跳到主要內容

臺灣博碩士論文加值系統

(3.236.68.118) 您好!臺灣時間:2021/08/04 20:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳忠偉
研究生(外文):Chung-wei Chen
論文名稱:不同光適應性植物之葉綠素螢光特性探討
論文名稱(外文):The characteristics of chlorophyll fluorescence of sun and shade plants.
指導教授:翁仁憲翁仁憲引用關係
指導教授(外文):Jen-Sheng Weng
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:101
中文關鍵詞:葉綠素螢光光適應性陽性陰性蕨類
外文關鍵詞:chlorophyll fluorescencelight acclimationsun plantsshade plantspteridophytes
相關次數:
  • 被引用被引用:3
  • 點閱點閱:248
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
因為對光照環境適應性的不同,植物可大致區分為偏好生長於高光下的陽性植物及可生長於低光下的耐陰性植物。為比較不同光度適應性的木本與蕨類植物間,其葉綠素螢光參數的差異。以四種木本植物,即台灣二葉松(Pinus taiwanesis Hayata , 陽性)、相思樹(Acacia confusa Merr. , 陽性)、正榕(Ficus microcarpa Lf. , 中間)、竹柏(Decussocarpus nagi (Thunb.) de Laub. , 耐陰性)為材料,而蕨類植物則為石葦(Pyrrosia lingus (Thunb.) Farw. , 陽性)、山蘇花(Asplenium antiquum Makino , 中間)、細柄雙蓋蕨(Diplazium donianum (Mett.) Tard.-Blot. , 陰性)、以及台灣原始觀音座蓮(Archangiopteris somai Hayata , 陰性)為材料,每種植物又分三組培養在三種不同強度之光度下,各為100 %日照、50 %日照及10 %日照。唯兩種耐陰性蕨類不能在強光下生長,故細柄雙蓋蕨只培養於50 %與10 %日照下,台灣原始觀音座蓮只培養於10 %日照下。結果發現,木本植物的光化學效率(ΔF/Fm′)大致較蕨類高,不同光適應性的木本植物間其ΔF/Fm′的差異不顯著,而陽性蕨類之ΔF/Fm′則較耐陰性蕨類高。陽性蕨類在在低光照下測定時因為ΔF/Fm′較高,類囊體膜內氫離子濃度啓動的消散(qE)較陰性蕨類低。在相同ΔF/Fm′值下比較時,大致以木本植物的NPQ較蕨類高。唯在相同光度下比較時,則以偏耐陰性的植物高。另外不論物種之光適應性及其生長日照之強弱,qE與測定光照開始2分鐘的NPQ呈正相關,表示qE在短期內即能引起。光傷害的部份(qI)則與光照30分鐘的NPQ減去2分鐘的NPQ的差值呈正相關,表示照光2分鐘以後所增加的NPQ為光傷害所引起。將所有供試材料合併分析時,光傷害的部份(NPQs)與NPQ之間亦呈正相關。但NPQ中可快速回復部份(NPQf)的增加與NPQ上升的關係則因物種而異。台灣二葉松、相思樹與除了台灣原始觀音座蓮以外的蕨類,其NPQf的增加與NPQ上升的趨勢大致一致,而榕樹、竹柏則其NPQf隨NPQ上升的增加量較少,顯示陰性木本植物NPQ的增加量之中,為NPQf所佔的比例較少,NPQs佔的比例較多。而陽性或生長於高日照者,其NPQf佔NPQ的比例較高,因此NPQs較少。由以上結果可知,陽性植物由於光化學效率及非光化學消散均較耐陰性植物高,因此光傷害較耐陰性植物少。而生長於高日照者會有偏陽性植物的表現,生長於低日照者有偏耐陰性植物的表現。此外亦發現木本植物的光化學效率較蕨類高,NPQ及NPQs則較低。而陰性的台灣原始觀音座蓮的NPQ值最高,而且幾乎為光傷害所致。可見耐陰性的蕨類植物受光傷害的程度遠大於耐陰性木本植物,因此耐陰性木本植物尚可在高日照下生存,而耐陰性蕨類植物則否。
Due to the difference of light acclimaiton, plants could be broadly divided into sun and shade tolerant plants. To compare the difference in chlorophyll fluorescence between woody plants and pteridophytes grow under different light environments, four species of woody plants (Pinus taiwanensis, Acacia confusa, Ficus microcarpa and Decussocarpus nagi.) and four species of pteridophytes (Pyrrosia lingus, Asplenium antiquum, Diplazium donianum and Archangiopteris somai.) were incubated under 100%, 50% and 10% sunlight more than a month. The efficiency of photosystem II photochemistry (ΔF/Fm′) of woody plants were higher than that of pteridophytes, no significant difference could be found between the woody plants with different light acclimation, while ΔF/Fm′ of sun pteridophytes was higher than that of shade tolerant pteridophytes. Due to the higher ΔF/Fm′ in sun pteridophytes, their non-photochemical quenching which is triggered by the cumulation of massive protons in lumen (qE) was lower in sun pteridophytes under lower actinic light. Under the same of ΔF/Fm′, the non-photochemical quenching (NPQ) of woody plants was higher than that of pteridophytes. Under the same level of artificial light, the NPQ of shade tolerant plants was higher then