跳到主要內容

臺灣博碩士論文加值系統

(35.175.191.36) 您好!臺灣時間:2021/07/31 23:23
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林郁苹
研究生(外文):Yu-Ping Lin
論文名稱:探討Adducin蛋白分布在細胞核及細胞附著連接之機轉及其生物意義
論文名稱(外文):Study on the Mechanism by which Adducin Localizes at the Nucleus and the Adherens Junctions and its Biological Significance
指導教授:陳鴻震
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:26
中文關鍵詞:肌動蛋白結合蛋白
外文關鍵詞:adducinadherens junctions
相關次數:
  • 被引用被引用:0
  • 點閱點閱:182
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
Adducin是一種能與肌動蛋白(actin)結合的蛋白,在細胞膜內側骨架結構扮演著重要角色。在本篇研究我們發現,在狗的腎臟上皮細胞(MDCK)及人類表皮細胞(A431)中,當細胞密度稀疏的時候,adducin會分布在細胞核;當細胞生長至緻密的時候,adducin會分布在細胞附著連接(adherens junctions),並且與蛋白E-cadherin及β-catenin坐落在一起。此外,adducin坐落在細胞附著連接,需依賴肌動蛋白絲(actin filaments)坐落在細胞膜側邊(lateral membrane)。為了進一步解釋adducin在細胞內表現位置的不同,我們將adducin野生型及其突變型接入綠螢光蛋白(GFP)並表現在沒有內源 adducin的老鼠纖維母細胞(NIH3T3)中。野生型GFP-adducin在細胞的細胞核及細胞質都有表現。將可能是adducin胺基酸序列上,往細胞核內運輸訊息模組(nuclear localization signal;NLS),718、719的離胺酸(lysine)置換成丙胺酸(alanine),發現adducin不存在細胞核。相反的,將adducin胺基酸序列上,會被protein kinase C(PKC)磷酸化的位置,716的絲胺酸(serine)置換成丙胺酸,發現adducin存在細胞核。然而在adducin胺基酸序列上,一樣會被PKC磷酸化的位置,726的絲胺酸置換成丙胺酸,發現adducin在細胞的細胞核及細胞質都有表現。此外在細胞功能上,adducin的分布在細胞核內會促進細胞移動(cell migration)、細胞延展(cell spreading)及mitosis。我們的結果證實,adducin分布在細胞核及細胞附著連接,主要是由兩個訊息所調控,其一是由往細胞核內運輸訊息模組調控,另一是由絲胺酸716的磷酸化調控,並進一步影響細胞功能。
Adducin, an actin binding protein, has been already known for its role in the control of the membrane cortical cytoskeleton. In this study, we found that adducin resided in the nuclei of sparsely cultured MDCK cells and A431 cells. When the cells were grown to confluence, adducin translocalized at adherens junctions where it co-localized with E-cadherin and
一、文獻探討…………………………………………………………………………1
二、材料方法…………………………………………………………………………4
(一)實驗材料
1. 抗體……………………………………………………………………………4
2. 藥品……………………………………………………………………………4
3. 細胞株………………………………………………………………………6
4. 質體…………………………………………………………………………6
5. 儀器………………………………………………………………7
(二)實驗方法
1. 細胞培養及細胞株的建立(cells culture and stable cell Lines)…………8
2. 細胞蛋白質的萃取(Collection of cell lysates)……………8
3. 西方點墨法(Western blotting) ………………………………………………9
4. 質體的建立(Plasmid cloning)……………………………9
5. 免疫螢光染色(Immunofluorescene staining)………………………………11
6. 細胞功能分析實驗(Cell function assay) …………………………………11
7. 核糖核酸干擾技術(RNA interference technology) ……………………12
三、結果………………………………………………………………………………14
(一)Adducin穿梭在細胞核及細胞附著連接(adherens junctions)。
(二)當細胞間形成良好的附著連接,蛋白分子adducin,E-cadherin,β-catenin
會坐落在一起。
(三)Adducin坐落於細胞間需要完整的肌動蛋白絲。
(四)在NIH3T3細胞中,adducin在細胞質及細胞核的分布,主要受到絲胺酸
716及NLS的調控。
(五)在MDCK細胞中,adducin在細胞質及細胞核的分布,主要受到絲胺酸
716及NLS的調控。
(六)穩定表現不同GFP-Adducin突變質體在MDCK細胞,會影響細胞移動
(migration)、延展(spreading)、及細胞週期(cell cycle)。
(七)利用核糖核酸干擾技術降低細胞內源的adducin,會影響細胞的生長
(proliferation)。
四、討論…………………………………………………………………………17
五、參考文獻…………………………………………………………………………20
六、實驗結果圖………………………………………………………………………28
1. Joshi, R., Gilligan D. M., Otto E., McLaughlin T., and Bennett V. 1991. Primary
structure and domain organization of human alpha and beta adducin. J. Cell Biol.
