(3.230.173.249) 您好!臺灣時間:2021/04/21 04:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:高淑真
研究生(外文):Shu-Chen Kao
論文名稱:Phostensin(一型蛋白質磷酸水解酶調節蛋白)的鑑定與特性分析
論文名稱(外文):Identification and Characterization of Phostensin, a Novel Protein Phosphatase 1 F-actin Cytoskeleton Targeting Subunit
指導教授:陳鴻震
學位類別:博士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:93
中文關鍵詞:一型蛋白質磷酸水解酶肌動蛋白
外文關鍵詞:PP1actin cytoskeleton
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
1 型-蛋白質磷酸水解酶 (PP1),為一主要的絲胺酸/酥胺酸蛋白質磷酸水解酶,其在調控細胞功能上扮演著重要角色,它可調控蛋白質合成、醣類代謝、肌肉收縮、細胞週期與神經傳導等。PP1 的催化次單元藉由與結合蛋白相結合以全酶的方式呈現在細胞內,這些PP1 結合蛋白將PP1 標定在細胞內特定區域並調控基質之活性。因此,鑑別PP1 全酶將有助於我們瞭解重要的PP1 結合蛋白如何藉由絲胺酸/酥胺酸的去磷酸化作用來調控細胞信息傳導。過去我們已經從心臟細胞中利用酵母菌雙雜合系統尋找新的PP1α 結合蛋白。從研究中我們已經鑑定出一個全新的PP1α 結合蛋白,命名為protein phosphatase 1 F-actin cytoskeleton targeting subunit(phostensin),經由核苷酸序列比對證實為KIAA1949 之轉錄產物,phostensin由165 個胺基酸組成,分子量為17,771,具有PP1 結合序列K91ISF94,我們利用GST- pull down assay 以及免疫沉澱法,證實phostensin 為PP1α 的結合蛋白,若是將PP1α 結合序列K91ISF94 進行定點突變後,則會破壞phostensin與PP1α 的結合。此外,我們利用免疫螢光染色法證實在MDCK 細胞,PP1α/Phostensin 共同聚集在細胞邊緣的細胞骨架上,並且以肌動蛋白聚合作用螢光染色法證實phostensin 會結合在F-型肌動蛋白的 (-) 端,而且具有減少F-型肌動蛋白的延長作用。所以Phostensin 為F-型肌動蛋白 (-) 端的帽蓋蛋白,具有調節細胞骨架變化的功能。
Protein phosphatases 1(PP1)controls key biological pathways, including protein synthesis, carbohydrate metabolism, muscle contraction , cell cycle and neuron transmission via association with a variety of regulatory subunits that target the enzyme to various cellular locations. We have identified and characterized a novel protein, protein phosphatase 1 F-actin cytoskeleton
targeting subunit (phostensin). This protein is encoded by KIAA1949 and was found to associate with PP1α in the co-immunoprecipitation, and GST pull-down assay. Phostensin is a protein of 165 amino acids with a calculated
molecular mass of 17,771 and contains one consensus PP1-docking motif,K91ISF94. Mutation at the PP1-binding motif of phostensin disrupted binding with PP1. Imunofluorescence microscopic analysis revealed that the PP1α /phostensin complex was conspicuously localized with the actin cytoskeleton at the cell periphery in Madin-Darby canine kidney (MDCK) epithelial cells. The feature of phostensin that binds to the pointed ends of F-actin was observed in fluorescent actin polymerization assays using a FITC-conjugated monoclonalantibody, PT2.Phostensin binds to F-actin, and reduces F-actin elongation.Taken together, our results suggested that phostensin is an actin filament pointed end-capping protein and is capable of modulating actin dynamics.
