跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.175) 您好!臺灣時間:2024/12/09 21:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李佳欣
研究生(外文):Chia-Hsin Li
論文名稱:複合性二氧化鈦/活性碳觸媒之光催化系統處理染料廢水之研究
論文名稱(外文):Study on the Treatment of Dye Wastewater by Titanium Dioxide/Activated Carbon Composite Photocatalysts
指導教授:謝永旭謝永旭引用關係
學位類別:博士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:85
中文關鍵詞:複合性觸媒二氧化鈦活性碳染料
外文關鍵詞:composite catalysttitanium dioxideactivated carbondye
相關次數:
  • 被引用被引用:2
  • 點閱點閱:329
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
本研究目的在於製備複合式二氧化鈦/活性碳觸媒,探討此系統光催化處理染料水溶液之分解效率與反應動力行為以及光觸媒與吸附劑之相互關係。
實驗結果顯示,以溶膠凝膠法自行製備二氧化鈦粉體,當四異丙烷氧化鈦、異丙醇及乙酸的莫耳數比為1:2:8,經500℃鍛燒90分鐘後可得到具最佳光催化活性之觸媒。由精密儀器分析可知,二氧化鈦之顆粒大小約為20 nm,結晶構造為銳鈦礦,零電荷點約為6.90;複合式光觸媒之比表面積值與活性碳的複合比例呈現正相關。由光催化實驗及觸媒沈降實驗結果得知,二氧化鈦與粉末狀活性碳的複合確實可促進光催化反應之進行且有助於提升觸媒沈降性,又以在中性環境沈降效果最佳。
應用複合式光觸媒處理亞甲基藍於鹼性系統有最佳之光活性,但用於降解染料Acid Yellow 17則是在酸性系統比中性或鹼性系統有較佳之光活性;當系統中觸媒添加量相同時,複合比例以PT60 (60 wt% TiO2-40 wt% PAC)有最佳的光催化效果;複合式光觸媒之降解效率隨著初始濃度增加而降低,以初始濃度75 mg/L有最大的降解量,相當於每克的複合式觸媒PT60可分解81.24 mg的染料Acid Yellow 17。實驗結果顯示光催化反應過程中吸附於觸媒表面的染料濃度皆低於觸媒的吸附飽和量,利用反應終止後進行脫附程序以修正光催化反應行為,可成功地簡化真實光催化反應行為之推求,且光觸媒對染料之分解及脫色反應皆符合簡化之Langmuir-Hinshelwood擬ㄧ階動力模式。
This study investigated the preparation of titanium dioxide/activated carbon composite catalysts, the photocatalytic degradation of dye wastewater, and the relationship between photocatalysts and adsorbents. TiO2 powders were obtained using sol-gel process under the design of the Taguchi’s method. The best candidate for photodegradation is obtained under the condition of the molar ratio of titanium isopropoxide, isopropyl alcohol and acetic acid kept at 1:2:8, calcined at 500℃ for 90 min and then dried after mixing with an adequate amount of activated carbon in water solution for 30 min. X-ray powder diffraction patterns suggest that the grain size of TiO2 is about 20 nm and the crystal structure is mainly in anatase form. The pHZPC of titanium dioxide has been measured to be 6.90. The surface area of composite catalysts is proportional to the ratio of activated carbon synthesized. The synthesis of titanium dioxide and activated carbon is a great benefit to the degradation of dye wastewater and the settleability of catalysts. In the alkaline solution, better photodegradation efficiency of methylene blue is achieved than in the neutral or acidic solution. However, the best photodegradation of Acid Yellow 17 is taken place in the acid solution. As far as the component proportion of photocatalyst is concerned, PT60 (60 wt% TiO2-40 wt% PAC) has the best efficiency, and the photodegradation efficiency decreases with an increase in initial dye concentration. The results also clearly indicate the dye concentration adsorbed on the surface of the composite catalysts during the photocatalytic reaction is lower than the saturated adsorptive concentration in the dark. The kinetic behaviors have been successfully described in a simplified Langmuir-Hinshelwood model.