115:665–675.
2. Gardner, K., and Bennett V. 1986. A new erythrocyte membrane-associated protein
with calmodulin binding activity: identification and purification. J. Biol. Chem.
261:1339–1348.
3. Dong, L., Chapline C., Mousseau B., Fowler L., Ramsay M. K., Stevens J. L., and
Jaken S. 1995. 35H, a sequence isolated as a protein kinase C binding protein, is a
novel member of the adducin family. J. Biol. Chem. 270:25534–25540.
4. Lin, B., Nasir J., McDonald H., Graham R., Rommens J. M., Goldberg Y. P., and
Hayden M.R. 1995. Genomic organization of the human alpha-adducin gene and its
alternately spliced isoforms. Genomics. 25:93–99.
5. Goldberg, Y.P., Rommens J.M., and Hayden M.R. 1992. Cloning and mapping of
the α-adducin gene close to D4S95 and assessment of its relationship to Huntington
disease. Human Molecular Genetics. 1:669–675.
6. Gilligan, D.M., J. Lieman, and V. Bennett. 1995. Assignment of the human
beta-adducin gene (ADD2) to 2p13–p14 by in situ hybridization. Genomics. 28:
610–612.
7. Tisminetzky, S., G. Devescovi, G. Tripodi, A. Muro, G. Bianchi, M. Colombi, L.
Moro, S. Barlati, R. Tuteja, and F.E. Baralle. 1995. Genomic organisation and
chromosomal localisation of the gene encoding human beta adducin. Gene.
167:313–316.
8. Citterio, L., T. Azzani, S. Duga, and G. Bianchi. 1999. Genomic Organization of
the Human γ-Adducin Gene. Biochem. Biophys. Res. Commun. 266:110–114.
9. Joshi, R., and V. Bennett. 1990. Mapping the domain structure of human
erythrocyte adducin. J. Biol. Chem. 265:13130– 13136.
10. Hughes, C.A., and V. Bennett. 1995. Adducin: a physical model with implication
for function in assembly of spectrinactin complexes. J. Biol. Chem. 270:
18990–18996.
11. Yue, L., and A.C. Spradling. 1992. Hu-li tai shao, a gene required for ring canal
formation during Drosophila oogenesis, encodes a homolog of adducin.
Genes Dev. 6:2443–2454.
12. Lupas, A., M. Van Dyke, and J. Stock. 1991. Predicting coiled coil from protein
sequences. Science. 252:1162–1164.
13. Li, X. 1998. Towards the assembly of the membrane skeleton: structural and
functional studies of thesis. Duke University, Durham NC
14. Gardner, K., and V. Bennett. 1986. A new erythrocyte membrane-associated
protein with calmodulin binding activity. J. Biol. Chem. 261:1339–1348.
15. Towler, D.A., J.I. Gordon, S.P. Adams, and L. Glaser. 1988. The Biology and
Enzymology of Eukaryotic Protein Acylation. Annu. Rev. Biochem. 57:69–99.