第一章文獻回顧............................................1
1-1 蛋白質磷酸水解酶的發現與重要性....................... 1
1-1.1 蛋白質的磷酸化與去磷酸化作用...................... 1
1-1.2 蛋白質磷酸水解酶的發現.............................2
1-2 絲胺酸/酥胺酸蛋白質磷酸水解酶之分類.................. 3
1-3 一型蛋白質磷酸水解酶之分類與調控次單位............... 4
1-3.1 一型蛋白質磷酸水解酶之分類........................ 4
1-3.2 一型蛋白質磷酸水解酶之調控次單位.................. 4
1-4 細胞骨架蛋白簡介..................................... 7
1-4.1 肌動蛋白 (Actin) 之基本結構........................8
1-4.2 微絲的結構與聚合的動力學...........................9
1-4.3 F-型肌動蛋白 (+) 端增長作用大於 (-) 端..........11
1-4.4 肌動蛋白結合蛋白 (Actin binding protein;ABPs)
之分類............................................12
1-4.4a G-型肌動蛋白結合蛋白 (G-actin binding proteins). 13
1-4.4b 帽蓋蛋白 (Capping proteins)......................14
1-4.4c 分裂蛋白 (Severing proteins).....................16
1-4.4d 肌動蛋白交叉結合蛋白 (Actin cross-link protein). 17
1-4.4e 細胞膜連結肌動蛋白結合蛋白(Membrane
associated actin binding proteins)...............18
1-4.5 影響肌動蛋白組裝或功能的物質......................18
1-5 KAA1949..............................................19
1-6 研究目的與重要性.....................................20
第二章 實驗材料與方法....................................21
2-1 實驗材料............................................ 21
2-1.1 質體............................................. 21
2-1.2 細胞株............................................21
2-1.3 抗體..............................................22
2-1.4 藥品............................................. 22
2-1.5 儀器與套組........................................24
2-2 實驗方法............................................ 26
2-2.1 5’Rapid Amplification of cDNA Ends PCR
(5’RACE PCR)....................................26
2-2.2 勝任細胞 (Competent Cell)的製備...................27
2-2.3 轉形作用 (Transformation)........................ 28
2-2.4 DNA 片段的回收或純化..............................28
2-2.5 DNA 洋菜膠體電泳分析..............................28
2-2.6 質體DNA 之抽取................................... 29
2-2.7 構築pGEXT4T-1-phostensin 突變株.................. 29
2-2.8 質體構築..........................................30
2-2.8a pGEXT4T-1- phostensin............................31
2-2.8b pFLAG-phostensin.................................32
2-2.8c pET32a-thioredoxin-phostensin....................32
2-2.8d Phostensin-EGFP................................. 32
2-2.8e PP1α-EGFP....................................... 32
2-2.9 GST-phostensin 蛋白質純化........................ 33
2-2.10 phostensin 多株抗體製備......................... 33
2-2.11 Phostensin competition assay.................... 33
2-2.12 Transient transfection.......................... 34
2-2.13 製備人類白血球細胞萃取物.........................34
2-2.14 細胞蛋白質之萃取 (Collection of cell lysate).... 35
2-2.15 免疫沉澱法 ( Immunoprecipitation)............... 35
2-2.15a For rabbit polycolonal Ab...................... 35
2-2.15b For mouse monocolonal Ab....................... 35
2-2.16 Western blotting.................................35
2-2.17 GST Pull down assay............................. 36
2-2.18 肌動蛋白聚合作用螢光染色法 (fluorescent
actin polymerization assays).....................36
2-2.19 phostensin 結合至肌動蛋白之免疫螢光染色法........37
2-2.20 細胞週期同步化(Double thymidine blocking)........37
2-2.21 免疫螢光染色(Immunofluorescene Staining)........ 38
第三章結果.............................................. 39
3-1 PP1α 調節蛋白之鑑定..................................39
3-2 Phostensin 為PP1α 結合蛋白...........................39
3-3 Phostensin 表現型態之鑑定............................40
3-4 Phostensin 與PP1α 共同聚集在細胞連結處...............42
3-5 Phpstensin 與F-型肌動蛋白相互作用....................42
3-6 Phpstensin 具有F-型肌動蛋白帽蓋序列................. 43
3-7 Phostensin 會影響肌動蛋白(-)端的延長作用........... 44
3-8 Phostensin 為F-型肌動蛋白(-)端帽蓋蛋白............. 45
第四章 討論............................................. 47
第五章 參考文獻......................................... 55
第六章 表與圖........................................... 71
附錄.....................................................87

圖 表 目 錄
Table 1. Phostensin具有的保守序列........................71
Fig.1 Phostensin核苷酸序列與一級結構.....................72
Fig.2 Phostensin的胺基酸序列中預測到的保守序列...........73
Fig.3 Phostensin為PP1α結合蛋白...........................74
Fig.4 Phostensin具有一個PP1 binding motif................75
Fig.5 Photensin表現於人類白血球細胞......................76
Fig.6 Phostensin與PP1α在MDCK細胞中聚集...................77
Fig.7 Phostensin分佈於富含肌動蛋白的細胞連結處...........78
Fig.8 phostensin與肌動蛋白結合作用.......................79
Fig.9 Phpstensin 具有F-actin capping motif...............80
Fig.10 位於C端的F-actin capping motif會影響
phostensin與F-型肌動蛋白的結合能力................81
Fig.11 Phostensin會影響F-型肌動蛋白的延長作用............83
Fig.12 Phostensin為F-型肌動蛋白(-)端帽蓋蛋白............84
Fig.13 Phostensin在HeLa細胞週期的表現位置................85
Fig.14 內源性phostensin細胞株表現型......................86
Aggen, J. B., Nairn, A. C., and Chamberlin, R. (2000) Regulation of protein phosphatase-1.Chemistry & iology.7:13-23.
Aitken, A., Biham, T., and Cohen, P. (1982) Complete primary structure of protein phosphatase inhibitor-1 from rabbit skeletal muscle. Eur. J. Biochem. 126:235-246.
Allen, P. B., Ouimet, C. C., and Grengard, P. (1997) Spinophilin, a novel protein phosphatase 1 binding protein localized to dendritic spines. Proc. Natl. Acad. Sci USA 94:9956-9961.
Allen, P. B., Greenfield, A. T., Svenningsson, P., Haspeslagh, D. C., and Greengard, P. (2004) Phactrs 1-4: A family of protein phosphatase 1 and actin regulatory proteins. Proc. Natl. Acad. Sci. USA 101:7187-7192.
Allen, P. B., Kwon, Y-G., Nairn, A. C., and Greengard, P. (1998) Isolation and Characterization of PNUTS,a putative protein phosphatast 1 nuclear targeting sununit. J. Biol. Chem. 273:4089-4095.
