跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/06 10:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃永吉
論文名稱:甘草在臺灣之族群動態
論文名稱(外文):Population dynamics of Zostera japonica (Zosteraceae) in Taiwan
指導教授:蕭淑娟蕭淑娟引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:110
中文關鍵詞:海草高美濕地香山濕地Pearson相關分析典型相關分析
外文關鍵詞:seagrassKaomei wetlandHsianshan wetlandPearson correlation analysisCanonical correlation analysis
相關次數:
  • 被引用被引用:5
  • 點閱點閱:179
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
海草床廣泛分布於全球熱帶和溫帶淺海域,為重要的沿岸生態系之一。甘草(Zostera japonica)是臺灣西海岸最主要的海草,但是其族群動態變化尚不清楚。本研究自2007年3月至2008年3月,於高美及香山兩濕地分別設立三個監測站,每月監測此物種之覆蓋度、形態特徵、直立莖密度、生物量、分布面積之變化,並記錄其物候以及環境因子。研究結果顯示,高美地區甘草海草床之實際總面積平均為7.87 ± 1.11公頃,而香山地區為5.51 ± 1.50公頃。甘草大部分生物因子在不同季節與地點間皆有顯著差異,且季節與地點間有交互作用。其中覆蓋度、地上部生物量、直立莖高度、葉片數、葉長及葉寬皆在春季最高;而覆蓋度、直立莖密度、地上部生物量、葉片數及葉寬皆在冬季最低。其生殖期以春末夏初(5~6月)為主,花序幾乎整年皆可發現,推估甘草最適合生長及生殖的水溫約18~26℃。典型相關分析結果顯示,溫度是影響高美地區甘草生長動態之主要環境因子;而影響香山地區之主要環境因子則是底土有機物含量、溫度及高程。但高美與香山合併分析後,影響臺灣西部沿岸甘草生長動態之主要環境因子為底土有機物含量、水體營養鹽濃度及溫度。研究結果亦顯示因高美及香山濕地之遊客眾多,導致部分區域基質變硬,使甘草難以拓展。因此應設重點保育區,以減少人為干擾的影響。
  Seagrass beds are distributed from the tropical to temperate shallow waters and among the most important coastal ecosystems. Zostera japonica is the major seagrass species on the western coast of Taiwan, but the population dynamics are uncertain. The aim of this study is to examine the population dynamics of Zostera japonica at the Kaomei and Hsianshan wetlands. The coverage, morphometrics, shoot density, biomass, distribution area, phenology, and environmental factors were monitored for a year from March 2007 to March 2008. The seagrass beds at the Kaomei and Hsianshan wetlands were estimated to be 7.87 ha. and 5.51 ha., respectively. Most biotic variables of Zostera japonica showed significant interactions between season and site. Coverage, above-ground biomass, shoot height, leaves number, leaf length, and leaf width were greatest in spring and lowest in winter. Reproduction occurred primarily in May and June of late spring and early summer, but reproductive shoots can be found almost all year round. The optimal water temperatures for the growth and reproduction were estimated to be within 18℃ to 26 ℃. Canonical correlation analyses indicated that temperature was the major environmental factor influencing the growth dynamics of Zostera japonica at the Kaomei wetland, however sediment organic matter content, temperature and sediment elevation were the major ones at the Hsianshan wetland. While combining data from both sites for canonical correlation analyses, sediment organic matter content, concentration of nutrient in the water column, and temperature were the major factors. There were many tourists visiting these two wetlands and part of sediment was rammed down. This was found to affect the spreading of Zostera japonica. Therefore, we should relieve the anthropogenic disturbance by establishing protection area at the two wetlands.