sun plants. Regardless of the difference in light acclimation ability among species and the light intensity of them were acclimated, qE was correlated positively with the NPQ measured after 2 minutes of irradiation. This result indicated that qE could be induced in a extremely short time. On the contrary, photoinhibition (qI) was correlated positively with the increase of NPQ measured during the irradiation from 2 minutes to 30 minutes. This result indicated that the increase of NPQ contained a large proportion of qI. Regardless of species, the protion of photoinhibition in NPQ (NPQs) was correlated positively with NPQ. However, the relationship between rapid recovery of NPQ (NPQf) and NPQ was varied with species. Because sun plants or the plants incubated under high light had higher ΔF/Fm′and NPQf then shade tolerance plants or plants incubated undner low light, thus the former showed lower degree of photoinhibition. The shade tolerant pteridophytes could not survive under 100% or 50% sunlight, probably, due to the higer degree of photoinhibition.
目 次
前言............................................................................................................................1
前人研究....................................................................................................................4
第一章 不同光度適應性蕨類植物之葉綠素螢光特性與比較
摘要............................................................................................................................6
一、前言....................................................................................................................8
二、材料與方法
(一)材料...............................................................................................................10
(二)方法...............................................................................................................10
三、結果..................................................................................................................13
四、討論..................................................................................................................31
第二章 不同光度適應性的木本與蕨類植物之葉綠素螢光特性與比較
摘要..........................................................................................................................39
一、前言..................................................................................................................41
二、材料與方法
(一)材料...............................................................................................................43
(二)方法...............................................................................................................43
三、結果..................................................................................................................46
四、討論..................................................................................................................64

參考書目..................................................................................................................70

















圖表目次
第一章 不同光度適應性蕨類植物之葉綠素螢光特性與比較