Alphonse, G., Cayla, X., Guergnon, J., Dessauge, F., Hospital, V., Rebollo, M. P., Fleischer, A., and Rebollo, A. (2003) Serine/threonine protein phosphatases PP1 and PP2A are key players in apoptosis. Biochimie. 85:721-726.
Amatruda, J. F., and Cooper, J. A. (1992) Purification, characterization, and immunofluorescence localization of Saccharomyces cerevisiae capping protein. J. Cell Biol. 117:1067-1076.
Ambach, A., Saunus, J., Konstandin, M., Wesselborg, S., Meuer, S. C., and Samstag, Y. (2000) The serine phosphatases PP1 and PP2A associate with and activate the actin-binding protein cofilin in human T lymphocytes. Eur. J. Immunol. 30:3422-3431.
Andre, E., Lottspeich, F., Schleicher, M., and Noegel, A. (1988) Severin, gelsolin, and villin share a homologous sequence in regions presumed to contain F-actin severing domains. J. Biol. Chem. 263:722-727.
Arber, S., Babayannis, F., Hanser, H., Schneider, C., Stanyon, C. A., Bernard, O., and Caroni, P. (1998) Regulation of actin dynamics through phosphorylation of cofilin by LIM-kinase. Nature 393:805-809.
Arpin, M., Pringault, E., Finidori, J., Garcia, A., Jeltsch, J. M., Vandekerckhove, J., and Louvard, D. (1988) Sequence of human villin: a large duplicated domain homologous with other actin-severing proteins and a unique small carboxy-terminal domain related to villin specificity. J. Cell Biol. 107:1759-1766.
Atherton-Fessler, S., Parker, L. L., Geahlen, R. L., and Piwnica-Worms, H. (1993) Mechanisms of p34cdc2 regulation. Mol. Cell Biol. 13:1675-1685.
Barron-Casella, E. A., Torres, M. A., Scherer, S. W., Heng, H. H. Q., Tsui, L. C., and Casella, J. F. (1995) Sequence analysis and chromosomal localization of human Cap Z. Conserved residues within the actin-binding domain may link Cap Z to gelsolin/severin and profilin protein families. J. Biol. Chem. 270:21472-21479.
Blanchoin, L., Pollard, T. D., and Hitchock-Degregori, S. E. (2001) Inhibition of the Arp2/3 complex-nucleated actin polymerization and branch formation by tropomyosin. Curr. Biol. 11:1300-1304.
Blume-Jensen, P. and Hunter, T. (2001) Oncogenic kinase signaling. Nature 411: 355-365.
Bordelon, J. R., Smith, Y., Nairn, A. C., Colbran, R. J., Greengard, P., and Muly, E. C. (2005) Differential localization of protein phosphatase-1α, β, and γ1 isoforms in primate prefornal cortex. Cereb. Cortex. 15:1928-1937..
Brandt, H., Lee, E. Y., and Killilea, S. D. (1975) A protein inhibitor of rabbit liver phosphorylase phosphatase. Biochem. Biophys. Res. Commun. 63:950-956.
Brautigan, D. L. (1994) Protein phosphatases. Recent Prog. Horm. Res. 49: 197-214.
Brautigan, D. L. (1995) Flicking the switches: phosphorylation of serine/ threonine protein phosphatases. Semin. Cancer Biol. 6:211-217.
Caldwell, J. E., Heiss, S. G., Mermall, V., and Cooper, J. A. (1989) Effects of CapZ, an actin capping protein of muscle, on the polymerization of actin. Biochemistry 28:8506-8514.
Caldwell, J. E., Waddle, J. A., Cooper, J. A., Hollands, J. A., Casella, S. J., and Casella, J. F. (1989) cDNAs encoding the beta subunit of cap Z, the actin-capping protein of the Z line of muscle. J. Biol. Chem. 264:12648- 12652.
Carlier, M. F. (1991) Actin: protein structure and filament dynamics. J. Biol. Chem. 266:1-4.
Carlier, M. F., Pantaloni, D., and Korn, E. D. (1986) The effects of Mg2+ at the high-affinity and low-affinity sites on the polymerization of actin and associated ATP hydrolysis. J. Biol. Chem. 261:10785-10792.
Carr, A., Sutliff, R., Weber, C., Allen, P., Greengard, P., Lanerolle, P., Kranias, E., and Paul, R. (2001) Is myosin phosphatase regulated in vivo by inhibitor-1? Evidence from inhibitor-1 knockout mice. J. Physio. L. 534:357-366.
Chardon, P., Renard, C., and Vaiman, M. (1999) The major histocompatibility complex in swine. Immunol Rev.167:179-192.
Cohen, P. (1989) The structure and regulation of protein phosphatases. Annu. Rev. Biochem. 58: 453-508.
Cohen, P. (2002) Protein phosphatase 1-targeted in many directions. J. Cell. Sci. 115:241-256.
Coluccio, L. M. (1994) An end in sight:tropodulin. J. cell Biol.127:1497-1499.
