跳到主要內容

臺灣博碩士論文加值系統

(35.173.42.124) 您好!臺灣時間:2021/07/26 12:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:金煒智
研究生(外文):Wei-Chih Chin
論文名稱:濃縮糖蜜醱酵液微生物產氫之研究
論文名稱(外文):Biohydrogen producing from condensed molasses fermentation solubles
指導教授:黃介辰
指導教授(外文):Chieh-Chen Huang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:108
中文關鍵詞:Real-Time PCR專一性引子對微生物固定化褐藻酸鈉
外文關鍵詞:real-time PCRbio-hydrogenlive cell immobilization system
相關次數:
  • 被引用被引用:1
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在廢棄物處理及石油短缺成為問題的今天,許多國家都積極投入廢棄物處理技術及替代能源的開發領域。本研究可將廢棄物經過微生物醱酵反應進行生質能源生產,以達到清除污染與生產能源的兩利雙收之效。因傳統醱酵槽多在開放式環境下培養,而這樣的醱酵系統中菌種的多樣性,不但造成系統的最佳化穩定操作困難且無法有效保存菌種源。即使同屬的微生物之產氫能力也會因其菌種之不同而有所差異,甚至是同屬同種之菌種也會因其來自不同的分離源,屬於不同的菌株而有所不同。針對不同醱酵基質選出適合生長之優勢產氫及分解廢棄物能力的菌群,透過微生物生理與生化特性及共同醱酵檢測分析後,以得知一個優良醱酵產氫系統所需之培養條件等的參數。研究中透過 Real-Time PCR 技術搭配專一性引子對,應用於由Clostridium pasteurianum ATCC 6013+Clostridium sporosphaeroides ATCC 25781+Bacillus licheniformis KBL所組合的最佳醱酵系統時,能成功藉此技術偵測各優勢菌株之相對比例關係。
本研究同時利用微生物固定化技術將大量的產氫微生物包埋於褐藻酸鈉(Sodium alginate),藉此節省菌體合成時所需消耗的能量,並直接將碳源轉換成氫氣能源,進而提昇總產氫量。並且還可以重複利用此固定化微生物進行醱酵反應。固定化微生物的應用不僅節省微生物製劑的成本,也增加使用的安全性,更可提升系統效能與穩定氫氣產量。
Microbial production of bio-hydrogen, when enters into combination with the recycling of waste, not only can solve the waste problems, but also will create the potential to develop a new clean energy in the near future. As the general approach of environmental engineering for hydrogen production is made in an open system, the fermentation performed by mixed microflora with species diversity will make the system difficult to operate in a stable manner. Though the hydrogen-producing bacteria have been known as anaerobic hydrogen-producer, their productivity may differ from strain to strain.
Molecular biological approaches were developed to monitor the biohydrogen-producing clostridia in an anaerobic fermentation system that used condensed molasses fermentation solubles as the fermentation substrate. The method of real-time PCR using specific primer has been applied to quantify choose the high efficiency hydrogen-producing microbes of mixed culture systems in chemical degradation and hydrogen production. The dominate hydrogen-producing microbes will be study their microbiological, physiological and biochemical properties should be helpful to operate the system and elevate the hydrogen-producing efficiency. The live cell immobilization system, which with the live cell immobile carrier and fermentation bacteria, will be setup and produce hydrogen gas with high efficiency. The recycling live cell immobilization system not only can elevate the hydrogen-producing efficiency of the system, but also can apply a way for using the genetically modified bacteria more safety in the future.