圖1-1. 生長於100%(○)、50%(♁)、及10%日照(●)下的石葦( Pyrrosia lingus)、山蘇花(Asplenium antiquum)、細柄雙蓋蕨( Diplazium donianum)以及台灣原始觀座蓮(Archangiopteris somai)在光照前處理之Fv/Fm,在100、500及2000 μmol m-2 s-1等強度光照下 30分鐘的ΔF/Fm′,以及在光照後30分鐘後,再暗處理30分鐘的 Fv/Fm值的變化。.........................................................................................14
圖1-2. 生長於100%(○)、50%(♁)、及10%日照(●)下的石葦( Pyrrosia lingus)、山蘇花(Asplenium antiquum)、細柄雙蓋蕨( Diplazium donianum)以及台灣原始觀座蓮(Archangiopteris somai)在100、500及2000 μmol m-2 s-1等強度光照下30分鐘的electron transport rate (ETR)。................................................................................16
圖1-3. 生長於100%(○)、50%(♁)、及10%日照(●)下的石葦( Pyrrosia lingus)、山蘇花(Asplenium antiquum)、細柄雙蓋蕨( Diplazium donianum)以及台灣原始觀座蓮(Archangiopteris somai)在100、500及2000 μmol m-2 s-1等強度光照下30分鐘的D。..............17
圖1-4. 生長於100%(○)、50%(♁)、及10%日照(●)下的石葦( Pyrrosia lingus)、山蘇花(Asplenium antiquum)、細柄雙蓋蕨( Diplazium donianum)以及台灣原始觀座蓮(Archangiopteris somai)在100、500及2000 μmol m-2 s-1等強度光照下30分鐘的E。..............19
圖1-5. 生長於100%(○)、50%(♁)、及10%日照(●)下的石葦( Pyrrosia lingus)、山蘇花(Asplenium antiquum)、細柄雙蓋蕨( Diplazium donianum)以及台灣原始觀座蓮(Archangiopteris somai)在100、500及2000 mol μm-2 s-1等強度光照下30分鐘的NPQ,以及在光照後30分鐘後,再暗處理30分鐘的NPQ值的變化。.....................20
圖1-6. 生長於100%(○)、50%(♁)、及10%日照(●)下的石葦( Pyrrosia lingus)、山蘇花(Asplenium antiquum)、細柄雙蓋蕨( Diplazium donianum)以及台灣原始觀座蓮(Archangiopteris somai)在100、500及2000 μmol m-2 s-1等強度光照下30分鐘的Fm′,以及在光照後30分鐘後,再暗處理30分鐘的Fmd相對於光照前測得Fm值的變化Fm%。.................................................................................................22
圖1-7. 生長於100%(□)、50%(▨)、及10%日照(▩)下的石葦( Pyrrosia lingus , Pl)、山蘇花(Asplenium antiquum , Aa)、細柄雙蓋蕨(Diplazium donianum , Dd)以及台灣原始觀座蓮(Archangiopteris somai , As)在經100、500及2000 μmol m-2 s-1等強度光照處理30分鐘後的qE值。..........................................................................................23
圖1-8. 生長於100%(□)、50%(▨)、及10%日照(▩)下的石葦( Pyrrosia lingus , Pl)、山蘇花(Asplenium antiquum , Aa)、細柄雙蓋蕨(Diplazium donianum , Dd)以及台灣原始觀座蓮(Archangiopteris somai , As)在經100、500及2000 μmol m-2 s-1等強度光照處理30分鐘後的qI值。...........................................................................................26
圖1-9. 生長於100%(□)、50%(▨)、及10%日照(▩)下的石葦( Pyrrosia lingus , Pl)、山蘇花(Asplenium antiquum , Aa)、細柄雙蓋蕨(Diplazium donianum , Dd)以及台灣原始觀座蓮(Archangiopteris somai , As)在經100、500及2000 μmol m-2 s-1等強度光照處理30分鐘後的qE(SV)值。...................................................................................28
圖1-10. 生長於100%(□)、50%(▨)、及10%日照(▩)下的石葦( Pyrrosia lingus , Pl)、山蘇花(Asplenium antiquum , Aa)、細柄雙蓋蕨(Diplazium donianum , Dd)以及台灣原始觀座蓮(Archangiopteris somai , As)在經100、500及2000 μmol m-2 s-1等強度光照處理30分鐘後的qI(SV)值。....................................................................................29
圖1-11. 生長於100%(○)、50%(♁)、及10%日照(●)下的石葦( Pyrrosia lingus , Pl ,△)、山蘇花(Asplenium antiquum , Aa , ▽)、細柄雙蓋蕨(Diplazium donianum , Dd , ○)以及台灣原始觀座蓮( Archangiopteris somai , As , □),在測定光照開始2分鐘時的NPQ值與qE之關係,及在測定光照2分鐘到30分鐘的期間,NPQ增加值與 qI之關係。...................................................................................................30
第二章 不同光度適應性的木本與蕨類植物之葉綠素螢光特性與比較
