跳到主要內容

臺灣博碩士論文加值系統

(3.231.230.177) 您好!臺灣時間:2021/08/04 03:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:許元和
研究生(外文):Yuan-Ho Hsu
論文名稱:探討不同高壓氮氣鍛燒製備下二氧化鈦光觸媒特性之研究
論文名稱(外文):Study on the characteristics of N-doped TiO2 photocatalysts produced by different pressure annealing
指導教授:鄭曼婷鄭曼婷引用關係
指導教授(外文):Man-Ting Cheng
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:126
中文關鍵詞:氮摻雜二氧化鈦鍛燒壓力光觸媒異丙醇
外文關鍵詞:N-doped titanium dioxidephotocatalystannealing pressure2-propenol
相關次數:
  • 被引用被引用:1
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用大氣常壓電漿輔助奈米微粒製備程序(APPENS)搭配高壓鍛燒製備含氮摻雜奈米可見光觸媒,分析自製的含氮二氧化鈦光觸媒經高壓鍛燒程序下觸媒各項材料特性,探討利用自製可見光觸媒降解揮發性有機氣體異丙醇的效率。實驗結果顯示不同壓力(1~9 Bar)鍛燒,觸媒顆粒均勻且粒徑介於20 nm ~ 30 nm,UV-vis分析結果顯示鍛燒壓力有助於觸媒吸收光譜紅移,觸媒具有吸收可見光能力,相同鍛燒溫度300℃下鍛燒後的各觸媒經X光粉末繞射儀(XRPD)分析皆為銳鈦礦晶相,化學電子能譜分析儀(ESCA)分析結果顯示氮原子摻雜量未隨著鍛燒壓力提升而增加,摻雜的氮主要為吸附型的γ-N2,鍛燒程序的壓力也許有助於使氮原子與觸媒形成Ti-N鍵結型β-N,此外使用螢光分光光譜儀(PL)進行電子電洞對再結合率的測量,顯示壓力提升可以有效降低觸媒電子電洞對再結合率提升觸媒的活性。於光催化異丙醇實驗中,相同鍛燒溫度下鍛燒壓力提升有助於觸媒對異丙醇降解速率增加,以壓力5 Bar溫度500 ℃製備完成觸媒有最佳降解效果,其一階反應速率常數為0.76 hr-1,結果顯示氮摻雜二氧化鈦光觸媒在可見光下較未摻雜的二氧化鈦光觸媒有較佳的降解效果。
The nitrogen doped (N-doped) titanium dioxide (TiO2) photocatalyst was prepared by using the atmospheric-pressure plasma-enhanced nanoparticles synthesis process. In this study, we mainly investigated the characteristics of N-doped TiO2 produced under different annealed conditions and their efficiency on reducing 2-propenol. Synthesized catalysts were annealed in nitrogen which pressure varied from 1 to 9 bar. The results showed that the crystal phase of the catalysts were anatase phase as characterized by X-ray power diffraction (XRPD), and the scanning electron micrographs (SEM) revealed nanoparticle sizes ranging from 20 to 30 nm. The red-shift in UV-Vis absorption spectra enhanced with higher annealing pressure. Without annealing process data, obtained by using electron spectroscopy for chemical analysis (ESCA) exhibited chemadsorped γ-N2 type. However the annealing pressure might enhance the bounding of Ti-N since the spectrum of β-N type was observed for the samples annealed under high pressure, but there is no correlation between doped nitrogen concentration and the annealing pressure. Furthermore the analysis of photoluminescence indicated that the higher annealing pressure might reduce the hole-electron pair re-combnation. As a result, the reactivity of photocatalyst is better. Results also showed that the photocatalyst annealed under 500℃ and 5 bar achieved a better degradation efficience which first order reaction rate is 0.76 hr-1. In conclusion the N-doped TiO2 can achive a better degradation of 2-propenol as compared to those using pure TiO2 photocatalyst.