目錄
中文摘要...................................................i
Abstract..................................................ii
目錄.....................................................iii
第一章 序論...............................................1
第一節 前言...............................................1
第二節 研究目的及策略.....................................3
第二章 文獻回顧及實驗原理.................................4
第一節 潔淨能源-氫能......................................4
一、基本特性.............................................4
二、氫氣的供應與製造.....................................5
(一) 天然氣甲烷製氫....................................5
(二) 電解水製氫........................................5
(三) 化石燃料製氫......................................5
(四) 光解製氫..........................................6
(五) 生質物(biomass)氣化製氫...........................6
(六) 生物法製氫........................................6
三、氫能源的優點.........................................7
(一) 氫氣熱量較石油大..................................7
(二) 氫氣轉換率較石油高................................7
(三) 氫氣安全性較石油高................................7
(四) 氫氣環保性較石油高................................8
第二節 生物產氫...........................................8
一、光合作用(Biophotolysis)..............................8
(一) 直接光分解作用....................................8
(二) 間接光分解作用....................................9
二、醱酵作用.............................................9
(一) 光醱酵產氫(Photofermentation).....................9
(二) 暗醱酵產氫 (Darkfermentation).....................9
三、厭氧醱酵產氫的機制和電子產生路徑....................10
(一) 厭氧醱酵的產氫機制...............................10
(二) 厭氧醱酵的電子產生路徑...........................11
四、Clostridi 屬細菌....................................12
五、Clostridium 屬細菌的產氫酶( 【Fe】 hydrogenase )....13
六、影響Clostridium屬細菌產氫的因素.....................14
七、能利用Glutamate產氫的微生物.........................15
第三節 即時定量PCR (Real-Time PCR).....................15
一、原理簡介............................................15
第四節 固定化細胞技術....................................16
一、固定化細胞的定義....................................16
二、固定化細胞的方法與分類..............................16
(一) 物理法...........................................16
(二) 化學法...........................................17
三、固定化細胞在反應器的操作上的優點....................18
第三章 材料方法..........................................19
第一節 實驗材料..........................................19
一、試樣................................................19
二、細菌菌種及質體......................................19
三、藥品及酵素..........................................19
四、培養基..............................................20
(一) Luria-Bertani(LB)broth.........................20
(二) LA medium........................................20
(三) Skim milk agar...................................20
(四) Starch agar ( pH 7.0 )...........................20
(五) PYG ( Peptone - Yeast extract – Glucose ) medium
(pH 7.0 ~ 7.2)...................................20
(六) Molasses medium (pH 7.0 ~ 7.2)...................21
(七) VR medium (pH 7.0)...............................22
五、試劑與緩衝溶液......................................22
(一) 抽取質體試劑.....................................23
(二) 抽取染色體DNA之試劑..............................23
(三) 聚合酶連鎖反應(PCR)之試劑........................23
(四) 一般核酸電泳試劑.................................23
(五) 高壓液相層析儀分析試劑...........................23
六、實驗中所使用的引子對................................23
七、即時及時聚合酵素鏈鎖反應條件及操作方法..............24
八、固定化材料..........................................24
第二節 實驗方法..........................................25