目錄
中文摘要………………………………………..…………………………… i
Abstract……………………………………………………………………… ii
目錄………………………..………………………………………………… iii
表目錄……………………………..………………………………………… v
圖目錄……………………………..………………………………………… vi
第一章 緒論…………………………..…………………………………… 1
1-1 研究緣起………………..……………………………………. 1
1-2 研究內容與目的………………..……………………………. 2
第二章 文獻回顧…………………………..……………………………... 3
2-1 染料概論……………………..………..……………………... 3
2-2 二氧化鈦光觸媒……………………...………………......….. 5
2-3 吸附技術與光催化的結合………………..…………………. 12
2-4 溶膠凝膠法………………….…………………….…………. 14
2-5 田口式實驗計畫法—直交表法.………….....……………..... 16
第三章 材料與方法…………………………….......…………………...... 22
3-1 實驗架構與內容………….......……………………................ 22
3-2 實驗藥品……………….......……..………………….............. 24
3-3 實驗設備………………….......………..…………….............. 25
3-4 實驗方法………………….......………..…………….............. 26
3-4-1 光觸媒之製備…......................………….…............ 26
3-4-2 紫外光/光觸媒氧化程序………................…….. 27
3-5 分析項目及方法…………………...…..…………….............. 28
3-5-1 光觸媒分析…………...............………..…….......... 28
3-5-2 樣品分析…………..................…………..…............ 29
第四章 結果與討論…………………………….......…………………...... 31
4-1 二氧化鈦之最佳製備條件實驗………….......…………….... 31
4-2 光觸媒之特性分析………………………………………....... 35
4-3 複合式光觸媒系統之光活性測試…………………............... 42
4-3-1 背景試驗……………................…………................ 42
4-3-2 pH效應………………….………………………... 47

4-3-3 觸媒複合比例效應…………………………..…… 55
4-3-4 染料初始濃度效應……….......……………........... 61
4-4 反應動力模式分析………….......……………………............ 64
4-4-1 真實光催化反應行為之模擬……………........... 64
4-4-2 光催化反應行為之修正.......…………………..... 66
第五章 結論與建議……………………………….………….................... 73
5-1 結論………….......…………………….................................... 73
5-2 建議………….......…………………….................................... 74
參考文獻………………………………………….…………………………. 75
附錄..………………………………...………………………………………. 79

表目錄
表2-1 Acid Yellow 17染料之結構式及合成原料……….....…………. 5
表2-2 可被二氧化鈦光催化或礦化的有機物質…………...…………. 6
表2-3 實驗計劃法-傳統式與田口式之比較……...…………..……... 18
表2-4 L9直交表………………………………………………………… 19
表3-1 L9直交表之各控制變因水準……………………..………………. 27
表3-2 高效率液相層析儀分析條件………………………...……….. 30
表4-1 二氧化鈦光觸媒之L9直交表實驗結果...……………………… 32
表4-2 二氧化鈦製備因子之變異數分析表…………………………… 33
表4-3 L9直交表中各變因之回應值……………………………...……. 33
表4-4 TiO2、PAC及不同複合比例光觸媒之比表面積值….....……... 38
表4-5 不同pH值之光催化染料AY 17效率分析……………………. 52
表4-6 活性碳的複合對光催化降解染料AY 17之影響……………… 54
表4-7 不同染料初始濃度之去除量…………………………………… 63
表4-8 各批次反應之擬一階反應動力常數表………………………… 72

圖目錄
圖2-1 半導體受光激發後之電子-電洞生成及界面反應示意圖….. 10
圖2-2 乙酸與Ti(OC3H7)4反應(a) chelating form,(b) bridging form. 16
圖3-1 實驗架構圖……………………………………………....…….. 23
圖3-2 實驗裝置圖………………………………………….…..….….. 28
圖4-1 不同二氧化鈦製備條件下,亞甲基藍脫色率隨時間變化圖.. 32
圖4-2 最佳製備條件下,二氧化鈦光活性測試之重複試驗.………. 34
圖4-3 PAC之SEM圖……………………………………..….………. 35
圖4-4 TiO2之SEM圖……..……………………………...…….…...... 35
圖4-5 PT90之SEM圖……..……………………………….….…..…. 36
圖4-6 PT80之SEM圖..………………………………….….……..…. 36
圖4-7 PT70之SEM圖...…………………………...…….….……..…. 36