圖2-1. 生長於100%(□)、50%(▨)、及10%日照(▩)下的台灣二葉松( Pinus taiwanensis , Pt)、相思樹(Acacia confusa ,Ac)、榕樹(Ficus microcarpa , Fm)、竹柏(Decussocarpus nagi , Dn)、石葦( Pyrrosia lingus , Pl)、山蘇花(Asplenium antiquum , Aa)、細柄雙蓋蕨( Diplazium donianum , Dd)及台灣原始觀音座蓮(Archangiopteris somai , As),之葉綠素(Chl)a、b組成。I:SE(n=4)。......................47
圖2-2. 生長於100%(□)、50%(▨)、及10%日照(▩)下的台灣二葉松( Pinus taiwanensis , Pt)、相思樹(Acacia confusa ,Ac)、榕樹(Ficus microcarpa , Fm)、竹柏(Decussocarpus nagi , Dn)、石葦(Pyrrosia lingus , Pl)、山蘇花(Asplenium antiquum , Aa)、細柄雙蓋蕨( Diplazium donianum , Dd)及台灣原始觀音座蓮(Archangiopteris somai , As)之可溶性蛋白質(soluble proteins)含量。I:SE(n=4)。..48
圖2-3. 生長於100%(□)、50%(▨)、及10%日照(▩)下的台灣二葉松( Pinus taiwanensis , Pt)、相思樹(Acacia confusa ,Ac)、榕樹(Ficus microcarpa , Fm)、竹柏(Decussocarpus nagi , Dn)、石葦(Pyrrosia lingus , Pl)、山蘇花(Asplenium antiquum , Aa)、細柄雙蓋蕨( Diplazium donianum , Dd)及台灣原始觀音座蓮(Archangiopteris somai , As)之類葫蘿素(carotenoids)含量。I:SE(n=4)。.................49
圖2-4. 生長於100%(○)、50%(♁)、及10%(●)日照強度下的台灣二葉松(Pinus taiwanensis)、相思樹(Acacia confusa)、榕樹(Ficus microcarpa)、竹柏(Decussocarpus nagi)、石葦(Pyrrosia lingus)、山蘇花(Asplenium antiquum)、細柄雙蓋蕨(Diplazium donianum)以及台灣原始觀座蓮(Archangiopteris somai)在光照前暗處理之Fv/Fm及依序經200、400、800、1200及2000 μmol m-2 s-1等光度照射20分鐘後的ΔF/Fm′值變化。I:SE(n=4)。....................................................50
圖2-5. 生長於100%(○)、50%(♁)、及10%(●)日照強度下的台灣二葉松(Pinus taiwanensis)、相思樹(Acacia confusa)、榕樹(Ficus microcarpa)、竹柏(Decussocarpus nagi)、石葦(Pyrrosia lingus)、山蘇花(Asplenium antiquum)、細柄雙蓋蕨(Diplazium donianum)以及台灣原始觀座蓮(Archangiopteris somai)依序經200、400、800、1200及2000 μmol m-2 s-1等光度照射20分鐘後,其所吸收的光能經天線消散的比例(D)之變化。I:SE(n=4)。...................................................52
圖2-6. 生長於100%(○)、50%(♁)、及10%(●)日照強度下的台灣二葉松(Pinus taiwanensis)、相思樹(Acacia confusa)、榕樹(Ficus microcarpa)、竹柏(Decussocarpus nagi)、石葦(Pyrrosia lingus)、山蘇花(Asplenium antiquum)、細柄雙蓋蕨(Diplazium donianum)以及台灣原始觀座蓮(Archangiopteris somai)依序經200、400、800、1200及2000 μmol m-2 s-1等光度照射20分鐘後,其所吸收的光能中為過剩光能的比例(E)之變化。I:SE(n=4)。................................................53
圖2-7. 在各光照強度生長之台灣二葉松(Pinus taiwanensis , Pt)、相思樹( Acacia confusa ,Ac)、榕樹(Ficus microcarpa , Fm)、竹柏( Decussocarpus nagi , Dn)、石葦(Pyrrosia lingus , Pl)、山蘇花( Asplenium antiquum , Aa)、細柄雙蓋蕨(Diplazium donianum , Dd)、台灣原始觀音座蓮(Archangiopteris somai , As)等8物種在各測定光度下其所吸收光能中天線消散的比例(D)與光合作用所能利用的比例(P)間之關係(圖A)以及其所吸收光能中過剩能量的比例(E)與P間之關係(圖B)。* 、**、***及NS:各為P<0.05、P<0.01、P<0.001及不顯著。....................................................................................................54
圖2-8. 生長於100%(○)、50%(♁)、及10%(●)日照強度下的台灣二葉松(Pinus taiwanensis)、相思樹(Acacia confusa)、榕樹(Ficus microcarpa)、竹柏(Decussocarpus nagi)、石葦(Pyrrosia lingus)、山蘇花(Asplenium antiquum)、細柄雙蓋蕨(Diplazium donianum)以及台灣原始觀座蓮(Archangiopteris somai)依序經200、400、800、1200及2000 μmol m-2 s-1等光度照射20分鐘後,其開啓的反應中心的比例( qP)之變化。I:SE(n=4)。.................................................................56
