跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/31 02:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳彥廷
研究生(外文):Yen-Ting Cheng
論文名稱:利用BOD1與rbCOD評估不同種類廢水中之易分解有機物比例以評估生物處理可行性之研究
論文名稱(外文):A study of the feasibility of applying biological treatment on different kinds of wastewater by using BOD1 and rbCOD
指導教授:洪俊雄洪俊雄引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:89
中文關鍵詞:生化需氧量化學需氧量有機物生物降解
外文關鍵詞:CODBODrbCODorganicsbiodegradation
相關次數:
  • 被引用被引用:4
  • 點閱點閱:434
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  對於廢水內有機物的分析,一般多以COD、BOD以及SS三項為主,並且多以BOD5╱COD的比值來做為廢水適合生物處理與否的依據,然而卻往往忽略了這些可被分解的有機物分解速度對系統所造成的影響,且可快速分解有機物的濃度也會直接影響到除磷或者除氮系統的效率。因此本實驗希望以目前廣泛被使用的COD、BOD分析方法為基礎,研究BOD1及Mamais所提出的rbCOD分析方法分析水中可快速分解有機物的量,或者作為判斷廢水分解速度的依據。
  研究結果發現BOD1與物理-化學方法分析出來的rbCOD的值並無直接關聯,rbCOD值高的水樣BOD1的值往往也很高,但BOD1高的水樣rbCOD不一定高。跟BOD1直接相關的是BOD的總量與其生化氧化速率常數κ,而跟rbCOD比較直接相關的是truly sCOD的量。且發現當水樣中以真溶液型態存在之可分解有機物佔總有機物的比例高時,rbCOD的值通常會高於BOD1,而當水樣中之可分解溶解性有機物佔總有機物的比例極低時,rbCOD往往會低於BOD1的值。
  故由本研究之結果認為,BOD1配合BOD5及生化氧化速率常數κ的計算可以用來當做衡量廢水“整體”分解速度的指標,但不適合用於評估rbCOD的濃度。以物理-化學方法分析出的rbCOD值會受到廢水處理廠操作好壞以及化學氧化劑添加與否的影響,但若能控制好條件的話物理-化學法是相當簡單快速且準確的分析方法。此外也發現,某些染整廠在傳統的BOD5╱COD分析中比例不高,但其溶解態COD卻有不錯的生物分解效果,因此適合以生物處理其溶解態COD的部份以彌補化學混凝、沈澱及過濾等方法的不足;屠宰業及生活汙水則是高可分解有機物比例,但rbCOD佔總COD的比例並不高,其生物系統亦有良好之COD處理效率,但大多數的有機物可能都是經由吸附作用去除而非直接吸收;而實驗中所採集到的光電業廢水,其有機物分解速度、可生物分解有機物比例及rbCOD濃度都非常高,判斷其廢水相當適合以生物方法處理。
Analyses of COD、BOD and SS are commonly used in the determination of organics value in the wastewater, and BOD5/COD is commonly used as a indicator of biodegradability. The speed of biodegradation is very important in a wastewater system, but ordinary analyses cannot distinguish the difference between readily and slowly biodegradable organics. Therefore, some analyses based on COD and BOD techniques were applied to investigate the readily biodegradable COD, or as a indicator of the speed of biodegradation.
According to the results of investigation, the value of BOD1 cannot represents rbCOD, BOD1 is more likely related to the ultimate BOD and κ, and rbCOD is more likely related to the truly soluble COD. And it shows that when the proportion of soluble biodegradable organics is high, the value rbCOD will higher than BOD1 ; when the portion of soluble biodegradable organics is very low, the value rbCOD will lower than BOD1.