一、Medium配備..........................................25
(一) PYG (Peptone-Yeast extract-Glucose ) medium......25
(二) Molasses medium..................................26
(三) VR medium........................................27
二、DNA之製備...........................................27
(一) 質體DNA的抽取....................................27
(二) 染色體DNA之抽取..................................28
(三) 洋菜膠體電泳分析(agarose gel electrophoresis)..29
三、厭氧菌的培養........................................30
(一) 固態培養與純菌分離...............................30
(二) 從固態培養轉植至液態培養.........................30
(三) 厭氧缸培養.......................................31
(四) 菌種鑑定.........................................31
四、聚合酶連鎖反應(polymerase chain reaction, PCR)....32
(一) 以16S rRNA因為目標進行PCR........................33
五、質體之構築與選殖(cloning).........................33
(一) 限制酶的切割分析(restriction enzyme digestion).33
(二) DNA片段回收......................................33
(三) DNA的補齊(fill-in).............................34
(四) DNA的黏接反應(Ligation)........................35
(五) 細胞轉形作用(Transformation)...................35
(六) 藍白篩(Blue – white screen ) ...................36
(七) 快速質體篩選法...................................36
六、產氫菌培養之氣體測試................................37
七、氣相組成之分析......................................37
八、液相組成之分析......................................38
九、總醣測試............................................39
(一) 試藥.............................................39
(二) 實驗步驟.........................................39
十、還原醣的測試........................................40
(一) 標準曲線製作步驟.................................40
(二) 實驗步驟.........................................40
十一、有機酸測試........................................41
十二、固定化技術........................................41
(一) 固定化細胞之製備.................................41
(二) 固定化細胞擔體...................................42

第四章 實驗結果..........................................43
一、用於糖蜜醱酵產氫系統之菌株特性分析..................43
(一) 菌株Clostridium pasteurianum ATCC 6013...........43
(二) 菌株Clostridium sporosphaeroides ATCC 25781......44
(三) 菌株Bacillus licheniformis KBL...................45
二、利用不同組合純菌以糖蜜醱酵液為基質進行批次培養產氫能力
測試................................................46
三、以CSTR厭氧醱酵系統進行純菌培養的產氫能力測試........46
(一) 以C. pasteurianum ATCC 6013 及 C. sporosphaeroides
ATCC 2578 進行CSTR厭氧醱酵系.....................46
(二) 以C. pasteurianum ATCC 6013 、 C. sporosphaeroides
ATCC 2578 及Bacillus. licheniformis KBL進行CSTR厭氧
醱酵系統.........................................47
四、C. pasteurianum ATCC 6013 、 C. sporosphaeroides ATCC
25781及 B. licheniformis KBL 的引子設計及專一性測試.48
五、以Real-Time PCR技術分析模擬比例混合微生物之相對比例.48
六、固定化微生物結果測試................................49
(一) Clostridium屬細菌之重複批次實驗..................49
(二) 固定化微生物之重複批次試驗.......................49
(三) 顆粒大小和sodium alginate濃度測試................50
第五章 討論..............................................51
一、Bacillus licheniformis KBL 與 Clostridium
sporosphaeroides ATCC 25781 的共培養................51
二、Real-time PCR 技術應用上的瓶頸與改善................51
三、固定化細胞特性探討..................................52
第六章 結論...............................................54
一、總結................................................54
二、未來研究方向........................................55
(一) 以固定化技術突破CSTR醱酵系統優勢產氫微生物洗出
現象.............................................55
(二) Bacillus licheniformis 產氫酶轉殖................55
(三) Hydrogenase 之應用性.............................55

表目錄
表 3-1 聚合酶連鎖反應及即時定量PCR(Real-Time PCR)所使用的
引子及其核苷酸序列.................................57