圖2-9. 生長於100%(○)、50%(♁)、及10%(●)日照強度下的台灣二葉松(Pinus taiwanensis)、相思樹(Acacia confusa)、榕樹(Ficus microcarpa)、竹柏(Decussocarpus nagi)、石葦(Pyrrosia lingus)、山蘇花(Asplenium antiquum)、細柄雙蓋蕨(Diplazium donianum)以及台灣原始觀座蓮(Archangiopteris somai)依序經200、400、800、1200及2000 μmol m-2 s-1等光度照射20分鐘後,其非光化學消散(NPQ)之變化。I:SE(n=4)。..............................................................................58
圖2-10. 在不同日射強度下生長之台灣二葉松(Pinus taiwanensis , Pt)、相思樹(Acacia confusa ,Ac)、榕樹(Ficus microcarpa , Fm)、竹柏( Decussocarpus nagi , Dn)、石葦(Pyrrosia lingus , Pl)、山蘇花( Asplenium antiquum , Aa)、細柄雙蓋蕨(Diplazium donianum , Dd)及台灣原始觀音座蓮(Archangiopteris somai , As)等8物種在各測定光照下其NPQ與ΔF/Fm′間之關係。* 、**、***及NS:各為P<0.05、P<0.01、P<0.001及不顯著。......................................................................61
圖2-11. 生長於100%(空心)、50%(單斜線)、10%(雙斜線)日照強度下的台灣二葉松(Pinus taiwanensis , Pt)、相思樹(Acacia confusa ,Ac)、榕樹(Ficus microcarpa , Fm)、竹柏(Decussocarpus nagi , Dn)、石葦(Pyrrosia lingus , Pl)、山蘇花(Asplenium antiquum , Aa)、細柄雙蓋蕨(Diplazium donianum , Dd)及台灣原始觀音座蓮( Archangiopteris somai , As),在結束照光,經15分鐘的暗回復後,非光化學消散中快速回復(NPQf)與緩慢回復(NPQs)部份的比較。 I:SE(n=4)。..............................................................................................62
圖2-12. 在各光照強度生長之台灣二葉松(Pinus taiwanensis , Pt)、相思樹( Acacia confusa ,Ac)、榕樹(Ficus microcarpa , Fm)、竹柏( Decussocarpus nagi , Dn)、石葦(Pyrrosia lingus , Pl)、山蘇花( Asplenium antiquum , Aa)、細柄雙蓋蕨(Diplazium donianum , Dd)及台灣原始觀音座蓮(Archangiopteris somai , As)等8物種在不同光度下測時,其NPQf與NPQ間之關係(圖A)以及各供試植物其NPQs與NPQ間之關係(圖B)。* 、**、***及NS:各為P<0.05、P<0.01、P<0.001及不顯著。......................................................................................63
陳耀南。2004。不同生態習性植物之葉綠素螢光特性。國立中興大學生命科學系碩士論文,50-53。
Adams, W.W. and Barker, D.H. (1998). Seasonal changes in xanthophyll cycle-dependent energy dssipation in Yucca glauca nuttall. Plant Cell and Environment 21 , 501-511.
Anderson, J.M., Chow, W.S., Park, Y.I., Franklin, L.A., Robinson, S.P.-A. and van Hasselt, P.R. (2001). Response of Tradescantia albiflora to growth irradiance: change versus changeability. Photosynthesis Research 67 , 103-112.
Ashton, P.M.S. and Berlyn, G.P. (1994). A comparison of leaf physiology and anatomy of Quercus (section Erythrobalanus-Fagaceae) species in different light environments. American Journal of Botany 81 , 589-597.
Ballottari, M., Dall''Osto, L., Morosinotto, T. and Bassi, R.(2007). Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. The Journal of Biological Chemistry 12 , 8947-8958.
Bazzaz, F.A. and Carlson, R.W. (1982). Photosynthetic acclimation to variability in the light environment of early and late successional plants. Oecologia 54 , 313-316.
Bilger, W. and Björkman, O. (1990). Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynthesis Research 25 , 173-185.
Bugos, R.C. and Yamamoto, H.Y. (1996). Molecular cloning of violaxanthin de-epoxidase from romaine lettuce and expression in Escherichia coli. Proceedings of the National Academy of Sciences of the United States of America 93 , 6320-6325.
Caffarri, S., Croce, R., Breton, J. and Bassi, R. (2001). The major antenna complex of Photosystem II has a xanthophyll binding site not involved in light harvesting. The Journal of Biological Chemistry 276 , 35924-35933.