目錄
摘要 I
Abstract II
目錄 III
圖目錄 VII
表目錄 X
第一章 前言 1
1.1 研究緣起 1
1.2 研究方法及目的 3
第二章 文獻回顧 4
2.1二氧化鈦半導體性質 4
2.1.1 二氧化鈦基本介紹 4
2.1.2 二氧化鈦結構與其特性 4
2.1.3 半導體電子電洞對 9
2.1.4 光觸媒光催化機制 11
2.2 二氧化鈦的製備方法 12
2.2.1 溶液凝膠法 13
2.2.2 濺鍍法 14
2.2.3 化學氣相沉積法 15
2.2.4 電漿輔助化學氣相沉積法 16
2.3 可見光型光觸媒 18
2.3.1 摻雜金屬離子 18
2.3.2 摻雜非金屬離子 19
2.3.3 製作複合半導體 24
2.4 二氧化鈦的缺陷機制 25
2.5 鍛燒溫度與壓力影響 26
2.6 VOCs 簡介 28
2.6.1 傳統VOCs的去除 28
2.6.2 異丙醇的物化特性 29
2.6.3 光催化異丙醇反應 30
2.7 電漿簡介 32
2.7.1 電漿生成原理 32
2.7.2 電漿分類 34
2.7.3 介電質放電 36
第三章 實驗材料與方法 37
3.1 實驗藥品與設備 37
3.1.1 實驗藥品以及材料 37
3.1.2 觸媒產生實驗設備 38
3.1.3 光催化實驗設備 42
3.1.4 觸媒材料分析設備 43
3.2 研究及實驗流程 44
3.2.1平板式常壓電漿輔助奈米微粒製造系統研究流程 44
3.2.2奈米可見光光觸媒製備 47
3.3 光催化實驗 51
3.3.1 直接光解實驗 51
3.3.2 觸媒吸附實驗 52
3.3.3 可見光光觸媒催化實驗 52
3.4 觸媒材料之鑑定 53
3.4.1 元素組成分析 53
3.4.2 吸收光譜 54
3.4.3 晶相分析 54
3.4.4 觸媒粒徑與外觀分析 55
3.4.5螢光分光光譜儀 55
3.4.6 氣體分析 55
第四章 結果與討論 57
4.1平板式介電質電漿反應器 57
4.2二氧化鈦光觸媒外觀 59
4.2.1光觸媒外觀於電漿製備前後差異 59
4.2.2 光觸媒經由不同高壓鍛燒下顆粒差異 59
4.2.3 經電漿製備後光觸媒鍛燒前後外觀 63
4.3 含氮二氧化鈦性質分析 65
4.3.1 晶相分析 65
4.3.2 元素分析 69
4.3.3 紫外光可見光光譜儀分析 83
4.3.4螢光分光光譜儀 86
4.4 光催化背景試驗 89
4.4.1 均相光反應試驗 89
4.4.2背景吸附實驗 91
4.4.3光照度影響 92
4.5 操作參數對於光觸媒催化異丙醇效率 93
4.5.1 鍛燒前後觸媒光催化異丙醇效率 93
4.5.2 可見光降解異丙醇 94
4.6 綜合討論 100
第五章 結論與建議 104
5.1 結論 104
5.2 建議 107
參考文獻 108
附錄 A JCPDS 標準圖譜 116
附錄 B 觸媒光催化異丙醇GC/FID圖譜 120
附錄 C 異丙醇與丙酮標準品GC/FID檢量線 123
附錄 D 光催化重複實驗 124
附錄 E 光催化碳平衡實驗 125









圖目錄
圖2-1 半導體之電子電洞對示意圖 5
圖2-2 二氧化鈦的三種結晶型態 7
圖2-3 二氧化鈦晶格結構 7
圖2-4 二氧化鈦之分子鍵結方式 8
圖2-5 常見的半導體能隙 10
圖2-6 光觸媒表面之光催化示意圖 11
圖2-7 含氮摻雜二氧化鈦光觸媒ESCA能譜圖 19
圖2-8 二氧化鈦(a)β-N取代型,(b) γ-N2間隙型 20
圖2-9 含氮摻雜二氧化鈦光觸媒之光譜圖 20
圖2-10 氮摻雜量與量子產率關係圖 21
圖2-11 氮原子摻雜二氧化鈦之能隙圖 21
圖2-12 複合半導體之光激發反應 24
圖2.13 二氧化鈦相變化圖 26
圖2-14 二氧化鈦壓力-溫度相變化圖 27
圖3-1 平板式常壓電漿輔助奈米微粒製造系統 39
圖3-2 研究流程圖 45
圖3-3 平板式電漿反應區之示意圖 46
圖3-4電漿反應器製備含氮二氧化鈦光觸媒之流程圖 48
圖3-5 高壓程序鍛燒 TiO2 光觸媒之流程圖 49
圖3-6 光催化反應器 50
圖4-1 電漿反應器-電壓對功率 58
圖4-2 電漿反應器-電壓對電流 58
圖4-3(a) 未經由電漿製備時光觸媒 SEM 圖 60
圖4-3(b) 電漿輔助製備下,未鍛燒光觸媒 SEM 圖 60
圖4-4(a) 電漿輔助製備下,鍛燒壓力為1 bar的光觸媒 SEM 圖 61
圖4-4(b) 電漿輔助製備下,鍛燒壓力為3 bar的光觸媒 SEM 圖 61
圖4-4(c) 電漿輔助製備下,鍛燒壓力為5 bar的光觸媒 SEM 圖 62
圖4-5 觸媒經 APPENS 程序不同鍛燒條件顏色外觀 64
圖4-6(a) 不同鍛燒壓力觸媒之 XRPD 圖 66
圖4-6(b) 不同鍛燒壓力觸媒之 XRPD 波峰強度圖 66