Connor, J. H., Quan, H. N., Ramasawamy, N. T., Zhang, L., Barik, S., Zheng, J., Cannon, J. F., Lee, E. Y. C., and Shenolikar, S. (1998) Inhibitor-1 interaction domain that mediates the inhibition of protein phosphatase 1. J. Biol. Chem. 273:27716-27724.
Cooper, J. A., and Pollard, T. D. (1983) Effects of capping protein on the kinetics of actin polymerization. Biochemistry 24:793-799.
Cooper, J. A., Buhle, E. L. Walker, S. B. Tsong, T. Y.and Pollard, T. D. (1983) Kinetic evidence for a monomer activation step in actin polymerization. Biochemistry 22:2193-2202.
Cramer, L. P., Briggs, L. J., and Dawe, H. R. (2002) Use of fluorescently labelled deoxyribonuclease I to spatially measure G-actin levels in migrating and non-migrating cells. Cell Motil. Cytoskeleton 51:27-38.
Cristofanilli, M., Mizuno, F., and Akopian, A. (2007) Disruption of actin cytoskeleton causes internalization of Ca(v)1.3 (alpha 1D) L-type calcium channels in salamander retinal neurons. Mol. Vis. 13:1496-507.
Cyert, M. S., and Thorner, J. (1989) Putting it on and taking it off: phosphoprotein phosphatase involvement in cell cycle regulation. Cell 57: 891-893.
Dabiri, G. A., Young, C. L., Rosenbloom, J., and Southwick, F. S. (1992) Molecular cloning of human macrophage capping protein cDNA. A unique member of the gelsolin/villin family expressed primarily in macrophages. J. Biol. Chem. 267:16545-16552.
Davis, H. P. and Squire, L. R. (1984) Protein synthesis and memory: a review. Psychol. Bull. 96:518–559.
De Rosier, D. J. (1990) Protein structure. The changing shape of actin. Nature 347:21-22.
De, L. A., Cruz, E. M., and Pollard, T. D. (1995) Nucleotide-free actin: stabilization by sucrose and nucleotide binding kinetics. Biochemistry 34: 5452–5461.
Dedova, I. V., Dedov, V. N., Nosworthy, N. J., Hambly, B. D. and Dos Remedios, C. G. (2002) Cofilin and DNase I affect the conformation of the small domain of actin. Biophys. J. 82:3134-3143.
Dent, P., Lavoinne, A., Nakieliny, S., Caudwell, F. B., Watt, P., and Choen, P. (1990) The molecular mechanism by which insulin stimulates glycogen synthesis in mammalian skeletal muscle. Nature 348:302-308.
Dhanasekaran, N. (1998) Cell signaling: an overview. Oncogene 17:1329-1330.
Didry, D., Carlier, M.F., and Pantaloni, D. (1998) Synergy between actin depolymerizing factor cofilin and profilin in increasing actin filament turnover. J. Biol. Chem. 273:25602–25611.
Dieffenbach, C. W., SenGupta, D. N., Krause, D., Sawzak, D., and Silverman, R. H. (1989) Cloning of murine gelsolin and its regulation during differentiation of embryonal carcinoma cells. J. Biol. Chem. 264:13281-13288.
Dohadwala, M., Silva, E. F., Hall, F. L., Willians, R. T., Carbonarohall, D. A., Nairn, A. C., Greengard, P., and Berndt, N. (1994) Phospharylation and inactivation of protein phosphatase 1 by cyclin-dependent kinae. Proc. Natl. Acad. Sci. 91:6428-6412.
dos Remedios, C. G., Chhabra, D., Kekic, M., Dedova, I. V., Tsubakihara, M., Berry, D. A., and Nosworthy, N. J. (2003) Actin Binding Proteins: Regulation of Cytoskeletal Microfilaments. Physiol. Rev. 83:433-473.
Egloff, M. P., Johnson, D. F., Moorhead, G., Cohen, P. T. W., Cohen, P., and Barford, D. (1997) Structural basis for the recognition of regulatory subunits by the catalytic subunit of protein phosphatase 1. EMBO J. 16:1876-1887.
Eynde, A. V., Wera, S., Beullens, M., Torrekens, S., Leuven, F. V., Stalman, S, W., and Bollen, M. (1995) Molecular cloning of NIPP-1,a nuclear inhibitor of protein phosphatase-a,reverals homology polypeptides involved in RNA processing. J. Biol. Chem. 270:28068-28074.
Facchini, A., Borzı, R. M., and Flamigni, F. (2005) Induction of ornithine decarboxylase in T/C-28a2 chondrocytes by lysophosphatidic acid: Signaling pathway and inhibition of cell proliferation. FEBS Letters 579:2919-2925.
Faux, M. C., and Scott, J. D. (1996) More on target with protein phosphorylation: conferring specificity by location. Trends In Biochemical Sciences 21: 312-315.
Foulkes, J., and Maller, J. L. (1982) In vivo actions of proein phosphatase inhibitor-2 in Xenopus oocyte. FEBS Letter 150:155-160.
Fowler, V. M. (1987) Identifucation and purification of a novel Mr 43,000 tropomyosin-binding protein from human erythrocyte membranes. J. Biol. Chem. 262:12792-12800.