Cai, S.Q. and Xu, D.Q. (2002). Light intensity-dependent reversible down-regulation and irreversible damage of PSII in soybean leaves. Plant Science 163 , 847-853.
Dall''Osoto, L., Caffarri, S. and Bassi, R.(2005). A Mechanism of nonphotochemical energy dissipation, independent from PsbS, revealed by a conformational change in the antenna protein CP26. The Plant Cell 17 , 1217-1232.
Dall''Osto, L., Fiore, A., Cazzaniga, S., Giuliano, G. and Bassi, R. (2007). Different roles of alpha- and beta- branch xanthophylls in photosystem assembly and photoprotection. The Journal of Biological Chemistry 282 , 35056-35068.
Demmig-Adams, B., Adams, W. W. III, Barker, D. H., Logan, B. A., Bowling, D. R., and Verhoeven, A.S. (1996). Using chlorophyll fluorescence to assess the fraction of absorbed light allocated to thermal dissipation of excess excitation. Physiologia Plantarum 98 , 253-264.
Demmig-Adams, B., Ebbert, V., Mellman, D.L., Muech, K.E., Schaffer, L., Funk, C., Zarter, C.R. Adamska, I., Jansson, S. and Adams III, W.W. (2006). Modulation of PsbS and flexible vs sustained energy dissipation by light environment in different species. Physiologia Plantarum 127 , 670-680.
Einhorn, K.S., Rosenqvist, E. and Leverenz, J.W. (2004). Photoinhibition in seedlings of Fraxinus and Fagus under natural light conditions: implications for forest regeneration? Oecologia 140 , 241-251.
Evans, J.R. (1989). Photosynthesis and nitrogen relationships in leaves of C3 plants. Oecologia 78 , 9-19.
Evans, J.R. and Poorter, H. (2001). Photosynthetic acclimation of plants to growth irradiance: the relative importance of specific leaf area and nitrogen partitioning in maximizing carbon gain. Plant Cell and Environment 24 , 755-767.
Griffin, J.J., Ranney, T.G. and Pharr, D.M. (2004). Photosynthesis, chlorophyll fluorescence, and carbohydrate content of Illicium taxa grown under varied irradiance. The American Society for Horticultural Science 129 , 46-53.
Genty, B., Briantais, J. M. and Baker, N. R. (1989). The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta 990 , 87-92.
Golan, T., Müller-Moulé, P. and Niyogi, K.K. (2006). Photoprotection mutants of Arabidopsis thaliana acclimate to high light by increasing photosynthesis and specific antioxidants. Plant Cell and Environment 29 , 879-887.
Hikosaka, K., Kato, M. C. and Hirose, T. (2004). Photosynthesis rates and partitioning of absorbed light energy in photoinhibition leaves. Physiologia Plantarum 121 , 699-708.
Horton, P. and Hague, A. (1988). Studies on the induction of chlorophyll fluorescence in isolated barley protoplasts. IV: Resolution of non-photochemical quenching. Biochimica et Biophysica Acta 932 , 107-115.
Holt, N. E., Zigmantas, D., Valkunas, L., Li, X.-P., Niyogi, K. K. and Fleming, G. R. (2005). Carotenoid cation formation and the regulation of photosynthetic light harvesting. Science 307 , 433-436.
Johnson, G.N., Young, A.J., Scholes, J.D. and Horton, P. (1993). The dissipation of excess of excess excitation energy in British plant species. Plant Cell and Environment 16 , 673-679.
Kalituho, L., Beran, K.C. and Jahns, P. (2007). The transiently generated nonphotochemical quenching of excitation energy in Arabidopsis leaves is modulated by zeaxanthin. Plant Physiology 143 , 1861-1870.
Kato, M.C., Hikosaka, K. and Hirose, T. (2002). Photoinactivation and recovery of Photosystem II in Chenopodium album leaves grown at different levels of irradiance and nitrogen availability. Functional Plant Biology 29 , 787-795.
Kato, M.C., Hikosaka, K., Hirotsu, N., Makino, A. and Hirose, T. (2003).The excess light energy that is neither utilized in photosynthesis nor dissipated by photoprotective mechanisms determines the rate of photoinactivation in photosystem II. Plant Cell Physiology 44 , 318-325.
Kooten, O. V. and Snel, J. F. H. (1990). The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynthesis Research 25 , 147-150.