16. George, D.J., and P.J. Blackshear. 1992. Membrane association of the
myristoylated alanine-rich C kinase substrate (MARCKS) protein appears to
involve myristate-dependent binding in the absence of a myristoyl protein
receptor. J. Biol. Chem. 267:24879–24885.
17. Stumpo, D.J., J.M. Graff, K.A. Albert, P. Greengard, and P.J. Blackshear.
1989. Molecular Cloning, Characterization, and Expression of a cDNA Encoding
the "80- to 87-kDa" Myristoylated Alanine-Rich C Kinase Substrate: A Major
Cellular Substrate for Protein Kinase C. Proc. Natl. Acad. Sci. U. S. A.
86:4012–4016.
18. Harlan, D.M., J.M. Graff, D.J. Stumpo, L. Roger, J. Eddy, T.B. Shows, J.M.
Boyle, and P.J. Blackshear. 1991. The human myristoylated alanine-rich C kinase
substrate (MARCKS) gene (MACS). Analysis of its gene product, promoter, and
chromosomal localization. J. Biol. Chem. 266:14399–14405.
19. Blackshear, P.J., J.S. Tuttle, R.J. Oakey, M.F. Seldin, M. Chery, C. Philidde, and
D.J. StumDo. 1992. Chromosomal mapping of the human (MACS) and
mouse (Macs) genes encoding the MARCKS protein. Genomics. 14:168–174.
20. Kim, J., P.J. Blackshear, J.D. Johnson, and S. McLaughlin. 1994.
Phosphorylation reverses the membrane association of peptides that correspond to
the basic domains of MARCKS and neuromodulin. Biophys. J. 67:227–237.
21. McLaughlin, S., and A. Aderem. 1995. The myristoyl-electrostatic switch: a
modulator of reversible protein-membrane interactions. Trends Biochem. Sci.
20:272–276.
22. Graff, J. M., D. J. Stumpo, and P. J. Blackshear. 1989. Characterization of the
phosphorylation sites in the chicken and bovine myristoylated alanine-rich C
kinase substrate protein, a prominent cellular substrate for protein kinase C. J.
Biol. Chem. 264:11912–11919.
23. Aderem, A. 1992. The MARCKS brothers: a family of kinase C substrates.
Cell. 71:713–716.
24. Blackshear, P.J. 1993. The MARCKS family of cellular protein kinase C
substrates. J. Biol. Chem. 268:1501–1504.
25. Blackshear, P.J., D.J. Stumpo, J.K. Huang, R.A. Nemenoff, and D.H. Spach
1987. Protein kinase C-dependent and -independent pathways of proto-oncogene
induction in human astrocytoma cells. J. Biol. Chem. 262:7774–7781.
26. McLaughlin, S., and D. Murray. 2005. Plasma membrane phosphoinositide
organization by protein electrostatics. Nature. 438:605–611.
27. Graff, J.M., R.R. Raian, R.R. Randall, A.C. Nairn, and P.J. Blackshear. 1991.
Protein kinase C substrate and inhibitor characteristics of peptides derived
from the myristoylated alanine-rich C kinase substrate (MARCKS) protein
phosphorylation site domain. J. Biol. Chem. 266:14390–14398.
28. Graff, J.M., T.N. Young, J.D. Johnson, and P.J. Blackshear. 1989.
Phosphorylation-regulated calmodulin binding to a prominent cellular substrate
for protein kinase C. J. Biol. Chem. 264:21818–21823.
29. Rosen, A., K. F. Keenan, M. Thelen, A.C. Nairn, and, A.A. Aderem. 1990.
Activation of protein kinase C results in the displacement of its myristoylated,
alanine-rich substrate from punctate structures in macrophage filopodia. J. Exp.
Med. 172:1211–1215.