Fowler, V. M. (1990) Tropomodulin:a cytoskeletal protein that binds to the end of erythrocyte tropomyosin and inhibits tropomyosin binding to actin. J. cell Biol.111:471-482.
Fowler, V. M. (1996) Regulation of actin filament length in erythrocytes and striated muscle. Curr. Opin. Cell Biol. 8:86-96.
Funayama, N., Nagafuchi, A., Sato, N. S., and Tsukita, S. (1991) Radixin is a novel member of the band 4.1 family. J. Cell. Biol. 115: 1039-1048.
Gadde, S., and Heald, R. (2004) Mechanisms and molecules of the mitotic spindle. Curr. Biol.14:R797-805.
Gaertner, A., and Wegner, A. (1991) Mechanism of the insertion of actin monomers between the barbed ends of actin filaments and barbed end-bound insertin. J. Muscle Res. Cell. Motil. 12:27-36.
Greengard, P., Allen, P. B., and Nairn, A. C. (1999) Beyond the dopamine receptor: the DARPP-32/protein phosphatase 1 cascade. Neuron. 23:435-447.
Gremm, D., and Wegner, A. (2000) Gelsolin as a calcium-regulated actin filament-capping protein. Eur. J. Biochem. 267:4339–4345.
Griffith, J. P., Kim, J. L., Kim, E. E., Sintchak, M. D., Tomson, J. A. Fitzgibbon, M. J., Fleming, M. A., Caron, P. R., Hsiao, K., and Navia, M. A. (1995) X-ray structure of calcineurin inhibited by the immunophilin-immunosuppressant FKBP12-FK506 complex. Cell 82: 507-522.
Gunsalus, K. C., Bonaccorsi, S., Williams, E., Verni, F., Gatti, M., and Goldberg, M. L. (1995) Mutations in twinstar, a Drosophila gene encode a cofilin/ADF homologous, result in defects in centrosome migration and cytokinesis. J. Cell. Biol. 131:1243-1259.
Hagiwara, M., Alberts, A., Brindle, P., Meinkoth, J., Feramisco, J., Deng, T., Karin, M., Shenolikar, S., and Montminy, M. (1992) Transcriptional attenuation following cAMP induction requires PP-1-mediated dephosphorylation of CREB. Cell 70:105-113.
Handks, S. K., and Hunter, T. (1995) Protein kinase 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. FASEB J. 9:576-596.
Hartmann, H., Noegel, A. A., Eckerskorn, C., Rapp, S., and Schleicher, M. (1989) Ca2+-independent F-actin capping proteins. Cap 32/34, a capping protein from Dictyostelium discoideum, does not share sequence homologies with known actin-binding proteins. J. Biol. Chem. 264:12639-12647.
Hemmings, H. C., Greengrad, P., Tung, H. Y., and Cohen, P. (1984) DARPP-32, a dopamine-regulated neuronal phosphoprotein, is a potent inhibitor of protein phosphatase –1. Nature 310:503-505.
Hervé, J. C., and Sarrouilhe, D. (2006) Protein phosphatase modulation of the intercellular junctional communication: importance in cardiac myocytes. Prog. Biophys. Mol. Biol. 90: 225-248.
Holasks, J. M., Kowalski, A. K., and Wilson, K. L. (2004) Emerin caps the pointed end of actin filaments:Evdence for an actin cortical network at the nuclear inner membrane. PLOS Biol. 2:1354-1362.
Honkanen, R. E., and Golden, T. (2002) Regulators of serine/threonine protein phosphatases at the dawn of a clinical era? Curr. Med. Chem. 9:2055-2075.
Huang, F. L.,and Gilinsmann, W. H. (1976) Separation andcharacterization of two phosphorylase phosphatase inhibitors from rabbit skeletal muscle. Eur. J. Biochem.70:419-426.
Huchon, D., Ozon, R., and Demaille, J. G. (1981) Protein phosphatase-1 is involved en Xenopus oocyte maturation. Nature 294:358-359.
Hug, C., Miller, T. M., Torres, M. A., Casella, J. F., and Cooper, J. A. (1992) Identification and characterization of an actin-binding site of CapZ. J. Cell Biol. 116:923-931.
Hunter, T. (1995) Protein kinases and phosphatases: the yin and yang of protein phosphorylation and signaling. Cell 80:225-236.
Kabsch, W., and Vandekerckhove, J. (1992) Structure and function of actin. Annu. Rev. Biophys. Biomol. Struct. 21:49-76.
Kinoslan, H. J., Selden, L.A., Estes J. E., and Gershman, L. C. (1993) Nucleotide binding to actin. Cation dependence of nucleotide dissociation and exchange. J. Biol. Chem. 268: 8683-8691.
Kwon, Y. G., Huang, H. B., Desdouits, F., Girault, J. A. Greengrad, P., and Nairn, A. C. (1997) Characterisation of the interaction between DARPP-32 and protein phosphatase 1 (PP-1): DARPP-32 peptides antagonize the interaction of PP-1 with binding proteins. Proc. Natl. Acad. Sci. USA 94: 3536-3541.
Kwon, Y. G., Lee, S. Y., Choi, Y., Greengard, P., and Nairn, A. C. (1997) Cell cycle-dependent phosphorylation of mammalian protein phosphatase inhibitor-1 by cdc2 kinase. Proc. Natl. Acad. Sci. USA 94:2168-2173.