圖4-8 PT60之SEM圖.…………..…………………..….…..……...… 36
圖4-9 PT50之SEM圖.……..………………………..……...……...… 36
圖4-10 TiO2之XRD圖...……………………………………….....…… 37
圖4-11 PT60之XRD圖……………………..……………….….…...… 37
圖4-12 TiO2與PT90之光激螢光圖譜..…………………….….……… 41
圖4-13 不同觸媒複合比例的複合式觸媒之光激螢光圖譜…..………. 41
圖4-14 直接光解試驗之亞甲基藍脫色率隨時間變化圖..…..……...… 42
圖4-15 直接光解試驗之染料AY 17脫色率隨時間變化圖..………..... 43
圖4-16 直接光解試驗之染料AY 17去除率隨時間變化圖..………..... 43
圖4-17 直接光解試驗之染料AY 17礦化率隨時間變化圖..………..... 44
圖4-18 吸附試驗之亞甲基藍脫色率隨時間變化圖………..…….…… 45
圖4-19 吸附試驗及脫附程序之染料Acid Yellow 17脫色率隨時間變化圖...………………..………………………………………….. 45
圖4-20 吸附試驗及脫附程序之染料Acid Yellow 17去除率隨時間變化圖...…………………..………………………….…..….…….. 46
圖4-21 吸附試驗及脫附程序之染料Acid Yellow 17礦化率隨時間變化圖...…………………..………………………….…..…….….. 46
圖4-22 不同pH值之亞甲基藍脫色率隨時間變化圖……..……...….. 47
圖4-23 不同pH值之亞甲基藍光催化效率與吸附效率分析……....... 48
圖4-24 活性碳的複合對亞甲基藍脫色率之影響……….……….……. 49
圖4-25 不同pH值之染料AY 17脫色率隨時間變化圖……………… 50
圖4-26 不同pH值之染料AY 17去除率隨時間變化圖……………… 50
圖4-27 不同pH值之染料AY 17礦化率隨時間變化圖…………..….. 51
圖4-28 活性碳的複合對染料AY 17脫色率之影響……………..….… 53
圖4-29 活性碳的複合對染料AY 17去除率之影響……………..….… 53
圖4-30 活性碳的複合對染料AY 17礦化率之影響……………..….… 54
圖4-31 不同觸媒複合比例之染料AY 17脫色率隨時間變化圖…...… 56
圖4-32 不同觸媒複合比例之染料AY 17脫色率分析.……...…..……. 56
圖4-33 不同觸媒複合比例之染料AY 17去除率隨時間變化圖……... 57
圖4-34 不同觸媒複合比例之染料AY 17去除率分析.………….……. 57
圖4-35 不同觸媒複合比例之染料AY 17礦化率隨時間變化圖…...… 58
圖4-36 不同觸媒複合比例之染料AY 17礦化率分析.………….……. 58
圖4-37 複合式與個別添加二氧化鈦/活性碳對染料AY 17脫色率之影響…………………………..………..…………………......…60
圖4-38 複合式與個別添加二氧化鈦/活性碳對染料AY 17礦化率之影響…………………………………………..……………….... 60
圖4-39 不同染料初始濃度之脫色率隨時間變化圖………………….. 61
圖4-40 不同染料初始濃度之去除率隨時間變化圖………………….. 62
圖4-41 不同染料初始濃度之礦化率隨時間變化圖………………...... 62
圖4-42 不同反應終止時間之染料AY 17脫色率分析….…….…...…. 65
圖4-43 不同反應終止時間之染料AY 17去除率分析….……………. 65
圖4-44 不同反應終止時間之染料AY 17礦化率分析….………….… 66
圖4-45 真實光催化反應之擬一階反應動力模擬…………….....……. 67
圖4-46 不同反應動力模擬方法之染料脫色率隨時間變化圖(原始數據)…………...……………………………………...……. 68
圖4-47 不同反應動力模擬方法之染料去除率隨時間變化圖(原始數據)……………..………………………………...…………. 68
圖4-48 不同反應動力模擬方法之染料脫色率隨時間變化圖(修正)…………………….………………………………………. 69
圖4-49 不同反應動力模擬方法之染料去除率隨時間變化圖(修正)…………………………………………………….…….… 70
圖4-50 染料AY 17脫色反應之擬一階反應動力模擬比較..…..………. 70
圖4-51 染料AY 17分解反應之擬一階反應動力模擬比較..…………... 71
日本光觸媒製品論壇:光觸媒製品的濕式分解性能試驗法(JIS R 1703-2)。
呂宗昕、吳偉宏,奈米科技與二氧化鈦光觸媒,科學月刊,第376期,第72-76頁(2004)。
周開平、陳郁文,二氧化鈦光觸媒的應用-自潔建築材料,科學月刊,第395期,第66-69頁(2005)。
邱永亮譯,染料之合成與特性, 徐氏基金會(1975)。
邱永亮、魏盛德合譯,染色化學,徐氏基金會(1975)。
陳耀茂譯,田口實驗計畫法,滄海書局 (1997)。
張季娜等譯,田口式品質工程導論,中華民國品質管制學會 (1989)。
經濟部工業局,奈米標章產品之光觸媒抗污塗料驗證規範 (TN-005)。
賴保帆,以UV/TiO2程序處理氮染料之分解反應研究,碩士論文,國立中興大學環境工程學系(2000)。
謝嘉民、賴一凡、林永昌、枋志堯,光激發螢光量測的原理架構及應用,科儀新知,第二十六卷,第六期,第39-51頁。
Arana, J., J. M. Dofia-Rodriguez, E. Tello Rendon, C. Garriga I Cabo, O. Gonzalez-Diaz, J. A. Herrera-Melian, J. Perez-Pefia, G. Colon, and J. A. Navio, “TiO2 Activeation by Using Activated Carbon a Support Part II. Photoreactivity and FTIR Study,” Applied Catalysis B: Environmental, 44, pp. 153-160 (2003).