目次
中文摘要.........................................i
英文摘要.........................................ii
目次.............................................iii
表目次...........................................v
圖目次...........................................vi
一、前言.................................................1
1. 海草定義與習性....................................1
2. 海草種類及生態功能................................1
3. 海草面臨之威脅....................................2
4. 臺灣的海草........................................2
5. 甘草之相關研究....................................3
6. 研究動機目的......................................4
二、材料與方法...........................................6
1. 研究地點與採樣時間................................6
1.1 研究地點......................................6
1.2 採樣時間......................................7
2. 環境因子..........................................7
2.1 水體環境因子..................................7
2.1.1 光遞減係數............................................7
2.1.2 鹽度與水溫............................................7
2.1.3 水體營養鹽濃度............................................8
2.2 基質環境因子............................................9
2.2.1 底土含水量與有機物含量............................................9
2.2.2 粒徑分析............................................9
2.2.3 基質高程............................................11
2.2.4 基質硬度............................................11
3. 生物因子............................................11
3.1 覆蓋度............................................12
3.2 直立莖密度與形態特徵............................................12
3.3 物候與生物量............................................12
3.4 分布面積與區塊百分比............................................12
4. 統計分析............................................13
4.1 歸群分析............................................13
4.2 變方分析............................................13
4.3 Pearson相關分析............................................13
4.4 典型相關分析............................................13
三、結果......................................15
1. 環境因子............................................15
1.1 水體環境因子............................................15
1.1.1 光遞減係數............................................15
1.1.2 鹽度與水溫............................................15
1.1.3 水體營養鹽濃度............................................15
1.2 基質環境因子............................................16
1.2.1 底土含水量與有機物含量............................................16
1.2.2 粒徑分析............................................16
1.2.3 基質高程.............................................17
1.2.4 基質硬度.............................................17
2. 生物因子.............................................17
2.1 覆蓋度.............................................17
2.2 直立莖密度與形態特徵.............................................17
2.3 物候與生物量.............................................18
2.4 分布面積與區塊百分比.............................................19
3. 生物因子與環境因子之相關比較.............................................19
3.1 Pearson相關分析.............................................19
3.1.1 臺灣西部沿岸甘草生物因子與環境因子之Pearson相關分析...................19
3.1.2 高美地區甘草生物因子與環境因子之Pearson相關分析...........................19
3.1.3 香山地區甘草生物因子與環境因子之Pearson相關分析...........................20
3.2 典型相關分析.............................20
3.2.1 臺灣西部沿岸甘草生物因子與環境因子間之典型相關分析....................20
3.2.2 高美地區甘草生物因子與環境因子間之典型相關分析............................21
3.2.3 香山地區甘草生物因子與環境因子間之典型相關分析............................22
四、討論....................................................23
1. 環境因子對甘草之影響.................................23
1.1 水體透光度.......................................23
1.2 鹽度........................................23 1.3 水體營養鹽..............................24
1.4 溫度.....................................24
1.5 基質特性.................................................25
2. 甘草生物因子之季節性變化................................................26
3. 甘草與泰來草之季節性差異............................................................26
4. 甘草區塊之鑲嵌結構........................................................................26
5. 高美地區甘草與其他生物因子之關係.............27
6. 甘草之區域性差異......................................................................................27
7. 甘草在臺灣之重要性及保育..................................................28
五、結論......................................................29
六、參考文獻..............................................91
七、附錄.............................................99
八、會議紀錄………………………………………………………107
參考文獻
1.王守民。(1991)。大甲溪口地區值物資源及植群演替趨勢之研究。國立中興大學植物學研究所碩士論文。
2.王振君。(2007)。高美濕地大型水生植物的豐度與空間分布。國立中興大學生命科學院碩士在職進修專班碩士論文。
3.吉田正人、河內直子、仲岡雅裕、小林愛、大野正人。(2006)。沖繩海草。日本自然保護協會(NACS-J.)。
4.林惠真。(2006)。高美濕地的變遷。新竹市海岸濕地生物多樣性研討會論文集:183-185頁。
5.紀郁如。(2002)。墾丁潮間帶海草床豐度與生產力之研究。國立中興大學生命科學院碩士在職進修專班碩士論文。
6.柯智仁。(2004)。臺灣海草分類與分布之研究。國立中山大學生物科學系碩士論文。
7.陳明義。(1999)。臺灣海岸濕地植物。行政院農業委員會。中華民國環境綠化協會。
8.黃守忠、徐崇斌、謝蕙蓮、陳章波、許世傑。(1996)。新竹科學園區、客雅溪與牡蠣之重金屬分佈與關連。新竹市海岸濕地生物多樣性研討會論文集:9-18頁。
9.彭昭英。(2002)。SAS與統計分析。第12版。儒林圖書公司。臺北。
10.楊遠波、顏聖紘、林仲剛。(2001)。臺灣水生植物圖誌。行政院農業委員會。
11.謝蕙蓮、林幸助。(2007)。濕地之承載力與承載量探討:以高美野生動物保護區為例(Ⅱ)。行政院國家科學委員會專題研究計畫。
12.謝蕙蓮、黃守忠、李坤瑄、陳章波。(1993)。潮間帶底棲生態調查法。生物科學。第三十六卷 第二期:71-80頁。
13.巖登生、龐元勳。(1998)。新竹香山濕地的永續性與明智利用。第四屆海岸濕地生態及保育研討會論文集:301-324頁。
14.Alcoverro, T., Duarte, C. M., and Romero, J. (1997). The influence of herbivores on Posidonia oceanica epiphytes. Aquat. Bot. 56: 93-104.
