日本光觸媒製品論壇:光觸媒製品的濕式分解性能試驗法(JIS R 1703-2)。
呂宗昕、吳偉宏,奈米科技與二氧化鈦光觸媒,科學月刊,第376期,第72-76頁(2004)。
周開平、陳郁文,二氧化鈦光觸媒的應用-自潔建築材料,科學月刊,第395期,第66-69頁(2005)。
邱永亮譯,染料之合成與特性, 徐氏基金會(1975)。
邱永亮、魏盛德合譯,染色化學,徐氏基金會(1975)。
陳耀茂譯,田口實驗計畫法,滄海書局 (1997)。
張季娜等譯,田口式品質工程導論,中華民國品質管制學會 (1989)。
經濟部工業局,奈米標章產品之光觸媒抗污塗料驗證規範 (TN-005)。
賴保帆,以UV/TiO2程序處理氮染料之分解反應研究,碩士論文,國立中興大學環境工程學系(2000)。謝嘉民、賴一凡、林永昌、枋志堯,光激發螢光量測的原理架構及應用,科儀新知,第二十六卷,第六期,第39-51頁。Arana, J., J. M. Dofia-Rodriguez, E. Tello Rendon, C. Garriga I Cabo, O. Gonzalez-Diaz, J. A. Herrera-Melian, J. Perez-Pefia, G. Colon, and J. A. Navio, “TiO2 Activeation by Using Activated Carbon a Support Part II. Photoreactivity and FTIR Study,” Applied Catalysis B: Environmental, 44, pp. 153-160 (2003).
Bedjat, I. and P. V. Kamat, “Capped Semiconductor Colloids, Synthesis and Photoelectrochemical Behavior of TiO2-capped SnO2 Nanocrystallites,” Journal of Physics and Chemistry, 99, pp. 9182-9188 (2005).
Bhattacharyya, A., S. Kawi, and M. B. Ray, “Photocatalytic Degradation of Orange Ⅱ by TiO2 Catalysts Supported on Adsorbents,” Catalysis Today, 98, pp.431-439 (2004).
Carp, O., C.L. Huisman, and A. Reller, “Photoinduced Reactivity of Titanium dioxide,” Progress in Solid State Chemistry, 32(1), pp. 331-337 (2004).
Carpio, E., P. Zuniga, S. Ponce, J. Solis, J. Rodriguez, and W. Estrada, “Photocatalytic Degradation of Phenol Using TiO2 Nanocrystals Supported on Activated Carbon,” Journal of Molecular Catalysis A: Chemical, 228, pp. 293-298 (2005).
Childs, L. P., and D. F. Ollis, “Is Photocatalysis Catalytic?” Journal of Catalysis, 66, pp. 383-390 (1980).
Cordero, T., C. Duchamp, J. Chovelon, C. Ferronato, and J. Matos, “Influence of L-type Activated Carbons on Photocatalytic Activity of TiO2 in 4-chlorophenol Photodegradation,” Journal of Photochemistry and Photobiology A: Chemistry, 191, pp. 122-131 (2007).
Davis, R. J., J. L. Gainer, G. O''Neal, and I. W. Wu, “Photocatalytic Decolorization of Wastewater Dyes,” Water Environment Research, 66, pp. 50-53 (1994).
Daneshvar, N., D. Salari, and A. R. Khataee, “Photocatalytic Degradation of Azo Dye Acid Red 14 in Water on ZnO as An Alternative Catalyst to TiO2,” Journal of Photochemistry and Pohotbiology A: Chemistry, 162, pp. 317-322 (2004).
Fox, M. A. and M. T. Dulay, “Heterogeneous Photocatalysis,” Chemical Reviews, 93, pp. 341-357 (1993).
Fu, P., Y. Luan and X. Dai, “Preparation of Activated Carbon Fibers Supported TiO2 Photocatalyst and Evaluation of Its Photocatalytic Reactivity,” Journal of Molecular Catalysis A: Chemical, 221, pp. 81-88 (2004).
Fujishima, A. and K. Honda, “Electrochemical Photolysis of Water at A Semiconductor Electrode”, Nature, 238, pp. 37-38 (1972).
Gao, Y. and H. Liu, “Preparation and Catalytic Property Study of A Novel Kind of Suspended Photocatalyst of TiO2-Activated Carbon Immobilized on Silicone Rubber Film,” Materials Chemistry and Physics, 92, pp. 604-608 (2005).
Garcia, J. C. and K. Takashima, “Photocatalytic Degradation of Imazaquin in An Aqueous Suspension of Titanium Dioxide,” Journal of Photochemistry Photobiology A Chemistry, 155(1-3), pp. 215-222 (2003).
Hoffmann, M. R., S. T. Martin, W. Choi, and Bahnemann, “Environmental Applications of Semiconductor Photocatalysis,” Chemical Reviews, 95, pp. 69-75 (1995).
Jing, L., Y. Qu, B. Wang, S. Li, B. Jiang, L. Yang, W. Fu, H. Fu, and J. Sun, “Review of Photoluminescence Performance of Nano-sized Semiconductor Materials and its Relationships with Photocatalytic Activity,” Solar Energy Materials & Solar Cells, 90, pp. 1773-1787 (2006).
