R. S.,Zemanian, T. S. and Aardahl, C. L. (2005). “Ethylenediamine-Modified SBA-15 as Regenerable CO2 Sorbent.” Industrial & Engineering Chermistry Research, Vol. 44: 3099-3105.
Zhu, Z.Z., Wang, Z., Li, H.L. (2008). “Functional multi-walled carbon nanotube/polyaniline composite films as supports of platinum for formic acid electrooxidation.” Applied Surface Science, Vol. 254: 2934-2940.

吳碧蓮,(2007) “奈米碳管、活性碳與沸石吸附二氧化碳溫室氣體之研究” 碩士論文,國立中興大學環境工程學系,台中市
李文智,(2006) “以沸石擔持金屬氧化物製備吸附劑以進行磷化氫氣體吸附之研究” 碩士論文,國立交通大學環境工程研究所,新竹市。
林育男,(1998) “以螺旋藻對二氧化碳之減除及利用” 碩士論文,國立雲林科技大學環境與安全工程技術研究所,雲林縣。
施信民,(1999) “以熟石灰吸收煙道氣中二氧化碳之研究”,行政院國科會/環保署空污費科技計畫成果報告。
洪瑛瑛、藍啟仁,(2001) “生物法固定二氧化碳的現況”,台電工程月刊。
洪瑛瑛、藍啟仁,(2001) “物理方法固定二氧化碳的現況”,台電工程月刊。
徐慶崇,(1998) “填充塔中醇胺溶液對二氧化碳之吸收研究” 碩士論文,私立元智大學化學工程研究所,桃園縣。
張義宏,(2001) “利用本土性小球藻固定二氧化碳之技術開發” 博士論文,國立台灣大學農業化學研究所,台北市。
陳志聖、吳天化,(2001) “火力發電廠利用CO2於製程廢水程序及廢水處理之可行性”,工業減廢暨環境管理研討會論文集。
曾映棠、白曛綾,(2001) “醇胺溶劑分離回收廢氣中二氧化碳之成本影響因子”,第十八屆空氣污染控制技術研討會論文集。
楊盛行等人,(2000) “篩選本土性微生物固定二氧化碳之研究”,台電工程月刊。
葉安晉,(2000) “以氨水洗滌法去除二氧化碳溫室效應氣體之可行性研究” 博士論文,國立交通大學環境工程研究所,新竹市。
趙國評,(2001) “根枝藻(Rhizoclonium sp.) (Cladophorales, Chorophyta)資源之開發—製漿造紙之可行性評估與養殖特性之研究” 博士論文,國立海洋大學水產養殖研究所,基隆市。
潘守保,(1998) ”以混合醇胺溶液(MEA+AMP)吸收二氧化碳溫室效應氣體之可行性研究” 碩士論文,國立交通大學環境工程研究所,新竹市。
蔡正國,(2005) “複合奈米碳管吸附水溶重金屬污染物之應用研究” 碩士論文,國立雲林科技大學環境與安全衛生工程系,雲林縣。
藍啟仁、楊明偉,(2001) “利用化學沈澱技術進行燃煤電廠排釋煙氣中二氧化碳的固定處理”,工業減廢暨環境管理研討會論文集。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