Lee, K., and Song, K. (2007) Actin dysfunction activates ERK1/2 and delays entry into mitosis in mammalian cells. Cell Cycle. 6:1487-1495.
Lee, K. H., Meuer, S. C., and Samstag, Y. (2000) Cofilin:a missing link between T cell constimulation and rearrangement of the actin cytoskeleton. Eur. J. Immunol. 30:892-899.
Lesage, B., Beullens, M., Ceulemans, H., Himpens, B., and Bollen, M. (2005) Determinants of the nucleolar targeting of protein phosphatase-1. FEBS Letters 579:5626-5630.
Mangeat, P. H., and Burridge, K. (1987) Actin-membrane interaction in fibroblasts: what proteins are involved in this association? J. Cell Biol. 99: 95-103
Mayer, B. J., and Eck, M. J. (1995) SH3 domains:minding your p’s and q’s .Curr. Biol. 5:364-367.
Meijer, L., Pondaven, P., Tung, H. Y. L., Cohen, P., and Wallace, R. W. (1986) Protein phosphorylation and oocyte maturation. II. Inhibition of starfish oocyte maturation by intracellular microinjection of protein phosphatases -1 and -2A and alkaline phosphatase. Exp. Cell Res. 163:489-499.
Mermall, V., Post, P. L., and Mooseker, M. S. (1998) Unconventional myosin in cell movement, membrane traffic, and signal transduction. Science 279: 527-533.
Miwa, T., Manabe, Y., Kurokawa, K., Kamada, S., Kanda, N., Bruns, G., Ueyama, H., and Kakunaga, T. (1991) Structure, chromosome location, and expression of the human smooth muscle (enteric type) gamma-actin gene: evolution of six human actin genes. Mol. Cell. Biol. 11:3296-3306.
Moon, A., and Drubin, D. G. (1995) The ADF/cofilin proteins: stimulus- responsive modulators of actin dynamics. Mol. Cell. Biol. 6:1423-1431.
Mullins, R. D., Heuser, J. A., and Pollard, T. D. (1998) The interaction of Arp2/3 complex with actin:Nucleation, high affinity pointed end capping, and forming of branching networks of filaments. Proc. Natl. Acad. Sci. USA. 95:6181-6186.
Nagase, T., Kikuno, R., and Ohara, O. (2001) Predication of the coding sequences of unidentified human genes. XXII. The complete sequences of 50 new cDNA clones which code for large proteins. DNA Res. 8: 319-327.
Nakanish, H., Obaishi, H., Satoh, A., Wada, M. Mandai, K., Satoh, K., Nishioka, H. Matsuura, Y. Mizoguchi, A., and Takai, Y. (1997) Neurabin: a novel neural tissue-specific actin filament-binding protein involved in neurite formation. J. Cell Biol. 139:951-961.
Nakayama, M., Kikuno, R., and Ohara, O. (2002) Protein-protein interactions between large proteins:two-hybrid screening using a functionally classified library composed of lonf cDNAs. Genome Research. 12:1773-1784.
Nimmo, G. A., and Cohen, P. (1978) The regulation of glycogen metabolism. Purification and characterization of protein phosphatase inhibitor-1 from rabbit skeletal muscle. Eur. J. Biochem. 87:341-351.
Oliver, C. J., Terry-Lorenzo, R. T., Elliott, E., Bloomer, W. A. C., Li, S., Brautigan, D. L., Colbran, R. J., and Shenolikar, S. (2002) Targeting protein phosphatase 1 (PP1) to the actin cytoskeleton: the neurabin I/PP1 complex regulates cell morphology. Mol. Cell. Biol. 22:4690-4701.
Podolski, J. L. and Steck, T. L. (1988) Association of deoxyribonuclease I with the pointed ends of actin filaments in human red blood cell membrane skeleton. J. Biol. Chem. 263: 638-645.
Pollard, T. D. (1986) Rate constants for the reactions of ATP- and ADPactin with the ends of actin filaments. J. Cell Biol. 103:2747-2754.
Pollard, T. D., and Cooper, J. A. (1986) Actin and actin-binding proteins: a critical evaluation of mechanisms and function. Annu. Rev. Biochem. 55: 987-1035.
Pope, B., Way, M., Matsudaira, P. T., and Weeds, A. (1994) Characterisation of the F-actin binding domains of villin:classification of F-actin binding proteins into groups according to their binding sites on actin. FEBS Lett. 338:58-62.
Prendergast, G. C., and Ziff, E. B. (1991) Mbh 1: a novel gelsolin/severin- related protein which binds actin in vitro and exhibits nuclear localization in vivo. EMBO J. 10:757-766.
Rando, O. J., Zhao, K., Janmey, p., and Crabtree, G. R. (2002) Phosphatidylinositol-dependent actin filament binding by the SWI/SNF-like BAF chromatin remodeling complex. Proc. Natl. Acad. Sci. USA 99:2824-2829.
Revenu, C., Courtois, M., Michelot, A., Sykes, C., Louvard, D., and Robine, S.(2007) Villin severing activity enhances actin-based motility in vivo. Mol Biol Cell. 18:827-3.