BOD1 can be a indicator of the speed of wastewater biodegradation when it combined to BOD5 and κ, but not proper to evaluate the value of rbCOD. Physical – chemical method can be a easy and good way to analyze rbCOD if the condition of the wastewater plant is well controlled. In addition, the results showed that some desizing / dying wastewater has low BOD5/COD but rich soluble biodegradable organics. Abattoir and domestic wastewater have high BOD5/COD but low proportion of rbCOD, most of the organics removed by the microbial adsorption instead of absorption. Photo-electrical wastewater in the study has high BOD5/COD and high proportion of rbCOD, it shows that photo-electrical wastewater is very proper to apply biological treatment.
第一章 序論 1
第一節 研究緣起 1
第二節 研究目的 2
第二章 文獻回顧 3
第一節 有機廢水 3
1. 有機廢水對環境的影響 3
2. 傳統處理程序中之有機物去除手段 3
(1) 初級處理 4
(2) 二級處理 4
(3) 三級處理 5
3. 有機物處理過程中常見的問題與解決方法 5
4. 常見的有機廢水 6
(1) 光電產業廢水 6
(2) 染整業廢水 10
(3) 屠宰廢水 15
(4) 生活汙水 17
第二節 廢水中有機物的分析方法以及其意義 18
1. 生化需氧量 18
2. 化學需氧量 20
3. 常見生物可分解性指標 22
第三節 rbCOD之定義及分析方法 23
1. 攝氧率分析方法 23
(1) Batch-OUR method 24
(2) Flow-through activated sludge process method 25
(3) single-OUR method 26
2. 物理化學分析方法 28
3. rbCOD之相關應用 29
第四節 文獻回顧心得 31
第三章 材料與方法 32
第一節 實驗架構 32
第二節 實驗設備 33
第三節 實驗材料與藥品 34
第四節 實驗方法 35
1. 採樣及保存水樣 35
2. 生化需氧量 35
3. 化學需氧量 36
4. 水中總懸浮固體物 36
5. 溶氧量 36
6. soluble COD與truly soluble COD 37
7. rbCOD 37
8. 膠體溶液 37
第五節 採樣廠背景資料 38
1. A廠-屠宰廢水 38
2. B廠-紡紗廢水 40
3. C廠-染整廢水 42
4. D廠-染色廢水 44
5. E廠-工業區綜合廢水 46
6. F廠-衛生下水道綜合廢水 48
7. G廠-生活汙水 49
第四章 結果與討論 50
第一節 各來源廢水之水質分析結果 50
1. A廠-屠宰廢水 50
2. B廠-紡紗廢水 52
3. C廠-染整廢水 53
4. D廠-染色廢水 55
5. E廠-工業區綜合廢水 57
6. F廠-衛生下水道綜合廢水 58
7. G廠-生活汙水 60
8. H廠-光電業廢水 62
9. I廠-光電業廢水 63
第三節 各種水質參數比較 65
1.  生化氧化速率常數κ 65
2.  BOD1與rbCOD之比較 68
3.  傳統sBOD5與rbCOD之比較 69
第四節 以生物處理各種來源廢水的可行性之討論 71
1. 各廠廢水之BOD5/COD 71
2. 各廠廢水之BOD1/BOD5 72
3. 廢水之有機物組成與分解特性 74
4. 綜合討論 77
第五章 結論與建議 80
第一節 結論 80
第二節 建議 81
第六章 參考文獻 82
中文文獻