圖4-7(a) 不同鍛燒溫度下觸媒之 XRPD 圖 67
圖4-7(b) 不同鍛燒溫度觸媒之 XRPD 波峰強度圖 67
圖4-8 X 射線光電子概觀圖譜 72
圖4-9(a) O 1s 之 X 射線光電子圖譜(TiO2與TiO2-XNX) 73
圖4-9(b) O 1s 之 X 射線光電子圖譜(TiO2與TiO2-XNX) 73
圖4-10(a) Ti 2p之 X 射線光電子圖譜(TiO2與TiO2-XNX) 74
圖4-10(b) Ti 2p之X 射線光電子圖譜(TiO2與TiO2-XNX) 74
圖4-11(a) N 1s之 X 射線光電子圖譜(未鍛燒) 75
圖4-11(b) N 1s之 X 射線光電子圖譜(鍛燒條件:1 Bar,300 ℃) 75
圖4-11(c) N 1s之 X 射線光電子圖譜(鍛燒條件:5 Bar,300 ℃) 76
圖4-11(d) N 1s之 X 射線光電子圖譜(鍛燒條件:15 Bar,300 ℃) 76
圖4-11(e) N 1s之 X 射線光電子圖譜(鍛燒條件:5 Bar,500 ℃) 77
圖4-12 N 1s之X 射線光電子圖譜(TiO2與TiO2-XNX) 77
圖4-13 ESCA-O 1s 氧原子核心能階(氧氣製備) 80
圖4-14(a) ESCA-O 1s 氧原子核心能階(無鍛燒) 80
圖4-14(b) ESCA-O 1s 氧原子核心能階(鍛燒條件:1 Bar, 300 ℃) 81
圖4-14(c) ESCA-O 1s 氧原子核心能階(鍛燒條件:5 Bar, 300 ℃) 81
圖4-14(d) ESCA-O 1s 氧原子核心能階(鍛燒條件:15 Bar, 300 ℃) 82
圖4-15 同溫不同壓力鍛燒觸媒UV-vis 84
圖4-16 相同壓力不同溫度鍛燒觸媒UV-vis 84
圖4-17 溫度300℃下不同鍛燒壓力觸媒之螢光分光圖譜 88
圖4-18 異丙醇均相光反應試驗結果 89
圖4-19 日光燈光譜圖 90
圖4-20 無開燈光觸媒吸附試驗 91
圖4-21 未經鍛燒程序製備下,觸媒降解異丙醇 93
圖4-22 不同氣體製備下觸媒對異丙醇降解之效率 94
圖4-23 電漿製備後以不同壓力鍛燒觸媒對異丙醇降解之效率 96
圖4-24 電漿製備後以不同溫度鍛燒觸媒對異丙醇降解之效率 97
圖4-25 同溫不同鍛燒壓力觸媒一階反應與線性相關 98
圖4-26 同壓力不同鍛燒溫度觸媒一階反應與線性相關 98
圖4-27 相同鍛燒溫度不同鍛燒壓力觸媒反應速率常數 99
圖D-1 光催化異丙醇重複實驗 124
圖E-1光催化降解異丙醇全反應之各濃度變化 125







表目錄
表2-1 銳鈦礦與金紅石性質比較 6
表2-2 半導體能隙能量與激發所需之臨界波長 10
表2-3 ESCA分析Ti 2p、N 1s與O 1s核心能階與其物種 23
表2-4 異丙醇之物化性質 29
表2-5 電漿形式整理比較 34
表2-6 六種電漿放電主要特性整理 35
表3-1 光觸媒產生所需藥品與材料 37
表3-2 光催化實驗所需藥品與材料 38
表3-3 光觸媒產生設備 40
表3-4 高溫高壓鍛燒設備 41
表3-5 光催化實驗設備 42
表3-6 觸媒材料分析設備 43
表3-7 平板式電漿輔助法製備奈米光觸媒控制條件 47
表3-8 直接光解實驗控制參數 51
表3-9 觸媒吸附實驗控制參數 52
表3-10 可見光光觸媒催化實驗控制參數 53
表3-11 氣相層析儀/火焰游離偵測器分析操作條件 56
表4-1 不同鍛燒壓力製備觸媒之粒徑分布 63
表4-2 不同條件鍛燒下光觸媒 Anatase 晶徑變化情形 68
表4-3 製備 TiO2-XNX 光觸媒之原子濃度百分比 79
表4-4 氧原子核心能階對應不同生成物 82
表4-5觸媒之band edge value 及band gap 85
表4-6 不同鍛燒壓力下觸媒對應特定PL峰放出光強度 88
表4-7 可見光與紫外光對反應器之光照度 92
表4-8 不同製備條件各觸媒降解異丙醇反應速率之常數 99
表E-1 碳原子礦化平衡反應 126
參考文獻
Anpo, M., “Photocatalysis on Titanium Oxide Catalysts: Approaches in Achieving Highly Efficient Reactions and Realizing the Use of Visible Light,” Catalysis Surveys from Japan, Vol. 1, pp. 169-179 (1997).