Rueckschloss, U., and Isenberg, G. (2001) Cytochalasin D reduces Ca2+ currents via cofilin-activated depolymerization of F-actin in guinea-pig cardiomyocytes. J. Physiol. 537:363-370.
Ruhnau, K., Gaertner, A., and Wegner, A. (1989) Kinetic evidence for insertion of actin monomers between the barbed ends of actin filaments and barbed end-bound insertin, a protein purified from smooth muscle. J. Mol. Biol. 210:141-148.
Safer, D., and Nachmeias, V. T. (1994) β Thymosins as actin binding peptides. Bioessays 16:473–479.
Safer, D., Elzinga, M., and Nachmias, V. T. (1991) Thymosin β4 and Fx, an actin- sequestering peptide, are indistinguishable. J. Biol. Chem. 266: 4029-4032.
Sato, N., Yonemura, S., Obinata, T., Tsukita, S., and Tsukita, S. (1991) Radixin, a barbed end-capping actin-modulating protein, is concentrated at the cleavage furrow during cytokinesis. J. Cell. Biol. 113:321-330.
Satoh, A., Nakanishi, H., Obasishi, H., Wada, M., Takahashi, K., Satoh, K. Nishioka, H., Matsuura, Y., Mizoguchi, A., and Takai, Y. (1998) Neurabin-II/ spinophilin. An actin filament-binding protein with one pdz domain localized at cadherin-based cell-cell adhesion sites. J. Biol. Chem. 273:3470-3475.
Sawin, K. E. (2001) The spindle gets bigger. Cell 117:281-283.
Schafer, D. A., and Cooper, J. A. (1995) Control of actin assembly at filament ends. Annu. Rev. Cell Dev. Biol.11:497-518.
Schutt, C. E., Myslik, J.C., Rozycki, M. D., Gooneskere, N., and Lindverg, U. (1993) The structure of crystalline profilin-beta-actin. Nature 365:810- 816.
Segal, M., and Bloom, K. (2001) Control of spindle polarity and orientation in Saccharomyces cerevisiae. Trends Cell Biol. 11:160-166.
Selden, L. A., Kinoslan, H. J., Newman, J., Lincoln, B., Hurwitz, C., Gershman, L. C., and Estes, J. E. (1998) Severing of F-actin by the amino-terminal half of gelsolin suggests internal cooperativity in gelsolin. Biophys. J. 75: 3092-3090.
Shenolinkar, S., and Ingebritsen, T. S. (1984) Protein (serine and threonine) phosphate phosphatases. Methods In Enzymology 107:102-129.
Shenolinkar, S., and Nairn, A. C. (1991) Protein phosphatases: Recent Progress. In Greengard, P. and Robinson, G.. A. (eds.) Advances in Second Messengers and Phosphoprotein Research. Raven Press, New York, 23:1-121.
Shigenari, A., Ando, A., Renard, C., Chardon, P., Shiina, T., Kulski, J, K., Yasue, H., and Inoko,H. (2004) Nucleotide sequencing analysis of the swine 433-kb genomic segment located between the non-classical and classical SLA class I gene clusters. Immunogenetics. 55:695-705.
Soutgwick, F. S., and Hartwig, J. H. (1997) Acumentin, a protein in macrophages which caps the “pointed”end of actin filaments. Soc. Gen. Physiol. Ser. 52:79-89.
Strausberg, R. (2002) Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.Proc. Natl. Acad.Sci.USA 99:16899-16903.
Strzelecka-Golaszwaska, H. (2001) Divalent cations, nucleotides and actin structure. Res. Prob. Cell Differ. 32:23-42.
Sun, H. Q., Kwiatkowska, K., and Yin, H. L. (1995) Actin monomer binding proteins. Curr. Opin. Cell. Biol. 7:102-110.
Sung, L. A., Fan, Y., and Lin C. C. (1996) Gene assignment, expression, and homology of human tropomodulin. Genomics 34:92-96.
Surmeier, D. J., Bargas, J., Hemmings, H. C. J., Nairn, A. C., and Greengard, P. (1995) Modulation of calcium currents by a D1 dopaminergic protein kinase/phosphatase cascade in rat neostriatal neurons. Neuron. 14:385-397.
Taylos, S. S., Radzio-Andzelm, E., and Hunter, T. (1995) How do protein kinases discriminate between serine/threonine and tyrosine? Structural insights from the receptor protein-tyrosine kinase. FASEB J. 9:1255-1266.
Terry-Lorenzo, R. T., Elliot, E., Weiser, D. C., Prickett, T. D. Brautigan, D. L., Nairn, A. C., and Greengard, P. (2002) Neurabins Recruit Protein Phosphatase-1 and Inhibitor-2 to the Actin Cytoskeleton. J. Biol. Chem. 277: 46535-46543.
Terry-Lorenzo, R. T., Carmody, L. C., Voltz, J. W., Connor, J. H., Li, S., Smith, F. D., Milgram, S. L., Colbran, R. J., and Shenolikar, S. (2002) The neuronal actin-binding proteins, neurabin I and neurabin II, recruit specific isoforms of protein phosphatase-1 catalytic subunits. J. Biol. Chem. 277:27716-27724.