表 3-2 固定化細胞的特性和選擇規範.........................58
表 4-1 利用不同的專一性引子對以Real-time PCR進行模擬比例
測試...............................................59
表4-2 Clostridium屬細菌的重複批次實驗.....................60
表4-3 固定化細胞在產氫醱酵過程的穩定性和耐久性測試........61
表5-1 會利用glutamate為碳源產生氫氣的微生物...............62
表5-2 螢光原位雜交技術的探針所用的條件....................63
表5-3 螢光原位雜交Clostridium sporosphaeroides 所使用之
探針................................................64
表5-4 探針Rbro730 序列和雜交條件..........................65

圖目錄
圖 2-1 生物產氫方法樹狀圖.................................66
圖 2-2 cyanobacteria中固氮酵素催化產氫和催化後產氫酵素之
氫氣攝取說明圖.....................................67
圖 2-3 Clostridium pasteurianum 醱酵路徑圖................68
圖 2-4 Enzyme of produce hydrogen during fermentation.....69
圖 2-5 吸附後再行交聯酵素固定化...........................70
圖 3-1 alginate 之結構式..................................71
圖 3-2 利用交聯法進行微生物固定化流程圖...................72
圖 3-3 利用解剖顯微鏡觀察單一顆粒包埋之結果...............73
圖 4-1 Clostridium pasteurianum ATCC 6013屬菌株乳酸代謝
產物測試...........................................74
圖 4-2 Clostridium pasteurianum ATCC 6013有機酸代謝
產物測試...........................................75
圖 4-3 Bacillus licheniformis KBL 菌株的分解能力測試......76
圖 4-4 以糖蜜醱酵液為基質進行批次培養.....................77
圖 4-5 利用不同組合純菌以糖蜜醱酵液為基質進行批次培養之
比產氫速率.........................................78
圖 4-6 CSTR(HRT=12h)厭氧醱酵產系統氫氣濃度變化情形........79
圖 4-7 CSTR(HRT=12h)厭氧醱酵產系統氫氣濃度變化情形........80
圖 4-8 Clostridium pasteurianum 16s rRNA 的專一性引子對...81
圖 4-9 Clostridium sporosphaeroides 16s rRNA 的專一性
引子對.............................................82
圖 4-10 Bacillus licheniformis 16s rRNA 的專一性
引子對............................................83
圖 4-11 三株純菌的專一性引子對之最適溫度測試..............84
圖 4-12 三株純菌的引子對專一性測試........................85
圖 4-13 以Real-time PCR 製作C. Pasteurianum 的標準曲線....86
圖 4-14 以Real-time PCR 製作C. sporosphaeroides的標準曲線.87
圖 4-15 以Real-time PCR 製作B. licheniformis的標準曲線....88
圖 4-16 固定滴定的針頭大小,改變sodium alginate濃度.......89
圖 4-17 固定sodium alginate濃度,改變滴定的針頭大小.......90
圖 5-1 Glutamate metabolism-Bacillus licheniformis DSM13..91
圖 5-2 Bacillus licheniformis KBL 與 Clostridium
sporosphaeroides ATCC 25781 推論的共生關係圖.......92
圖 5-3 固定化技術應用於 Clostridium Pasteurianum ATCC 6013
產氫的情形.........................................93
圖 6-1 Hydrogenase gene RT-PCR analysis...................94
圖 6-2 Hydrogenase於燃料電池之應用........................95
圖 6-3 生物抗腐蝕(除��)...................................96
圖 6-4 透過Hydrogenase的催化將輔酶(NADPH)反覆生成.........97
參考文獻..................................................98
附錄.....................................................104
一、菌種序列...........................................104
1. C. pasteurianum ATCC 6013菌株的部分16S rDNA
核苷酸序列........................................104
2. C. sporosphaeroides ATCC 25781菌株的部分16S rDNA
核苷酸序..........................................105
3. Bacillus licheniformis KBL菌株的部分16S rDNA
基因核苷酸序列....................................106
二、糖蜜醱酵液 成份分析................................107
三、螢光雜交技術常用的螢光染劑種類.....................108
江晃榮,固定化微生物在廢水處理上之應用,工業污染防治,第九期,59-68 (1990)
吳石乙、林祺能、陳英如、李國興、林秋裕、張嘉修 (2001a) 流化床中厭氧生物產氫之水力動力性質. 第26 屆廢水處理研討會論文摘要集, 1-70。
吳石乙、吳政潔、林祺能、陳韋蒨、李國興、林秋裕、張嘉修 (2001b)產氫污泥固定化之特性與製備方法. 第26 屆廢水處理研討會論文摘要集, 1-71。
吳柔賢,(2007) "食品廢水之厭氧醱酵產氫",逢甲大學土木及水利工程研究所博士論文。
張建盛,“EVA固定化菌種污泥醱酵產氫”,逢甲大學化學工程系碩士論文”,2004年。
張瑞仁,(2007) "以分子生物技術解析與建構厭氧產氫系統",國立中興大學生命科學系研究所博士論文。
郭恆祺2006,替代能源產業商機看好比爾蓋茲下一隻金雞母. 理財周刊 Vol.288
郭博堯. 2002.全球化石能源危機時代與我國所面臨挑戰.國改研究報告永續(研)091-029號
陳楚婷,2004。氫發電代用能源。通識教育 ( 環境 )專題報告。
粟德金(2006) 美國石油時代的終結.