15.Alongi, D. M. (1998). Seaweed and seagrass ecosystems. In: Alongi, D. M. (ed.), Coastal ecosystem processes. CRC Press, Australia, pp 93-135.
16.Badalamenti, F., Carlo, G. D., D’Anna, G., Gristina, M., and Toccaceli, M. (2006). Eects of dredging activities on population dynamics of Posidonia oceanica (L.) Delile in the Mediterranean sea: the case study of Capo Feto (SW Sicily, Italy). Hydrobiologia 555: 253-261.
17.Baldwin, J. R. and Lovvorn, J. R. (1994). Expansion of seagrass habitat by the exotic Zostera japonica, and its use by dabbling ducks and brant in Boundary Bay, British Columbia. Mar. Ecol. Prog. Ser. 103: 119-127.
18.Bell, J. D. and Pollard, D. A. (1989). Ecological of fish assemblage and fishers associated with seagrasses In: Larkum, A. W. D., McComb, A. J., and Shepherd, S. A. (ed.), Biology of seagrass: a treatise on the biology of seagrasses with special reference to the Austrealian region. Aquatic Plant Studies 2, Elsevier, Amesterdam, pp 565-609.
19.Bengough, A. G. and Mullins, C. E. (1990). Mechanical impedance to root growth: a review of experimental techniques and root growth responses. Eur. J. Soil Sci. 41: 341-358.
20.Bjork, M., Uku, J., Weil, A., and Beer, S. (1999). Photosynthetic tolerances to desiccation of tropical intertidal seagrasses. Mar. Ecol. Prog. Ser. 191: 121-126.
21.Borum, J. (1987). Dynamics of epiphyton on eelgrass (Zostera marina L.) leaves: relative roles of algal growth, herbivory and substratum turnover. Limnol. Oceanogr. 32: 986-992.
22.Borum, J., Pedersen, O., and Greve, T. M. (2005). The potential role of plant oxygen and sulphide dynamics in die-off events of the tropical seagrass, Thallasia testudinum. J. Ecol. 93: 148-158.
23.Borowitzka, M. A. and Lethbridge, R. C., (1989). Seagrass epiphytes. In: Larkum, A. W. D., McComb, A. J., and Shepherd, S. A. (ed.), Biology of seagrasses: a treatise on the biology of seagrasses with special reference to the Australian region. Aquatic Plant Studies 2, Elsevier, Amesterdam, pp 458-499.
24.Borowitzka, M. A., Lethbridge, R. C., and Charlton, L. (1990). Species richness, spatial distribution and colonization pattern of algal and invertebrate epiphytes on the seagrass Amphibolis grifthii. Mar. Ecol. Prog. Ser. 64: 281-291.
25.Burdick, D. M. and Short, F. T. (1999). The effects of boat docks on eelgrass beds in coastal waters of Massachusetts. Environ. Manage. 23: 231-240.