30. Hartwig, J.H., M. Thelen, A. Rosen, P.A. Janmey, A.C. Nairn, and A. Aderem.
1992. MARCKS is an actin filament crosslinking protein regulated by protein
kinase C and calcium-calmodulin. Nature. 356:618–622.
31. Matsuoka, Y., X. Li, and V. Bennett. 1998. Adducin is an in vivo substrate for
protein kinase C: phosphorylation in the MARCKS-related domain inhibits
activity in promoting spectrin- actin complexes and occurs in many cells,
including dendritic spines of neurons. J. Cell Biol. 142:485–497.
32. Waseem, A., and H.C. Palfrey. 1988. Erythrocyte adducin. Comparison of the
alpha- and beta-subunits and multiple-site phosphorylation by protein kinase C
and cAMP-dependent protein kinase. Eur. J. Biochem. 178:563–573.
33. Ling, E., K. Gardner, and V. Bennett. 1986. Protein kinase C phosphorylates a
recently identified membrane skeleton-associated calmodulin-binding protein in
human erythrocytes. J. Biol. Chem. 261:13875–13878.
34. Matsuoka, Y., C.A. Hughes, and V. Bennett. 1996. Adducin regulation, definition
of the calmodulin-binding domain and sites of phosphorylation by protein kinases
A and C. J. Biol. Chem. 271:25157–25166.
35. Fukata, Y., N. Oshiro, N. Kinoshita, Y. Kawano, Y. Matsuoka, V. Bennett, Y.
Matsuura, and K. Kaibuchi. 1999. Phosphorylation of adducin by Rho-kinase
plays a crucial role in cell motility. J. Cell Biol. 145:347–361.
36. Kimura, K., Y. Fukata, Y. Matsuoka, V. Bennett, Y. Matsuura, K. Okawa, A.
Iwamatsu, and K. Kaibuchi. 1998. Regulation of the association of adducin with
actin filaments by rho-associated kinase (Rho kinase) and myosin phosphatase. J.
Biol. Chem. 273:5542–5548.
37. Bennett, V., K. Gardner, and J.P. Steiner. 1988. Brain adducin: a protein kinase C
substrate that may mediate site-directed assembly at the spectrin-actin junction.
J. Biol. Chem. 263:5860–5869.
38. Gardner, K., and V. Bennett. 1987. Modulation of spectrinactin assembly by
erythrocyte adducin. Nature. 328:359–362.
39. Mische, S.M., M.S. Mooseker, and J.S. Morrow. 1987. Erythrocyte adducin: a
calmodulin-regulated actin-bundling protein that stimulates spectrin-actin binding.
J. Cell Biol. 105:2837–2845.
40. Taylor, K.A., and D.W. Taylor. 1994. Formation of two-dimensional complexes
of F-actin and crosslinking proteins on lipid monolayers: demonstration of
unipolar alpha-actinin-Factin crosslinking. Biophys. J. 67:1976–1983.
41. Kuhlman, P.A., C.A. Hughes, V. Bennett, and V.M. Fowler 1996. A new
function for adducin, calcium:calmodulin regulated capping of the barbed ends of
actin filaments. J. Biol. Chem. 271:7986–7991.
42. Gardner, K., and V. Bennett. 1988. Erythrocyte adducin: a new calmodulin
regulated membrane-skeletal protein that modulates spectrin-actin assembly. In:
Signal Transduction in Cytoplasmic Organization and Cell Motility. pp. 293–311.
43. Cohen, C.M., J.M. Tyler, and D. Branton. 1980. Spectrinactin associations
studied by electron microscopy of shadowed preparations. Cell. 21:875–883.
44. Derick, L.H., S.C. Liu, A.H. Chishti, and J. Palek. 1992. Protein
immunolocalization in the spread erythrocyte membrane skeleton.
Eur. J. Cell Biol. 57:317–320.
45. Nehls, V., D. Drenckhahn, R. Joshi, and V. Bennett. 1991. Adducin in erythrocyte
precursor cells of rats and humans: expression and compartmentalization.