Legrini, O., E. Oliveros, and A. M. Braun, “Photochemical Processes for Water Treatment,” Chemical Reviews, 93(2), pp. 671-698 (1993).
Li, Y., X. Li, J. Li, and J. Yin, “Photocatalytic Degradation of Methylene Orange by TiO2-coated Activated Carbon and Kinetic Study,” Water Research, 40, pp. 1119-1126 (2006).
Livage, J., S. Doeuff, M. Henry, and C. Sanchez, “Hydrolysis of Titanium Alkoxides:Modification of the Molecular Precursor by Acetic Acid,” Journal of Non-Crystalline Solids, 89, pp. 206-216 (1987).
Mills, A. and S. L. Hunte, “An Overview of Semiconductor Photocatalysis,” Journal of Photochemistry and Photobiolog, A: Chemistry, 108(1), pp. 1-35 (1997).
Muruhanandham, M. and M. Swaminathan, “Photocatalytic Decolourisation and Degradation of Reactive Orange 4 by TiO2-UV Process,” Dyes and Pigments, 68, pp. 133-142 (2006).
Nilsson, R., R. Nordlinder, U. Wass, B. Meding, and L. Belin, “Asthma, Rhinitis, and Dermatitis in Workers Exposed to Reactive Dyes,” British Journal of Industrial Medicine, 50, pp. 65-70 (1993).
Okamoto, K., Y. Yasunori, T. Hirok, T. Masashi, and T. Akira, “Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder,” Bulletin of Chemical Society of Japan, 58, pp. 2015-2022 (1985).
Ollis, D. F., E. Pelizzetti, and N. Serpone, “Photocatalyzed Destruction of Water Contaminants,” Environmental Science and Technology, 25, pp. 1522-1529 (1991).
Phadke, M. S., “Quality Engineering Using Robust Design,” Prentice Hall, p. 291 (1989).
Riegel, G. and J. R. Bolton “Photocatalytic Efficiency Variability in TiO2 Particles,” Journal of Physics and Chemistry, 99(12), pp. 4215-4224 (1995).
Sakata, T. and T. Kawai, “Photosynthesis and Photocatalysis with Semiconductor Powder-in Energy Resources through Photochemistry and Catalysis,” Gratzel, M., Ed., Academic Press, New York (1983).
Shu, H. Y., M. C. Chang, and H. J. Fan, “Decolorization of Azo Dye Acid Black 1 by the UV/H2O2 Process and Optimization of Operating Parameters,” Journal of Hazardous Materials B, 113, pp. 201-208 (2004).
Suri, R. P. S., J. Lin, D. W. Hand, J. C. Crittenden, D. L. Perram, and M. E. Mulins, “Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Water,” Water Environment Research, 65, pp. 665-673 (1993).
Tang, W. Z. and H. An, “UV/TiO2 Photocatalytic Oxidation of Commerical Dyes in Aqueous Solution,” Chemosphere, 31, No. 9, pp. 4150-4170 (1995).
Terabe, K., K. Kato, H. Miyazaki, S. Yamaguchi, A. Imai, and Y. Iguchi, “Microstructure and Crystallization Behaviour of TiO2 Precursor Prepared by the Sol-Gel Method Using Metal Alkoxide,” Journal of Materials Science, 29, pp. 1617-1622 (1994).
Tryba, B., A. W. Morawski, and M. Inagaki, “Application of TiO2-Mounted Activated Carbon to the Removal of Phenol from Water,” Applied Catalysis B: Environmental, 41, pp. 427-433 (2003).
Turner, J. C. R., “An Introduction to The Theory of Catalytic Reactors,” Catalysis Science and Technology, 1, pp. 43-86 (1981).
Yu, Z., D. Laub, M. Bensimon, and J. Kiwi, “Flexible Polymer TiO2 Modified Film Photocatalysts Active in the Photodegradation of Azo-dyes in Solution,” Inorganica Chimica Acta, 361, pp. 589-594 (2008).
Yuan, R., J. Zheng, R. Guan, and Y. Zhao, “Surface Characteristics and Photocatalytic Activity of TiO2 Loaded on Activated Carbon Fibers,” Colloids and Surfaces A: Physicochemical Engineering Aspects, 254, pp. 131-136 (2005).
Zhang, X., M. Zhou, and L. Lei, “Preparation of An Ag-TiO2 Photocatalyst Coated on Activated Carbon by MOCVD,” Materials Chemistry and Physics, 91, pp. 73-79 (2005).
Zhang, X. and L. Lei, “Effect of Preparation Methods on the Structure and Catalytic Performance of TiO2/AC Photocatalysts,” Journal of Hazardous Materials, 153, pp. 827-833 (2008).
Zhou, M., J. Yu, S. Liu, P. Zhai, and L. Jiang, “Effects of Calcination Temperatures on Photocatalytic Activity of SnO2/TiO2 Composite Films Prepared by an EPD Method,” Journal of Hazardous Materials, 154, pp. 1141-1148 (2008).