Terry-Lorenzo, R. T., Roadcap, D. W. T., Otsuka, T. A., Blanpied, P. L. Zamorano, C., Garner, C., Shenolikar, S., and Ehlers, M. D. (2005) Neurabin/protein phosphatase-1 complex regulates dendritic spine morphogenesis and maturation. Mol. Biol. Cell 16:2349-2362.
Trinkle-Mulcahy, L., Andersen, J., Lam, Y. W., Moorhead, G., Mann, M., and Lamond, A. I. (2006) Repo-Man recruits PP1g to chromatin and is essential for cell viability. J. Cell Biol. 172:679-692.
Tsukita, S., Hieda, Y., and Tsukita, S. (1989) A new 82-kD barbed end-capping protein (radixin) localized in the cell-to-cell adherens junction: purification and characterization. J. Cell. Biol. 108:2369-2382.
Urisitti, J. A. and Fowler, V. M.(1994) Immunolocalization oftropomodulin, tropomyosin and actin in spread human erythrocyte skeletons. J. cell Biol. 107:1633-1639.
Vale, R. D., and Milligan, R. A. (2000) The way things move: looking under the hood of molecular motor proteins. Science 288:88-95.
Vandekerckhove, J., and Weber, K. (1978) At least six different actins are expressed in a higher mammal: an analysis based on the amino acid sequence of the amino-terminal tryptic peptide. J. Mol. Biol. 126:783-802.
Vandekerckhove, J., and Weber, K. (1984) Chordate muscle actins differ distinctly from invertebrate muscle actins. The evolution of the different vertebrate muscle actins. J. Mol. Biol. 179: 391-413.
Vandekerckhove, J., and. Weber, K. (1978) Mammalian cytoplasmic actins are the products of at least two genes and differ in primary structure in at least 25 identified positions from skeletal muscle actins. Proc. Natl. Acad. Sci. USA 75:1106-1110.
Vandenheede, J. R., Yang, S. D., Merlevede, W., Jurgensen, S., and Chock, P. B. (1985) Kinase FA-mediated regulation of rabbit skeletal muscle protein phosphatase. Reversible phosphorylation of the modulator subunit. J. Biol. Chem. 260:10512-10516.
Velten, F., Renald, C., Rogel-Gaillard C, Vaiman, M., Schrezenmeir, J., and Chardon, P. (1999) Spatial arrangement of pig MHC class I sequences. Immunogenetics 49:919-930.
Vivo, M., Calogero, R. A., Sansone, F., Calabro, V., Parisi, L., Borrelli, L., Saviozzi, S., and Mantia, G. L. (2001) The human tumor suppressor arf interacts with spinophilin/neurabin II, a type 1 protein-phosphatase-binding protein. J. Biol. Chem. 276:14161-14169.
Waddle, J. A., Cooper, J. A., and Waterston, R. H. (1993) The alpha and beta subunits of nematode actin capping protein function in yeast. Mol. Biol. Cell 4:907-917.
Weber, A, Pennise, C. R., Babcock, G. G., Fowler, V. M. (1994) Tropomodulin caps the pointed end of actin filaments. J. cell Biol.127:1627-1635.
Weeds, A., and Maciver, S. (1993) F-actin capping proteins. Curr. Opin. Cell. Biol. 5:63-69.
Wegner, A. (1976) Head to tail polymerization of actin. J. Mol. Biol. 108: 139-150.
Wegner, A., and Isenberg, G. (1983) 12-fold difference between the critical monomer concentrations of the two ends of actin filaments in physiological salt conditions. Proc. Natl. Acad. Sci. USA 80:4922-4925.
Welch, M. D., and Mullins, R. D. (2002) Cellular control of actin nucleation. Annu. Rev. Cell Dev. Biol. 18:247-88.
Xu, X. C., Naziruddin, B., Sasaki, H., Smith, D. M., and Mohanakumar, T (1999) Allele-specific and peptide-dependent recognition of swine leujocytr antigen class I by human cytotoxic T-cell clines. Transplantation 68:473-479.
Yan, Z., Hsieh-Wilson, L., Feng, J., Tomizawa, K., Allen, P. B., Fiengerg, A. A., Nairn, A. C., and Greengard, P. (1999) Protein phosphatase 1 modulation of neostriatal AMPA channels: regulation by DARPP-32 and spinophilin. Nat. Neurosci. 2:13-17.
Yang, M., Higuchi, O., Ohashi, K., Wada, A., Kangawa, K., Nishida, E., and Mizuno, K. (1998) Cofilin phospharylation by LIM-kinase 1 and its role in Rac-mediated actin reorganization. Nature 393:809-812.
Yin, H. L., Jammey, P. A., and Schleicher, M. (1990) Severin is a gelsolin prototype. Febs Lett. 264:78-80.
Yu, F. X., Johnston, P. A., Sudhof, T. C., and Yin, H. L. (1990) gCap39, a calcium ion- and polyphosphoinositide-regulated actin capping protein. Science 250:1413-1415.
Zhao, S.,and Lee, E. Y. C. (1997) A protein phosphatase-1-binding motif identified by the panning of a random peptide display library J. Biol. Chem. 272: 28368-28372.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