Blood. 78:1692–1696.
46. Gilligan, D.M., L. Lozovatsky, B. Gwynn, C. Brugnara, N. Mohandas, and L.L.
Peters. 1999. Targeted disruption of the beta adducin gene (Add2) causes red
blood cell spherocytosis in mice. Proc. Natl. Acad. Sci. U S A. 96:10717–10722.
47. Kaiser, H. W., E. O’Keefe, and V. Bennett. 1989. Adducin: Ca2--dependent
association with sites of cell-cell contact. J. Cell Biol. 109:557–569.
48. Seidel, B., W. Zuschratter, H. Wex, C.C. Garner, and E.D. Gundelfinger. 1995.
Spatial and sub-cellular localization of the membrane cytoskeleton-associated
protein alpha-adducin in the rat brain. Brain Res. 700:13–24.
49. Schengrund, C.L., B.R. DasGupta, C.A. Hughes, and N.J. Ringler. 1996.
Ganglioside-induced adherence of botulinum and tetanus neurotoxins to adducin.
J. Neurochem. 66:2556–2561.
50. Eidels, L., R.L. Proia, and D.A. Hart. 1983. Membrane Receptors for Bacterial
Toxins. Microbiol. Rev. 47:596–620.
51. Miyazaki, M., H. Shirataki, H. Kohno, K. Kaibuchi, A. Tsugita, and Y. Takai.
1994. Identification as beta-adducin of a protein interacting with rabphilin-3A in
the presence of Ca2- and phosphatidylserine. Biochem. Biophys. Res. Commun.
205:460–466.
52. Burns, M.E., T. Sasaki, Y. Takai, and G.J. Augustine. 1998. Rabphilin-3A: a
multifunctional regulator of synaptic vesicle traffic. J. Gen. Physiol. 111:243–255.
53. Bianchi, G., M.G. Tripodi, G. Casari, L. Torielli, D. Cusi, C. Barlassina, P. Stella,
L. Zagato, and B.R. Barber. 1995. Alpha-adducin may control blood pressure both
in rats and humans. Clin. Exp. Pharmacol. Physiol. Suppl. 22:S7–S9.
54. Manunta, P., C. Barlassina, and G. Bianchi 1998. Adducin in essential
hypertension. FEBS Lett. 430:41–44.
55. Cusi, D., C. Barlassina, T. Azzani, G. Casari, L. Citterio, M. Devoto, N. Glorioso,
C. Lanzani, P. Manunta, M. Righetti, et al. 1997. Polymorphisms of alpha-adducin
and salt sensitivity in patients with essential hypertension. Lancet.
349:1353–1358.
56. Fowler, V. M. 1996. Regulation of actin filament length in erythrocytes and
striated muscle. Curr. Opin. Cell Biol. 8:86–968.
57. Abdi, K.M., and V. Bennett. 2008. Adducin Promotes Micrometer-Scale
Organization of {beta}2-Spectrin in Lateral Membranes of Bronchial Epithelial
Cells. Mol. Biol. Cell. 19:536–545.
58. Pariser, H., G. Herradon, L. Ezquerra, P. Perez-Pinera, T.F. Deuel. 2005.
Pleiotrophin regulates serine phosphorylation and the cellular distribution of
beta-adducin through activation of protein kinase C.
Proc. Natl. Acad. Sci. U S A. 102:12407–12412.
59. Pinto-Correia, C., E.G. Goldstein, V. Bennett, and J.S. Sobel. 1991.
Immunofluorescence localization of an adducin-like protein in the chromosomes
of mouse oocytes. Dev. Biol. 146:301–311.
60. Ivanov, D.B., M.P. Philippova, and V.A. Tkachuk. 2001. Structure and functions
of classical cadherins. Biochemistry (Mosc). 66:1174–186.