友達光電股份有限公司 (2006) 友達光電網站. URL http://www.auo.com/auoDEV/index.php

郭瓊梅 (1996) 生物處理系統去除都市汙水中營養鹽之模擬分析. 國立中興大學, 台中.

陳廷光, 倪振鴻及陳重男 (2004) 生物薄膜與逆滲透程序應用於tft-Lcd製程廢水處理與回收再利用. 工業汙染防治季刊 89: 125-141.

勞工安全衛生研究所 (2006) 物質安全資料表. URL http://www.iosh.gov.tw/msds.htm

彭正中 (1985) 染料與染色. 台北: 台灣中華書局.

黃欣怡 (2005) 光電產業2004年回顧與展望. 2005光電工業年鑑: 工研院產業經濟與資訊服務中心.

楊萬發, 鄭仁川, 張芳賓, 宋欣真及雷憶湘 (1994) 染整業水汙染防治技術. 台北: 經濟部工業局.

歐陽嶠暉 (2003) 下水道工程學: 長松文化興業股份有限公司.

蘇茂豐 (2003) 國內半導體製造業及光電業之產業現況、製程廢氣汙染來源與排放特性. Eco-technology Highlights.




英文文獻


Aiyuk, S., Amoakoa, J., Raskin, L., Haandel, A.v., and Verstraete, W. (2004) Removal of Carbon and Nutrients from Domestic Wastewater Using a Low Investment, Integrated Treatment Concept Water Research 38: 3031-3042.

Alaton, I.A., Cokgor, E.U., and Koban, B. (2007) Integrated Photochemical and Biological Treatment of a Commercial Textile Surfactant: Process Optimization, Process Kinetics and Cod Fractionation. Journal of Hazardous Materials 146: 453-458.

Alaton, I.A., Insel, G.c.l., Eremektar, G.l., Babuna, F.G., and Orhon, D. (2006) Effect of Textile Auxiliaries on the Biodegradation of Dyehouse Effluent in Activated Sludge. Chemosphere 62: 2549-1557.

Barker, P.S., and Dold, P.L. (1997) General Model for Biological Nutrient Removal Activated-Sludge Systems: Model Presentation. Water Environmental Research 69: 969-984.

Battistoni, P., Fatone, F., Passacantando, D., and Bolzonella, D. (2007) Application of Food Waste Disposers and Alternate Cycles Process in Small-Decentralized Towns: A Case Study. Water Research 41: 893-903.

Belmont, M.A., Cantellano, E., Thompson, S., Williamson, M., Sánchez, A., and Metcalfe, C.D. (2004) Treatment of Domestic Wastewater in a Pilot-Scale Natural Treatment System in Central Mexico. Ecological Engineering 23: 299-311.

Bickers, P.O., and Oostrom, A.J.v. (2000) Availability for Denitrification of Organic Carbon in Meat-Processing Wastestreams. Bioresource Technology 73: 53-58.

Broughton, A., Pratt, S., and Shilton, A. (2007) Enhanced Biological Phosphorus Removal for High-Strength Wastewater with a Low Rbcod:P Ratio. Bioresource Technology 99: 1236-1241.

Canziani, R., Pollice, A., and Ragazzi, M. (1995) Feasibility of Using Primary-Sludge Mesophilic Hydrolysis for Biological Removal of Nitrogen and Phosphorus from Wastewater. Bioresource Technology 54: 255-260.

Cokgor, E.U., Karahan, O., and Orhon, D. (2008) The Effect of Mixing Pharmaceutical and Tannery Wastewaters on the Biodegradation Characteristics of the Effluents. Journal of Hazardous Materials 156: 292-299.

Çokgör, E.U., Sözen, S., Orhon, D., and Henze, M. (1998) Respirometric Analysis of Activated Sludge Behaviour--I. Assessment of the Readily Biodegradable Substrate. Water Research 32: 461-475.

Dimock, R., and Morgenroth, E. (2006) The Influence of Particle Size on Microbial Hydrolysis of Protein Particles in Activated Sludge. Water Research 40: 2064-2074.

Dold, P.L., and Marais, G.v.R. (1986) Evaluation of the General Activated Sludge Model Proposed by the Iawprc Task Group. Water Science and Technology 18: 63-89.

Dold, P.L., Ekama, G.A., and Marais, G.v.R. (1980) A General Model for the Activated Sludge Process. Progress in Water Technology 12: 47-77.

Dold, P.L., Bagg, W.K., and Marais, G.v.R. (1986) Measurement of the Readily Biodegradable Cod Fractions (Sbs) in Municipal Wastewater by Ultrafiltration. Department of Civil Engineering
Ekama, G.A., and Wentzel, M.C. (2004) A Predictive Model for the Reactor Inorganic Suspended Solids Concentration in Activated Sludge Systems. Water Research 38: 4093-4106.

Ekama, G.A., Dold, P.L., and Marais, G.v.R. (1985) Procedures for Determining Influent Cod Fractions and the Maximum Specific Growth Rate of Heterotrophs in Activated Sludge Systems Water Science and Technology 18: 91-114.

ElDefrawy, N.M.H., and Shaalan, H.F. (2007) Integrated Membrane Solutions for Green Textile Industries Desalination 204: 241-254.

Feitkenhauer, H., and Meyer, U. (2002) Anaerobic Digestion of Alcohol Sulfate (Anionic Surfactant) Rich Wastewater – Batch Experiments. Part I: Influence of the Surfactant Concentration Bioresource Technology
82: 115-121.