Anpo, M. and M. Takeuchi, “The Design and Development of Highly Reactive Titanium Oxide Photocatalysts Operating under Visible Light Irradiation,” Journal of Catalysis, Vol. 216, pp. 505-516 (2003).
Asahi, R., T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, “Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides,” Science, Vol. 293, pp. 269-271 (2001).
Bai, H. L., C. C. Chen, C. H. Lin, W. Den and C. L. Chang, “Monodisperse Nanoparticle Synthesis by an Atmospheric Pressure Plasma Process: an Example of a Visible Light Photocatalyst,” Industrial and Engineering Chemistry Research, Vol. 43, pp. 7200-7203 (2004).
Battiston, G. A., R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin and G. A. Rizzi, “PECVD of Amorphous TiO2 Thin Films: Effect of Growth Temperature and Plasma Gas Composition,” Thin Solid Films, Vol. 371, pp. 126-131 (2000).
Bessergenev, V. G., R. J. F. Pereira, M. C. Mateus, I. V. Khmelinskii and D. A. Vasconcelos, “Study of Physical and Photocatalytic Properties of Titanium Dioxide Thin Films Prepared from Complex Precursors by Chemical Vapor Deposition,” Thin Solid Films, Vol. 503, pp. 29-39 (2006).
Brinkley D. and T. Engel, “Evidence for Structure Sensitivity in the Activated and Photocatalytic Dehydrogenation of 2-Propanol on TiO2,” Journal of Physical Chemistry B, Vol. 104, pp. 9836-9841 (2000).
Burdett, J. K., T. Hughbanks, G. Miller, J. W. Richardson and J. V. Smith, “Structral-Electronic Relationships in Inorganic Solids: Powder Neutron Diffraction Studies of the Rutile snd Anatase Polymorphs of Titanium Dioxide at 15 and 295 K,” Journal of the American Chemical Society, Vol. 109, pp. 3639-3646 (1987).
Chang, C. P., J. N. Chen and M. C. Lu, “Heterogeneous Photocatalytic Oxidation of Acetone for Air Purification by Near UV-Irradiated Titanium Dioxide,” Journal of Environmental Science and Health A, Vol. 38, pp. 1131-1143 (2003).
Chen, C. C., H. L. Bai, S. M. Chang, C. L. Chang and W. Den, “Preparation of N-Doped TiO2 Photocatalyst by Atmospheric Pressure Plasma Process for VOCs Decomposition under UV and Visible Light Sources,” Journal of Nanoparticle Research, Vol. 9, pp. 365-375 (2007a).