61. Balda, M.S., and K. Matter. 2003. Epithelial cell adhesion and the regulation of
gene expression. Trends Cell Biol. 13:310–318.
62. Huber, O., R. Korn, J. McLaughlin, M. Ohsugi, B.G. Herrmann, and R. Kemler.
1996. Nuclear localization of β-catenin by interaction with transcription factor
LEF-1. Mech. Dev. 59:3–10.
63. van Hengel, J., P. Vanhoenacker, K. Staes, and F. van Roy. 1999. Nuclear
localization of the p120(ctn) Armadillo-like catenin is counteracted by a nuclear
export signal and by E-cadherin expression. Proc. Natl. Acad. Sci. U S A.
96:7980–7985.
64. Aberle, H., A. Bauer, J. Stappert, A. Kispert, and R. Kemler. 1997. Beta-catenin is
a target for the ubiquitin-proteasome pathway. EMBO J. 16:3797–3804.
65. He, T.C., A.B. Sparks, C. Rago, H. Hermeking, L. Zawel, L.T. da Costa, P.J.
Morin, B. Vogelstein, and K.W. Kinzler. 1998. Identification of c-MYC as a target
of the APC pathway. Science. 281:1509–1512.
66. Tetsu, O., and F. McCormick. 1999. Beta-catenin regulates expression of cyclin
D1 in colon carcinoma cells. Nature. 398:422–426.
67. Gradl, D., A. König, and D. Wedlich. 2002. Functional diversity of Xenopus
lymphoid enhancer factor/T-cell factor transcription factors relies on combinations
of activating and repressing elements. J. Biol. Chem. 277:14159–14171.
68. Balda, M.S., and K. Matter. 2000. The tight junction protein ZO-1 and an
interacting transcription factor regulate ErbB-2 expression. EMBO J.
19:2024–2033.
69. Troyer,K.L., and D.C. Lee. 2001. Regulation of mouse mammary gland
development and tumorigenesis by the ERBB signaling network. J. Mammary
Gland Biol. Neoplasia. 6:7–21.
70. Balda, M.S., M.D. Garrett, and K. Matter. 2003. The ZO-1 associated Y-box
factor ZONAB regulates epithelial proliferation and cell density. J. Cell Biol.
160:423–432.
71. Boito, R., M. Menniti, R. Amato, C. Palmieri, C. Marinaro, R. Iuliano, G. Tripodi,
D. Cusi, G. Fuiano, and N. Perrotti. 2005. RFX-1, a putative alpha Adducin
interacting protein in a human kidney library. FEBS Lett. 579:6439–6443.
72. Reinhold, W., L. Emens, A. Itkes, M. Blake, I. Ichinose, and M. Zajac-Kaye.
1995. The myc intron-binding polypeptide associates with RFX1 in vivo and
binds to the major histocompatibility complex class II promoter region, to the
hepatitis B virus enhancer, and to regulatory regions of several distinct viral
genes. Mol. Cell Biol. 15:3041–3048.
73. Zajac-Kaye, M., E.P. Gelmann, and D. Levens. 1988. A point mutation in the
c-myc locus of a Burkitt lymphoma abolishes binding of a nuclear protein.
Science. 240:1776–1780.
74. Agami, R., and Y. Shaul. 1998. The kinase activity of c-Abl but not v-Abl is
potentiated by direct interaction with RFX1, a protein that binds the enhancers of
several viruses and cell-cycle regulated genes. Oncogene. 16:1779–1788.
75. Liu, M., B.H. Lee, and M.B. Mathews. 1999. Involvement of RFX1 protein in the
regulation of the human proliferating cell nuclear antigen promoter. J. Biol. Chem.
274:15433–15439.
76. Sengupta, P.K., M. Ehrlich, and B.D. Smith. 1999. A methylationresponsive
MDBP/RFX site is in the first exon of the collagen alpha2 (I) promoter. J. Biol.
Chem. 274:36649–36655.