Fung, P.C., Huang, Q., Tsui, S.M., and Poon, C.S. (1999) Treatability Study of Organic and Colour Removal in Desizing/Dyeing Wastewater by Uv/Us System Combined with Hydrogen Peroxide Water Science and Technology 40: 153-160.

Ganesh, R., Balaji, G., and Ramanujam, R.A. (2006) Biodegradation of Tannery Wastewater Using Sequencing Batch Reactor—Respirometric Assessment. Bioresource Technology 97: 1815-1821.

Hartley, K.J. (2008) Controlling Sludge Settleability in the Oxidation Ditch Process. Water Research 42: 1459-1466.

Henze, M. (1992) Characterization of Wastewater for Modeling of Activated Sludge Processes. Water Science and Technology 25: 1-15.

Hu, Z., Chandran, K., Smets, B.F., and Grasso, D. (2002) Evaluation of a Rapid Physical-Chemical Method for the Determination of Extant Soluble Cod. Water Research 36: 617-624.

Jönsson, K., Johansson, P., Christensson, M., Lee, N., Lie, E., and Welander, T. (1996) Operational Factors Affecting Enhanced Biological Phosphorus Removal at the Waste Water Treatment Plant in Helsingborg, Sweden Water Science and Technology 34: 67-74.

Kappeler, J., and Gujer, W. (1992) Estimation of Kinetic Parameters of Heterotrophic Biomass under Aerobic Conditions and Characterization of Wastewater for Activated Sludge Modeling. Water Science and Technology 25: 125-139.

Keller, J., Subramaniam, K., Gösswein, J., and Greenfield, P.F. (1997) Nutrient Removal from Industrial Wastewater Using Single Tank Sequencing Batch Reactors Water Science and Technology 35: 134-144.

Kumar, P., Prasad, B., Mishra, I.M., and Chand, S. (2007) Catalytic Thermal Treatment of Desizing Wastewaters Journal of Hazardous Materials 149: 26-34.

Lin, S.H., and Lo, C.C. (1997) Fenton Process for Treatment of Desizing Wastewater. Water Research 31: 2050-2056.

Lovett, D.A., Travers, S.M., and Davey, K.R. (1984) Activated Sludge Treatment of Abattoir Wastewater—I Influence of Sludge Age and Feeding Pattern Water Research 18: 429-434.

Mamais, D., Jenkins, D., and Pitt, P. (1993) A Rapid Physical-Chemical Method for the Determination of Readily Biodegradable Soluble Cod in Municipal Wastewater Water Research 27: 195-197.

Manios, T., Gakib, E., Banoub, S., Klimathianoub, A., Abramakisb, N., and Sakkas, N. (2003) Closed Wastewater Cycle in a Meat Producing and Processing Industry Resources, Conservation and Recycling 38: 335-345.

Markosova, R., Benediktova, M., and Volkova, A. (1990) Time- and Vertical Distribution of Bacterioplankton in a Shallow Eutrophic Reservoir. Water Research 24: 1057-1067.

Marttinen, S.K., Kettunen, R.H., Sormunen, K.M., Soimasuo, R.M., and Rintala, J.A. (2002) Screening of Physical–Chemical Methods for Removal of Organic Material, Nitrogen and Toxicity from Low Strength Landfill Leachates. Chemosphere 46: 851-858.

Metcalf, and Eddy (2003) Wastewater Engineering: Treatment and Reuse. New York: McGraw-Hill.

Mittal, G.S. (2006) Treatment of Wastewater from Abattoirs before Land Application—a Review Bioresource Technology 97: 1119-1135.

Munz, G., Gori, R., Cammilli, L., and Lubello, C. (2008) Characterization of Tannery Wastewater and Biomass in a Membrane Bioreactor Using Respirometric Analysis. Bioresource Technology.

Nyholm, N. (1991) The European System of Standardized Legal Test for Assessing the Biodegradability of Chemicals. Environmental Toxicology and Chemistry 10: 1237-1246.

Orhon, D., Ates, E., and Sozen, S. (1997) Characterization and Cod Fractionation of Domestic Wastewaters. Environmental Pollution 95: 191-204.