http://www.washingtonobserver.org/document.cfm?documentid=1233&charid=2
黃正怡、張一岑、賴俊吉。2001。營養鹽濃度對於含梭狀牙胞桿菌知植種材料利用有機廢棄物產氫之影響,p.3-98。中華民國環境工程學會第十三屆年會及研討會論文摘要集。中華民國環境工程學會第十三屆年會第十六屆廢棄物處理技術研討會,台灣。
黃敏男。2002。以流式細胞儀結合螢光原位雜交技術分析活性污泥之菌群結構。國立中興大學環工系研究所碩士論文
楊中强,張宏. 2005.為21世紀中國“加油”—中國石油安全戰略的構建. 中國國情國力第6期
經濟部能源局(2006) 再生能源.
http://www.washingtonobserver.org/document.cfm?documentid=1233&charid=2 neration_energy.htm
鄭如琇,(2006) "以微生物組成探討厭氧醱酵系統之產氫效能",國立中興大學環境工程研究所碩士論文。
蕭清郎,林秋裕,林琬玲,吳宗翰,陳晉照,陳永田,2007,糖蜜醱酵液以純菌產氫之探討,第31屆廢水研討會論文集。(in CD-ROM collection)
賴俊吉。2002。潔淨生質能源研究發展計劃(2/5)。經濟部能源科技研究發展計劃九十年度執行報告。
Aristidou A., Penttila M. 2000. Metabolic engineering applications to renewable resource utilization. Curr. Opin. Biotechnol. 11:187-98.
Aoyama, K., M. miyake, J. Yamada, J. Miyake, I. Uemura, T. Hoshino,and Y. Asada. 1996. Application of vector pKE4-9 carrying a strong promoter to the expression of foreign proteins in Synechococcus PCC7942. J Mar Biotechnology 4:64-67.
Asada, Y., Y. Koike, J. Schnackenberg, M. Miyake, I. Uemura, and J. Miyake. 2000. Heterologous expression of clostridial hydrogenase in the Cyanobacterium synechococcus PCC7942. Biochim Biophys Acta 1490:269-78.
Baker, A. N., and Wolf, J. 1977. Spore research. Academic Press, London.
BOÏCHENKO V.A. and HOFFMANN P. 1994. Photosynthetic hydrogen production in Prokaryoties and Eukaryotes: Occurrence, mechanism, and functions. Photosynthetica 30 (4):527-552.
Calvin, M., Taylor, S. E., Fuels from algae, In, Cresswell RC, Rees TAV, Shah N, editors,. 1989. Algal and cyanobacterial biotechnology. London, Longman Scientific and Technical., 137-160.
Cammack, R. 1999. Hydrogenase sophistication. Nature 397:214-5.
Chang, JJ., SY. Shih, FS. Wen, JJ. Lay, CC. Hung. 2003. Directly detect the hydrogen-producing microbes in the biohydrogen-producing system by RT-PCR. Spec Iss Eng Environ. 11: 68-78.
Chang JJ, Chen WE, Shin SY, Yu SJ, Lay JJ, Wen FS, Huang CC. 2006. Molecular detection of the clostridia in an anaerobic biohydrogen fermentation system by hydrogenase mRNA-targeted reverse transcription-PCR. Appl Microbiol Biot 70(5): 598-604.
Chang JJ, Wu JH, Hung KY, Wen FS, Hsiao CL, Lin CY, Huang CC. 2007. Molecular monitoring of microbes in a continuous hydrogen-producing system with different hydraulic retention time. Int J Hydrogen Energy. (in press)
Chen, J. S., L. E. Mortenson. 1974. Purification and properties of hydrogenase from Clostridium pasteuriamun W5. Biochim. Biophys. Acta. 371: 283-298.
Chen, Z., B. J. Lemon, S. Huang, D. J. Swartz, J. W. Peters, and K. A. Bagley. 2002. Infrared studies of the CO-inhibited form of the Fe-only hydrogenase from Clostridium pasteurianum I: examination of its light sensitivity at cryogenic temperatures. Biochemistry 41:2036-43.