Bedjat, I. and P. V. Kamat, “Capped Semiconductor Colloids, Synthesis and Photoelectrochemical Behavior of TiO2-capped SnO2 Nanocrystallites,” Journal of Physics and Chemistry, 99, pp. 9182-9188 (2005).
Bhattacharyya, A., S. Kawi, and M. B. Ray, “Photocatalytic Degradation of Orange Ⅱ by TiO2 Catalysts Supported on Adsorbents,” Catalysis Today, 98, pp.431-439 (2004).
Carp, O., C.L. Huisman, and A. Reller, “Photoinduced Reactivity of Titanium dioxide,” Progress in Solid State Chemistry, 32(1), pp. 331-337 (2004).
Carpio, E., P. Zuniga, S. Ponce, J. Solis, J. Rodriguez, and W. Estrada, “Photocatalytic Degradation of Phenol Using TiO2 Nanocrystals Supported on Activated Carbon,” Journal of Molecular Catalysis A: Chemical, 228, pp. 293-298 (2005).
Childs, L. P., and D. F. Ollis, “Is Photocatalysis Catalytic?” Journal of Catalysis, 66, pp. 383-390 (1980).
Cordero, T., C. Duchamp, J. Chovelon, C. Ferronato, and J. Matos, “Influence of L-type Activated Carbons on Photocatalytic Activity of TiO2 in 4-chlorophenol Photodegradation,” Journal of Photochemistry and Photobiology A: Chemistry, 191, pp. 122-131 (2007).
Davis, R. J., J. L. Gainer, G. O''Neal, and I. W. Wu, “Photocatalytic Decolorization of Wastewater Dyes,” Water Environment Research, 66, pp. 50-53 (1994).
Daneshvar, N., D. Salari, and A. R. Khataee, “Photocatalytic Degradation of Azo Dye Acid Red 14 in Water on ZnO as An Alternative Catalyst to TiO2,” Journal of Photochemistry and Pohotbiology A: Chemistry, 162, pp. 317-322 (2004).
Fox, M. A. and M. T. Dulay, “Heterogeneous Photocatalysis,” Chemical Reviews, 93, pp. 341-357 (1993).
Fu, P., Y. Luan and X. Dai, “Preparation of Activated Carbon Fibers Supported TiO2 Photocatalyst and Evaluation of Its Photocatalytic Reactivity,” Journal of Molecular Catalysis A: Chemical, 221, pp. 81-88 (2004).
Fujishima, A. and K. Honda, “Electrochemical Photolysis of Water at A Semiconductor Electrode”, Nature, 238, pp. 37-38 (1972).
Gao, Y. and H. Liu, “Preparation and Catalytic Property Study of A Novel Kind of Suspended Photocatalyst of TiO2-Activated Carbon Immobilized on Silicone Rubber Film,” Materials Chemistry and Physics, 92, pp. 604-608 (2005).
Garcia, J. C. and K. Takashima, “Photocatalytic Degradation of Imazaquin in An Aqueous Suspension of Titanium Dioxide,” Journal of Photochemistry Photobiology A Chemistry, 155(1-3), pp. 215-222 (2003).
Hoffmann, M. R., S. T. Martin, W. Choi, and Bahnemann, “Environmental Applications of Semiconductor Photocatalysis,” Chemical Reviews, 95, pp. 69-75 (1995).
Jing, L., Y. Qu, B. Wang, S. Li, B. Jiang, L. Yang, W. Fu, H. Fu, and J. Sun, “Review of Photoluminescence Performance of Nano-sized Semiconductor Materials and its Relationships with Photocatalytic Activity,” Solar Energy Materials & Solar Cells, 90, pp. 1773-1787 (2006).
Legrini, O., E. Oliveros, and A. M. Braun, “Photochemical Processes for Water Treatment,” Chemical Reviews, 93(2), pp. 671-698 (1993).
Li, Y., X. Li, J. Li, and J. Yin, “Photocatalytic Degradation of Methylene Orange by TiO2-coated Activated Carbon and Kinetic Study,” Water Research, 40, pp. 1119-1126 (2006).