Ranganathan, K., Karunagaran, K., and Sharma, D.C. (2007) Recycling of Wastewaters of Textile Dyeing Industries Using Advanced Treatment Technology and Cost Analysis—Case Studies Resources, Conservation and Recycling 50: 306-318.

Sawyer, C.N., McCarty, P.L., and F, P.G. (1994) Chemistry for Environmental Engineering ( 4th Edition ).

Schnabel, R.R., Dell, C.J., and Shaffer, J.A. (2002) Filter, Inoculum and Time Effects on Measurements of Biodegradable Water Soluble Organic Carbon in Soil Soil Biology & Biochemistry 34: 737-739.

Shaw, C.B., Carliell, C.M., and Wheatley, A.D. (2002) Anaerobic/Aerobic Treatment of Coloured Textile Effluents Using Sequencing Batch Reactors Water Research 36: 1993-2001.

Smith, M.T.E., Smernik, R.J., Merrington, G., and Tibbett, M. (2008) Changes in Sewage Sludge Carbon Forms Along a Treatment Stream Chemosphere 72: 981-985.

Sollfrank, U., and Gujer, W. (1991) Characterisation of Domestic Wastewater for Mathematical Modeling of the Activated Sludge Process. Water Science and Technology 23: 1057-1066.

Sözen, S., Çokgör, E.U., Orhon, D., and Henze, M. (1998) Respirometric Analysis of Activated Sludge Behaviour—Ii. Heterotrophic Growth under Aerobic and Anoxic Conditions Water Research 32: 476-488.

Spanjers, H., and Vanrolleghem, P. (1995) Respirometry as a Tool for Rapid Characterization of Wastewater and Activated Sludge. Water Science and Technology 31: 105-114.

Sperandio, M., and Etienne, P. (2000) Estimation of Wastewater Biodegradable Cod Fractions by Combining Respirometric Experiments in Various So/Xo Ratios. Water Research 34: 1233-1246.

Tawfik, A., Sobhey, M., and Badawy, M. (2008) Treatment of a Combined Dairy and Domestic Wastewater in an up-Flow Anaerobic Sludge Blanket (Uasb) Reactor Followed by Activated Sludge (as System) Desalination 227: 167-177.

Torrijos, M., Cerro, R.M., and Capdeville, B. (1994) Sequencing Batch Reactor: A Tool for Wastewater Characterization for the Iawprc Model. Water Science and Technology 29: 81-90.

Veriansyah, B., Kima, J.-D., and Lee, Y.-W. (2007) Simultaneous Recovery of Chromium and Destruction of Organics from Lcd Manufacturing Process Wastewater by Supercritical Water Oxidation Journal of Cleaner Production 15: 972-978.

Veriansyah, B., Parka, T.-J., Limb, J.-S., and Lee, Y.-W. (2005) Supercritical Water Oxidation of Wastewater from Lcd Manufacturing Process: Kinetic and Formation of Chromium Oxide Nanoparticles The Journal of Supercritical Fluids 34: 51-61.

Vesilind, P.A., Peirce, J.J., and Weiner, R.F. (1994) Environmental Engineering: Butterworth-Heinemann.

Witteborg, A., Van, D.L.A., and Hamming, R. (1996) Respirometry for Determination of the Influent Ss-Concentration. Water Science and Technology 33: 311-323.

Xu, S., and Hasselblad, S. (1996) A Simple Biological Method to Estimate the Readily Biodegradable Organic Matter in Wastewater. Water Research 30: 1023-1025.

Xu, Z., Nakhla, G., and Patel, J. (2006) Characterization and Modeling of Nutrient-Deficient Tomato-Processing Wastewater Treatment Using an Anaerobic/Aerobic System. Chemosphere 65: 1171-1181.

Zhanga, S., Qub, Y., Liua, Y., Yanga, F., Zhanga, X., Furukawac, K., and Yamadad, Y. (2005) Experimental Study of Domestic Sewage Treatment with a Metal Membrane Bioreactor Desalination 177: 83-93.

Ziglio, G., Andreottola, G., Foladori, P., and Ragazzi, M. (2001) Experimental Validation of a Single-Our Method for Wastewater Rbcod Characterisation. Water Science and Technology 43: 119-126.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