Kornyeyev, D., Holaday, A. S. and Logan, B. A. (2004). Minimisation of the photon energy absorbed by ‘closed’ reaction centers of photosystem 2 as a photoprotective strategy in higher plants. Photosynthetica 42 , 377-386.
Krause, G.H.(1988). Photoinhibition of photosynthesis: An evaluation of damaging and protective mechanisms. Plant Physiology 74 , 566-574.
Krinsky, N.I.(1998). The antioxidant and biological properties of the carotenoids. Annals of the New York Academy of Sciences 854 , 443-447.
Laisk, A., Oja, V., Brasulov, B., Ramma, H., Eichelmann, H., Kasparova, I., Pettai, H., Padu, E. and Vapaavuori, E.(2002). A computer-operated routine of gas exchange and optical measurements to diagnose photosynthetic apparatus in leaves. Plant Cell and Environment 25 , 923-943.
Li, X.P., Gilmore, A.M., Caffarri, S., Bassi, R., Golan, T., Kramer, D. and Niyogi, K.K.(2004).Regulation of photosynthetic light harvesting involves intrathylakoid lumen pH sensing by the PsbS protein. The Journal of Biological Chemistry 22 , 22866-22874.
Lichtenthaler, H. K., Buschmann, C. and Knapp, M. (2005). How to correctly determine the different chlorophyll fluorescence parameters and the chlorophyll fluorescence decrease ratio Rfd of leaves with the PAM fluorometer. Photosynthetica 43 , 379-393.
Le Roux, X., Walcroft, A.S., Daudet, F.A., Sinoquet, H., Chaves, M.M., Rodrigues, A. and Osorio, L. (2001). Photosynthetic light acclimation in peach leaves: Importance of changes in mass:area ratio, nitrogen concentration and leaf nitrogen partitioning. Tree Physiology 21 , 377-386
Maxwell, K. and Johnson, G.M. (2000). Chlorophyll fluorescence – a practical guide. Journal of Exerimental Botany 51, 659-668.
Mikko, T., Mirva, P., Marjaana, S., Sari, S., Paula, M., Julia, V., Alexander V, V., Yagut, A. and Eva-Mari, A. (2006). State transitions revisited—a buffering system for dynamic low light acclimation of Arabidopsis. Plant Molecular Biology 62 , 779-793.
Mitchell, A.K. (2001). Growth limitations for conifer regeneration under alternative silvicultural systems in a coastal montane forest in British Columbia, Canada. Forest Ecology and Management 145 , 129-36.
Morosinotto, T., Caffarri, S., Dall''Osoto, L. and Bassi, R.(2003). Mechanistic aspects of the xanthophyll dynamics in higher plant thylakoids. Physiologia Plantarum 119 , 347-354.
Muraoka, H., Tang, Y., Koizumi, H. and Washitani, I. (1997). Combined effects of light and water availability on photosynthesis and growth of Arisaema heterophyllum in the forest understory and an open site. Oecologia 112 , 26-34
Muraoka, H., Tang, Y., Koizumi, H. and Washitani, I. (2002). Effects of light and soil water availability on leaf photosynthesis and growth of Arisaema heterphyllum, a riparian forest understorey plant. Journal of Plant Research 115 , 419-427
Muthuchelian, K. (1992). Biomass productivity relative to net photosynthetic rate, ribulose-1,5-bisphosphate carboxylase activity, soluble protein and nitrogen contents in ten tree species. Plant Physiology 26 , 333-339.
Müller, P., Li, X.P. and Niyogi, K.K. (2001). Non-photochemical quenching. A response to excess light energy. Plant Physiology 125 , 1558-1566.
Naidu, S.L. and DeLucia, E.H. (1997). Acclimation of shade-developed leaves on saplings exposed to late-season canopy gaps. Tree Physiology 17 , 367-376
Niinemets, Ü. (1997). Role of foliar nitrogen in light harvesting and shade tolerance of four temperate deciduous woody species. Functional Ecology 11 , 518–531.
Niinemets, Ü. and Kull, O. (1994). Leaf weight per area and leaf size of 85 Estonian woody species in relation to shade tolerance and light availability. Forest Ecology and Management 70 , 1-10.
Niinemets, Ü. and Kull, O. (1998). Stoichiometry of foliar carbon constituents varies along light gradients in temperate woody canopies: Implications for foliage morphological plasticity. Tree Physiology 18, 467-479.