77. Cingolani, G., C. Petosa, K. Weis, and C.W. Müller. 1999. Structure of
importin-beta bound to the IBB domain of importin-alpha. Nature. 399:221–229.
78. Palacios, I., M. Hetzer, S.A. Adam, and I.W. Mattaj. 1997. Nuclear import of U
snRNPs requires importin β. EMBO J. 16:6783–6792.
79. Huber, J., U. Cronshagen, M. Kadokura, C. Marshallsay, T. Wada, M. Sekine, and
R. Lührmann. 1998. Snurportin1, an m3G-cap-specific nuclear import receptor
with a novel domain structure. EMBO J. 17:4114–4126.
80. Cingolani, G., J. Bednenko, M.T. Gillespie, and L. Gerace. 2002. Molecular basis
for the recognition of a nonclassical nuclear localization signal by importin beta.
Mol. Cell. 10:1345–1353.
81. Bonifaci, N., J. Moroianu, A. Radu, and G. Blobel. 1997. Karyopherin beta2
mediates nuclear import of a mRNA binding protein. Proc. Natl. Acad. Sci.
U S A. 94:5055–5060.
82. Lange, A., R.E. Mills, C.J. Lange, M. Stewart, S.E. Devine, and A.H. Corbett.
2007. Classical nuclear localization signals: definition, function, and interaction
with importin alpha. J. Biol. Chem. 282:5101–5105.
83. Fornerod, M., M. Ohno, M. Yoshida, and I.W. Mattaj. 1997. CRM1 is an export
receptor for leucine-rich nuclear export signals. Cell. 90:1051–1060.
84. Matsuura, Y., and M. Stewart. 2004. Structural basis for the assembly of a nuclear
export complex. Nature. 432:872–877.
85. Aperia, A.C. 2000. Intrarenal dopamine: a key signal in the interactive regulation
of sodium metabolism. Annu. Rev. Physiol. 62:621–647.
86. Chibalin, A.V., G. Ogimoto, C.H. Pedemonte, T.A. Pressley, A.I. Katz,
E. Feraille, P.O. Berggren, and A.M. Bertorello. 1999. Dopamine induced
endocytosis of Na ,K -ATPase is initiated by phosphorylation of Ser-18 in the rat
α-subunit and is responsible for the decreased activity in epithelial cells. J. Biol.
Chem. 274:1920–1927.
87. Done, S.C., I.B. Leibiger, R. Efendiev, A.I. Katz, B. Leibiger, P.O. Berggren,
C.H. Pedemonte, and A.M. Bertorello. 2002. Tyrosine 537 within the Na+,
K+-ATPaseα subunit is essential for AP-2 binding and clathrin-dependent
endocytosis. J. Biol. Chem. 277:17108–17111.
88. Ogimoto, G., G.A. Yudowski, C.J. Barker, M. Kohler, A.I. Katz, E. Feraille, C.H.
Pedemonte, P.O. Berggren, and A.M. Bertorello. 2000. G-protein coupled
receptors regulate Na+, K+-ATPase activity and endocytosis by modulating the
recruitment of adaptor protein 2 and clathrin. Proc. Natl. Acad. Sci. USA.
97:3242–3247.
89. Kirchhausen, T. 2000. Three ways to make a vesicle. Nat. Rev. Mol. Cell Biol.
3:187–198.
90. Efendiev, R., R.T. Krmar, I.B. Leibiger, G. Ogimoto, J. Zwiller, G. Tripodi, A.I.
Katz, G. Bianchi, C.H. Pedemonte, and A.M. Bertorello. 2004.
Hypertension-linked mutation in the adducin α-subunit affects AP2-μ2
phosphorylation and impairs Na+,K+-ATPase endocytosis. Circ. Res.
95:1100 –1108.
91. Matsuoka, Y., X. Li, and V. Bennett. 2000. Adducin: structure, function and
regulation. Cell. Mol. Life Sci. 57:884–895.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top