Livage, J., S. Doeuff, M. Henry, and C. Sanchez, “Hydrolysis of Titanium Alkoxides:Modification of the Molecular Precursor by Acetic Acid,” Journal of Non-Crystalline Solids, 89, pp. 206-216 (1987).
Mills, A. and S. L. Hunte, “An Overview of Semiconductor Photocatalysis,” Journal of Photochemistry and Photobiolog, A: Chemistry, 108(1), pp. 1-35 (1997).
Muruhanandham, M. and M. Swaminathan, “Photocatalytic Decolourisation and Degradation of Reactive Orange 4 by TiO2-UV Process,” Dyes and Pigments, 68, pp. 133-142 (2006).
Nilsson, R., R. Nordlinder, U. Wass, B. Meding, and L. Belin, “Asthma, Rhinitis, and Dermatitis in Workers Exposed to Reactive Dyes,” British Journal of Industrial Medicine, 50, pp. 65-70 (1993).
Okamoto, K., Y. Yasunori, T. Hirok, T. Masashi, and T. Akira, “Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Powder,” Bulletin of Chemical Society of Japan, 58, pp. 2015-2022 (1985).
Ollis, D. F., E. Pelizzetti, and N. Serpone, “Photocatalyzed Destruction of Water Contaminants,” Environmental Science and Technology, 25, pp. 1522-1529 (1991).
Phadke, M. S., “Quality Engineering Using Robust Design,” Prentice Hall, p. 291 (1989).
Riegel, G. and J. R. Bolton “Photocatalytic Efficiency Variability in TiO2 Particles,” Journal of Physics and Chemistry, 99(12), pp. 4215-4224 (1995).
Sakata, T. and T. Kawai, “Photosynthesis and Photocatalysis with Semiconductor Powder-in Energy Resources through Photochemistry and Catalysis,” Gratzel, M., Ed., Academic Press, New York (1983).
Shu, H. Y., M. C. Chang, and H. J. Fan, “Decolorization of Azo Dye Acid Black 1 by the UV/H2O2 Process and Optimization of Operating Parameters,” Journal of Hazardous Materials B, 113, pp. 201-208 (2004).
Suri, R. P. S., J. Lin, D. W. Hand, J. C. Crittenden, D. L. Perram, and M. E. Mulins, “Heterogeneous Photocatalytic Oxidation of Hazardous Organic Contaminants in Water,” Water Environment Research, 65, pp. 665-673 (1993).
Tang, W. Z. and H. An, “UV/TiO2 Photocatalytic Oxidation of Commerical Dyes in Aqueous Solution,” Chemosphere, 31, No. 9, pp. 4150-4170 (1995).
Terabe, K., K. Kato, H. Miyazaki, S. Yamaguchi, A. Imai, and Y. Iguchi, “Microstructure and Crystallization Behaviour of TiO2 Precursor Prepared by the Sol-Gel Method Using Metal Alkoxide,” Journal of Materials Science, 29, pp. 1617-1622 (1994).
Tryba, B., A. W. Morawski, and M. Inagaki, “Application of TiO2-Mounted Activated Carbon to the Removal of Phenol from Water,” Applied Catalysis B: Environmental, 41, pp. 427-433 (2003).
Turner, J. C. R., “An Introduction to The Theory of Catalytic Reactors,” Catalysis Science and Technology, 1, pp. 43-86 (1981).
Yu, Z., D. Laub, M. Bensimon, and J. Kiwi, “Flexible Polymer TiO2 Modified Film Photocatalysts Active in the Photodegradation of Azo-dyes in Solution,” Inorganica Chimica Acta, 361, pp. 589-594 (2008).
Yuan, R., J. Zheng, R. Guan, and Y. Zhao, “Surface Characteristics and Photocatalytic Activity of TiO2 Loaded on Activated Carbon Fibers,” Colloids and Surfaces A: Physicochemical Engineering Aspects, 254, pp. 131-136 (2005).
Zhang, X., M. Zhou, and L. Lei, “Preparation of An Ag-TiO2 Photocatalyst Coated on Activated Carbon by MOCVD,” Materials Chemistry and Physics, 91, pp. 73-79 (2005).
Zhang, X. and L. Lei, “Effect of Preparation Methods on the Structure and Catalytic Performance of TiO2/AC Photocatalysts,” Journal of Hazardous Materials, 153, pp. 827-833 (2008).
Zhou, M., J. Yu, S. Liu, P. Zhai, and L. Jiang, “Effects of Calcination Temperatures on Photocatalytic Activity of SnO2/TiO2 Composite Films Prepared by an EPD Method,” Journal of Hazardous Materials, 154, pp. 1141-1148 (2008).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top