Collins, M. D., P. A. Lawson, A. Willems, J. J. Cordoba, J. Fernandez-Garayzabal, P Garcia, J. Cai, H. Hippe, and J. A. Farrow. 1994. The phylogeny of the genus Costridium : proposal of five new genera and eleven new species combinations. Int J Syst Bacteriol. 44(4):812-26.
DeLong, E.F., Wickham, G.S., and Pace, N.R. 1989. Phylogenetic Stain:Ribosomal rRNA-Based Probes for the Indentification of Single Cells. Science 243:1360-1363.
Erbeznik, M., C. R. Jones, K. A. Dawson, and H. J. Strobel. 1997. Clostridium thermocellum JW20 (ATCC 31549) is a coculture with Thermoanaerbacter ethanolicus. Appl Environ Microbiol. 63(7):2949-51.
Fang, H. H., H. Liu, and T. Zhang. 2002. Characterization of a hydrogen-producing granular sludge. Biotechnol Bioeng 78:44-52.
Fang, H. H., T. Zhang, and H. Liu. 2002. Microbial diversity of a mesophilic hydrogen-producing sludge. Appl Microbiol Biotechnol 58:112-8.
Fan Y., X. Liao , H. Lu, H. Hou, JJ. Lai. 2003. Study on biohydrogen production by anaerobic biological fermentation of organic wasters. Huan Jing Ke Xue. 24(3):132-5.
Feng C., B. Binder, R. E. Hodson. 2000. Flow cytometric detection of specific gene expression in prokaryotic cells using in situ RT-PCR. FEMS Microbiol Letters. 184:291-5.
Gaffron, H., Rubin, J. 1992. Fermentative and photochemical production of hydrogen by algae. J. Gen. Physiol. 26:219-40.
Gottschalk G., 1986. Bacterial Metabolism. Spring-Verlag., NewYork 208-82 .
Golden, S. S., and L. A. Sherman. 1984. Optimal conditions for genetic transformation of the cyanobacterium Anacystis nidulans R2. J Bacteriol 158:36-42.
Hartmann, G. C., A. R. Klein, M. Linder, and R. K. Thauer. 1996. Purification, properties and primary structure of H2-forming N5 ,N10 -methylenetetrahydromethanopterin dehydrogenase from Methanococcus thermolithotrophicus. Arch Microbiol 165:187-93.
Hodson, R. E., Dustman, W. A., Garg R. P., and Moran, M. A. 1995. In situ PCR for visualization of microscal distribution of specific genes and gene products in prokaryotic communities. Appl Environ Microbiol. 61(11):4074-82.
Kataoka, N., A. Miya, and K. Kiriyama., 1997. Studies on hydrogen production by continuous culture system of hydrogen-producing anaerobic bacteria. Water Sci Technol. 36:41-47.
Kumar D, Kumar HD. 1991. Effect of monochromatic lights on nitrogen fixation and hydrogen evolution in the isolated hetrocysts of Anabaena sp. strain CA. Int. J. Hydrogen Energy. 16: 397-401.
Kumazawa, S., Mitsui, A., 1981. Characterization and optimization of hydrogen photoproduction by saltwater blue-green algae, Oscillatoria Sp. Miami BG7: Enhancement through limiting the supply of nitrogen nutrient. Int. J. Hydrogen Energy., 6, 339-48.
Lambert GR, Smith GD. 1981. The hydrogen metabolism of cyanobacteria (blue-green algae). Biol. Rev. 56: 589-660.
Lay, J. J. 2001. Biohydrogen generation by mesophilic anaerobic fermentation of microcrystalline cellulose. Biotechnol Bioeng 74:280-7.
Lay, J. J. 2000. Modeling and optimization of anaerobic digested sludge converting starch to hydrogen. Biotechnol Bioeng 68:269-78.
Lemon, B. J., and J. W. Peters. 1999. Binding of exogenously added carbon monoxide at the active site of the iron-only hydrogenase (CpI) from Clostridium pasteurianum. Biochemistry 38:12969-73.
Liu WT., O. C.Chan, H. H. Fang. 2002. Characterization of microbial community in granular sludge treating brewery wastewater. Water Res. 36(7):1767-75.