Chen, C. C., H. L. Bai and C. Chang, “Effect of Plasma Processing Gas Composition on the Nitrogen-Doping Status and Visible Light Photocatalysis of TiO2,” Journal of Physical Chemistry C, Vol. 111, pp 15228-15235 (2007b).
Chein, H. M. and T. M. Chen, “Emission Characteristics of Volatile Organic Compounds from Semiconductor Manufacturing,” Journal of the Air and Waste Management Association, Vol. 53, pp. 1029-1036 (2003).
Chiu, K. H., B. Z. Wu, C. C. Chang, U. Sree And J. G. Lo, “Distribution of Volatile Oganic Compounds over a Semiconductor Industrial Park in Taiwan,” Environmental Science and Technology, Vol. 39, pp. 973-983 (2005).
Di L., S. H. Hajimeda and O. Naoki, “Visible-Light-Driven Nitrogen-Doped TiO2 Photocatalysts: Effect of Nitrogen Precursors on Their Photocatalysis for Decomposition of Gas-Phase Organic Pollutants,” Materials Science and Engineering B, Vol. 117, pp. 67-75 (2005).
Duminica, F. D., F. Maury and F. Senocq, “Atmospheric Pressure MOCVD of TiO2 Thin Films Using Various Reactive Gas Mixtures,” Surface and Coatings Echnology, Vol. 188, pp. 255-259 (2004).
Fujishima, A. and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature, Vol. 238, pp. 37-38 (1972).
Fujishima, A., T. N. Rao and D. A. Tryk, “Titanium Dioxide Photocatalysis,” Journal of Photochemistry and Photobiology C, Vol. 1, pp. 1-21 (2000).
Fujishima, A., K. Hashimoto and T. Watanabe, “TiO2 Photocatalysis Fundamentals and Applications,” BKC, Inc., Japan (1999).
Ihara, T., M. Miyoshi, M. Ando, S. Sugihara and Y. Iriyama, “Preparation of a Visible-Light-Active TiO2 Photocatalyst by RF Plasma Treatment,” Journal of Materials Science, Vol. 36, pp. 4201-4207 (2001).
Ihara, T., M. Miyoshi, Y. Iriyama, O. Matsumoto and S. Sugihara, “Visible-Light-Active Titanium Oxide Photocatalyst Realized by an Oxygen-Deficient Structure and by Nitrogen Doping,” Applied Catalysis B, Vol. 42, pp. 403-409 (2003).
Irie H., Y. Watanabe and K. Hashimoto, “Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders,” Journal of Physical Chemistry B, Vol. 107, pp. 5483-5486 (2003).
Kittel, C., Introduction to Solid state Physics, John Wiley and Sons, 7th Ed., New York (1996).
Levin, E. M. and H. F. McMurdie, “Phase Diagrams for Ceramists,” American Ceramic Society, Inc., Ohio (1975).
Lin, L., R. Y. Zheng, J. L. Xie, Y. X. Zhu and C. Y. Xie, “Synthesis and Characterization of Phosphor and Nitrogen Co-doped Titania,” Applied Catalysis B, Vol. 76, pp. 196-202 (2007).
Linsebigler, A. L., G. Lu and J. T. Yates, “Photocatalysis on TiOn Surfaces: Principles, Mechanisms, and Selected Results”, Chemical Reviews, Vol. 95, pp. 735-758 (1995).
Li, Y. and T. Ishigaki, “Thermodynamic Analysis of Nucleation of Anatase and Rutile from TiO2 Melt,” Journal of Crystal Growth, vol. 242, pp. 511-516 (2002).
Martin, N., C. Rousselot, D. Rondot, E. Palmino and R. Mercier, “Microstructure Modification of Amorphous Titanium Oxide Thin Films during Annealing Treatment”, Thin Solid Films, Vol. 300, pp. 113-121 (1997).
Mattews, R. W., “Photooxidation of Organic Impurities in Water Using Thin Films of Titanium Dioxide,” Journal of Physical Chemistry, Vol. 91, pp. 3328-3333 (1987).
Matsumoto T., N. Iyi, Y. Kaneko, K. Kitamura, S. Ishihara, Y. Takasu and Y. Murakami, “High Visible-Light Photocatalytic Activity of Nitrogen-Doped Titania Prepared from Layered Titania/Isostearate Nanocomposite,” Catalysis Today, Vol. 120, pp. 226-232 (2007).