Niinemets, Ü. and Tenhunen, J.D. (1997). A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant Cell and Environment 20 , 845-866.
Niinemets, Ü. and Valladares, F. (2004). Photosynthetic acclimation to simultaneous and interacting environmental stresses along natural light gradients: optimality and constraints. Plant Biology 6 , 254-268.
Niyogi, K.K. (1999). Photoprotection revisited: Genetic and molecular approaches. Annual Review of Plant Physiology and Plant Molecular Biology 50 , 333-359.
Ögren, E. (1991). Prediction of photoinhibition of photosynthesis from measurements of fluoresce quenching components. Planta 184 , 538-544.
Oliveria, G. and Peñuelas, J. (2001). Allocation of absorbed light energy into photochemistry and dissipation in a semi-deciduous and an evergreen Mediterranean woody species during winter. Australian Journal of Plant Physiology 28 , 471-480.
Patterson, D.T., Bunce, J.A., Alberte, R.S. and Van Volkenburgh, E. (1977). Photosynthesis in relation to leaf characteristics of cotton from controlled and field environments. Plant Physiology 59(3) , 384-387.
Robakowski, P., Montpied, P. and Dreyer, E. (2003). Plasticity of morphological and physiological traits in response to different levels of irradiance in seedlings of silver fir (Abies alba Mill.). Trees 17 , 431-441.
Rosenqvist, E. (2001). Light acclimation maintains the redox state of the PS II electron acceptor QA within a narrow range over a broad range of light intensities. Photosynthesis Research 70 , 299–310.
Ruban, A.V., Lee, P.J., Wentworth, M., Young, A.J. and Horton, P. (1999). Determination of the stoichiometry and strength of binding of xanthophylls to the photosystem II light harvesting complexes. The Journal of Biological Chemistry 274 , 10458–10465.
Seemann, J.R., Sharkey, T.D.,Wang, J.L. and Osmond, B. (1987). Environmental effects on photosynthesis, nitrogen-use efficiency, and metabolite pools in leaves of sun and shade plants. Plant Physiology 84 , 796-802.
Solhaug, K.A. and Haugen, J. (1998). Seasonal variation of photoinhibiton of photosynthesis in bark from Populus tremula L. Photosynthetica 35 , 411-417.
Thomson, V.P., Cunningham, S.A., Ball, M.C. and Nicotra, A.B. (2004). Compensation for herbivory by Cucumis sativus through increased photosynthetic capacity and efficiency. Oecologia 134 , 167-175.
Valladares, F. and Pearcy R.W. (1997). Interactions between water stress, sun-shade acclimation, heat tolerance and photoinhibition in the schlerophyll Heteromeles arbutifolia. Plant Cell and Environment 20 , 25-36.
Valladares, F., Chico, J.M., Aranda, I., Balaguer, L., Dizengremel, P., Manrique, E. and Dreyer, E. (2002). The greater seedling high-light tolerance of Quercus robur over Fagus sylvatica is linked to a greater physiological plasticity. Trees 16 , 395-403.
Wagner, H., Gilbert, M., Goss, R. and Wilhelm, C. (2006).Light emission originating from photosystem II radical pair recombination is sensitive to zeaxanthin related non-photochemical quenching (NPQ). Journal of Photochemistry and Photobiology B: Biology 83 , 172-179.
Walters, R.G. and Horton, P. (1993). Theoretical assessment of alternative mechanisms for non-photochemical quenching of PS II fluorescence in barley leaves. Photosynthesis Research 46 , 119-139.
Weng, J.H. and Chen, C.Y. (1987). Differences between Indica and Japonica rice varieties in CO2 exchange rates in response to leaf nitrogen and temperature. Photosynthesis Research 14 , 171-178.
Xu, C.C., Li, L. and Kuang, T. (2000). Photoprotection in chilling-sensitive and -resistant plants illuminated at a chilling temperature: role of the xanthophyll cycle in the protection against lumen acidification. Australian Journal of Plant Physiology 27 , 669-675.
Yamamoto, H.Y., Nakayama, T.O.M. and Chichester, C.O. (1962). Studies on the light and dark interconversion of leaf xanthophylls. Archives of Biochemistry and Biophysics 97 , 168–173.
Yamashita, N., Ishida, A., Kushima, H. and Tanaka, N. (2000). Acclimation to sudden increase in light favoring an invasive over native trees in subtropical islands, Japan. Oecologia 125 , 412-419.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top