Nandi, R., and S. Sengupta. 1998. Microbial production of hydrogen: an overview. Crit Rev Microbiol 24:61-84.
Meyer, J., and J. Gagnon. 1991. Primary structure of hydrogenase I from Clostridium pasteurianum. Biochemistry 30:9697-704.
Miyake, M., J. Yamada, K. Aoyama, I. Uemura, T. Hoshino, J. Miyake ,and Y. Asada. 1996. Strong expression of foreign protein in Synechococcus PCC7942. J. Marine Biotechnol 4:61-63.
Miyake, M., and Y. Asada. 1997. Direct electroporation of clostridial hydrogenase into cyanobacterial cells. Biotechnology Techniques 11(11):787-790.
Mura, G. M., P. Pedroni, C. Pratesi, G. Galli, L. Serbolisca,and G. Grandi. 1996. The [Ni-Fe] hydrogenase from the thermophilic bacterium Acetomicrobium flavidum. Microbiology. 142 ( Pt 4):829-36.
Peters, J. W. 1999. Structure and mechanism of iron-only hydrogenases. Curr Opin Struct Biol 9:670-6.
Peters, J. W., W. N. Lanzilotta, B. J. Lemon, and L. C. Seefeldt. 1998. X-ray crystal structure of the Fe-only hydrogenase (CpI) from Clostridium pasteurianum to 1.8 angstrom resolution. Science 282:1853-8.
Sarker S, Pandey KD, Kashyap AK. 1992. Hydrogen photoproduction by filamentous non-heterocystous cyanobacterium Pleatonema boryanna and simultaneous release of ammonia. Int. J. Hydrogen Energy 17: 689-94.
Smith GD, Ewart GD, Tucker W. 1992. Hydrogen production by cyanobacteria. Int. J. Hydrogen Energy 17:695-8.
Stewar WDP. 1980. Some aspects of structure and function in N2-fixing cyanobacteria. ”Annu. Rev. Microbiol. 34: 497-536.
Tokuda, G., I. Yamaoka, and H. Noda. 2000. Localization of symbiotic clostridia in the mixed segment of the termite Nasutitermes takasagoensis (Shiraki). Appl Environ Microbiol 66:2199-207.
Ueno, Y., S. Haruta, M. Ishii, and Y. Igarashi. 2001. Microbial community in anaerobic hydrogen-producing microflora enriched from sludge compost. Appl Microbiol Biotechnol 57:555-62.
Van Dyke, M. I., and A. J. McCarthy. 2002. Molecular biological detection and characterization of Clostridium populations in municipal landfill sites. Appl Environ Microbiol 68:2049-53.
Volbeda, A., M. H. Charon, C. Piras, E. C. Hatchikian, M. Frey,and J. C. Fontecilla-Camps. 1995. Crystal structure of the nickel-iron hydrogenase from Desulfovibrio gigas. Nature. 373(6515):580-7.
Wallner, G..,R. Amann, and W. Beisker. 1993. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry. 14:136-143
Wallner, G..,R.Ehart, and R. Amann. 1995. Flow cytometric analysis of activated sludge with rRNA-targeted probes. Appl Environ Microbiol.61(5):1859-1866.
Weber, S., S. Stubner, and R. Conrad. 2001.Bacterial populations colonizing and degrading rice straw in anoxic paddy soil. Appl. Environ. Microbiol. 67:1318-1327.
Yu HQ, Tay JH, Fang HHP. 2001. The roles of calcium in sludge granulation during UASB reactor start-up. Wat Res 35: 1052-1060.
Zoetendal, E. G., K. Ben-Amor, H. J. Harmsen, F. Schut, A. D. Akkermans, and W. M. de Vos. 2002. Quantification of uncultured Ruminococcus obeum-like bacteria in human fecal samples by fluorescent in situ hybridization and flow cytometry using 16S rRNA-targeted probes. Appl Environ Microbiol 68:4225-32
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top