Melnyk, V., V. Shymanovska, G. Puchkovska, T. Bezrodna and G. Klishevich, “Low-Temperature Luminescence of Different TiO2 Modifications,” Journal of Molecular Structure, Vol. 744, pp. 573-576 (2005).
Miao, L., S. Tanemura, H. Watanabe, Y. Mori, K. Kaneko and S. Toh, “The Improvement of Optical Reactivity for TiO2 Thin Films by N2-H2 Plasma-Treatment,” Journal of Crystal Growth, Vol. 260, pp.118-124 (2004).
Mineral Structure Data, http://ruby.colorado.edu/~smyth/min/
Music, S., M. Gotic, M. Ivanda, A. Turkovic, R. Trojko, A. Sekulic and K. Furic, “Chemical and Microstructural Properties of TiO2 Synthesized by Sol-Gel Procedure,” Materials Science and Engineering B, Vol. 47, pp.33-40 (1997).
Mills, A. and S. L. Hunte, “An Overview Semiconductor Photocatalysis,” Journal of Photochemistry and Photobiolgy A, Vol. 108, pp. 1-35 (1997).
Nakamura, I., N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara and K. Tekeuchi, “Rolr of Oxygen Vacancy in the Plasma-Treated TiO2 Photocatalyst with Visible Light Activity for NO Removal,” Journal of Molecular Catalysis A, Vol. 161, pp. 205-212 (2000).
Nakamura, R., T. Tanaka and Y. Nakato, “Mechanism for Visible Light Responses in Anodic Photocurrents at N-Doped TiO2 Film Electrodes,” Journal of Physical Chemistry B, Vol. 108, pp. 10617-10620 (2004).
Okamoto, K., Y. Yamamoto, K. Tanaka, M. Tanaka, and A. Itaya, “Heterogeneous Photocatalytic Decomposition of Phenol over TiO2 Power,” Bulletin of the Chemical Society of Japan, Vol. 58, pp. 2015-2022 (1985).
Reddy, K. M., S. V. Manorama and A. R. Reddy, “Bandgap Studies on Anatase Titanium Dioxide Nanoparticles,” Materials Chemistry and Physics, Vol. 78, pp. 239-245 (2002).
Sakthivel, S., M. V. Shankar, D. W. Bahnemann and V. Murugesan, “Palanichamy, Banumathi Arabinddoo,” Water Research, Vol. 38, pp. 3001-3008 (2004).
Sclafani, A., L. Palmisano and M. Schiavello, “Influence of The Preparation Methods of Titanium Dioxide on the Photocatalytic Degradation of Phenol in Aqueous Dispersion,” Journal of Physical Chemistry, Vol. 94, pp.829-832 (1990).
Seto, T., S. Manabu and O. Kikuo “Evaluation of Sintering of Nanometer-Sized Titania Using Aerosol Method,” Aerosol Science and Technology, Vol. 23, pp. 183-200 (1995).
Stir, M., R. Nicula and E. Burkel, “Pressure–Temperature Phase Diagrams of Pure and Ag-Doped Nanocrystalline TiO2 Photocatalysts,” Journal of the European Ceramic Society, Vol. 26, pp. 1547-1553 (2006).
Stumm, W., Chemstry of the Solid-Water Interfase, John Wiley and Sons, New York (1992).
Tatsuma, T., S. I. Tachibana and A. Fujishima, “Remote Oxidation of Organic Compounds by UV-Irradiated TiO2 Via the Gas Phase,” Journal of Physical Chemistry B, Vol. 105, pp. 6987-6992 (2001).
USEPA, Control Techniques form Stationary Source, U.S. EPA, EPA-450, USA (1978).
Valentine, C. D., G. Pacchioni, A. Selloni, S. Livraghi and E. Giamello, “Characterization of Paramagnetic Species in N-doped TiO2 Powders by EPR Spectroscopy and DFT Calculations,” Journal of Physical Chemistry B, Vol. 109, pp. 11414-11419 (2005).
Vercammen, K. L. L., Berezin, A. A., Lox, F. and Chang, J. S., “Non-Thermal Plasma Techniques for the Reduction of Volatile Organic Compounds in Air Streams: a Critical Review,” Journal of Advanced Oxidation Technologies, Vol. 2, pp. 312-329 (1997).
Vorontsov, A. V., E. N. Savinov, G. B. Barannik, V. N. Troitsky and V. N. Parmon, “Quantitative Studies on the Heterogeneous Gas-Phase Photooxidation of CO and Simple VOCs by Air over TiO2,” Catalysis Today, Vol. 39, pp. 207-218 (1997).
Weller, H. and A. Eychmueller, “Photochemistry and Photo- electrochemistry of Quantized Matter: Properties of Semiconductor Nanoparticle in Solution and Thin-Film Electrodes,” Advances in Photochemistry, Vol. 20, pp. 165-216 (1995).
Wong, M. S., H. P. Chou and T. S. Yang, “Reactively Sputtered N-doped Titanium Oxide Films as Visible-light Photocatalyst,” Thin Solid Films, Vol. 494, pp. 244-249 (2006).
Won, D. J., C. H. Wang, H. K. Jang and D. J. Choi, “Effects of Thermally Induced Anatase-to-Rutile Phase Transition in MOCVD-Grown TiO2 Films on Structural and Optical Properties”, Applied Physical A, Vol. 73, pp. 595-600 (2001).
Xu, W. and D. Raftery, “Photocatalytic Oxidation of 2-Propanol on TiO2 and Monolayer Catalysts Studied by Solid-State NMR”, Journal of Physical Chemistry B, vol. 105, pp. 4343-4349 (2001).
Xu, P., Mi, L. and P. N. Wang, “Improved Optical Respone for N-Doped Anatase TiO2 Film Prepared by Pulsed Laser Deposition in N2/NH3/O2 Mixture,” Journal of Crystal Growth, Vol. 289, pp. 433-439 (2006).
Yang, M. C., T. S. Yang and M. S. Wong, “Nitrogen-Doped Titanium Oxide Films as Visible Light Photocatalyst by Vapor Deposition,” Thin Solid Films, Vol. 469, pp.1-5 (2004).
Yin, S., K. Ihara, Y. Aita, M. Komatsu and T. Sato, “Visible-Light Induced Photocatalytic Activity of TiO2−xAy (A=N, S) Prepared by Precipitation Route,” Journal of Photochemistry and Photobiology A, Vol. 179, pp. 105-114 (2006).
Yoneyama, H. and T. Torimoto, “Titanium Dioxide/Adsorbent Hybrid Photocatalysts for Photodestructionof Organic Substances of Dilute Concentrations,” Catalysis Today, Vol. 58, pp. 133-140 (2000).
Zhao, J. and X. Yang, “Photocatalytic Oxidation for Indoor Air Purification: a Literature Review,” Building and Environment, Vol. 38, pp. 645-654 (2003).
Zoppi, R. A., B. C. Trasferetti and C. U. Davanzo, “Sol-Gel Titanium Dioxide Thin Films on Platinum Substrates: Preparation and Characterization,” Journal of Electroanalytical Chemistry, Vol. 544, pp. 47-57 (2003).
李灝銘與張木彬,「氣態污染物控制新技術-非熱電漿技術」,工業污染防治,第89期(2004)。
洪昭南,「電漿反應器與原理」,電漿處理在環境工程之應用技術研習會論文集,台北(2004)。
吳關佑,「線管式與填充床式電漿反應器破壞SF6 之初步研究」,碩士論文,國立中央大學環境工程研究所,桃園(2002)。
韓坤佑,「新式微波電漿反應器之設計及其應用於揮發性有機物處理效率之研究」,碩士論文,國立中興大學化學工程學系,台中(2002)。
曾郁茗,「以含氮氣體於常溫常壓電漿輔助程序製造可見光及紫外光觸媒研究」,碩士論文,國立交通大學環境工程研究所,新竹(2005)。
林聖紘,「藉微波電漿輔助化學氣相沈積系統合成氧化鈦奈米材料與特性分析」,碩士論文,國立清華大學材料科學工程學系,新竹(2006)。
林志遠,「利用常壓電漿和高壓鍛燒法製備含氮摻雜二氧化鈦光觸媒降解異丙醇之研究」,碩士論文,國立中興大學環境工程學系,台中(2007)。
勞工安全衛生研究所,「物質安全資料表」,(2000)。
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