26.Bulthuis, D. A. and Woelkerling, W. J., (1983). Biomass accumulation and shading effects of epiphytes on the leaves of the seagrass, Heterozostera tasmanica in Victoria, Australia. Aquat. Bot. 16: 137-148.
27.Cabaço, S., Machás, R., and Santos, R. (2007). Biomass-density relationships of the seagrass Zostera noltii: A tool for monitoring anthropogenic nutrient disturbance. Estuar. Coast. Shelf Sci. 74: 557-564.
28.Cambridge, M. L., Chifngs, A. W., Brittan, C., Moore, L., and McComb, A. J., (1986). Possible causes of seagrass decline. Aquat. Bot. 24: 269-285.
29.Campbell, N. A. (1996). Biology. Benjamin Cummings, California, pp 1220.
30.Charpentier, A., Grillas, P., Lescuyer, F., Coulet, E., and Auby, I. (2005). Spatio-temporal dynamics of a Zostera noltii dominated community over a period of fluctuating salinity in a shallow lagoon, Southern France. Estuar. Coast. Shelf Sci. 64: 307-315.
31.Clarke, K. R. and Gorley, R. N. (2001). PRIMER v6: User Manual/Tutorial. PRIMER-E Ltd, Plymouth, UK.
32.Clarke, K. R. and Warwick, R. M. (1994). Transformations. In: Clarke, K. R. and Warwick, R. M. (ed.), Change in marine communities: an approach to statistical analysis and interpretation, Natural Environment Research Council, UK, pp 91.
33.Cook, A., Marriott, C. A., Seel, W., and Mullins, C. E. (1996). Effects of soil mechanical impedance on root and shoot growth of Lolium perenne L., Agrostis capillaris and Trifolium repens L. J. Exp. Bot. 47: 1075-1084.
34.Cunha, A., Santos, R., Gaspar, P., and Bairros, M. (2005). Seagrass landscape-scale changes in response to disturbance created by the dynamics of barrier-islands: a case study from Ria Formosa (South Portugal). Estuar. Coast. Shelf Sci. 64: 636-644.
35.Daby, D. (2003). Effects of seagrass bed removal for tourism purposes in a Mauritian bay. Environ. Pollut. 125: 313-324.
36.Dawes, C. J. (1998). Seagrass communities. In: Dawes, C. J. (ed.), Marine botany. John Wiley and Sons, USA, pp 303-337.
37.den Hartog, C. (1970). The seagrasses of the world. North-Holland, Amsterdam, London, pp 275.
38.Duarte, C. M. and Chiscano, C. L. (1999). Seagrass biomass and production: a reassessment. Aquat. Bot. 65: 159-174.
39.Duffy, J. E. (2006). Biodiversity and the functioning of seagrass ecosystems. Mar. Ecol. Prog. Ser. 311: 233-250.
40.Dumbauld, B. R. and Wyllie-Echeverria, S. (2003). The influence of burrowing thalassinid shrimps on the distribution of intertidal seagrasses in Willapa bay, Washington, USA. Aquat. Bot. 77: 27-42.
41.Dunton, K. H. (1994). Seasonal growth and biomass of the subtropical seagrass Halodule wrightii in relation to continuous measurements of underwater irradiance. Mar. Biol. 120: 479-489.
42.Folk, R. L. (1996). A review of grain-size parameters. Sedimentology 6: 73-93.
43.Fong, C. W., Lee, S. Y., and Wu, R. S. S. (2000). The effects of epiphytic algae and their grazers on the intertidal seagrass Zostera japonica. Aquat. Bot. 67: 251-261.
44.Fonseca, M. S. (1989). Sediment stabilisation by Halophila decipiens in comparison to other seagrasses. Estuar. Coast. Shelf Sci. 29: 501-507.
45.Green, E. P. and Short, F. T. (2003). World atlas of seagrasses. University of California Press, California, pp 298.
46.Greve, T. M., Borum, J., and Pedersen, O. (2003). Meristematic oxygen variability in eelgrass (Zostera marina). Limnol. Oceanogr. 48: 210-216.
47.Grice, A. M., Loneragan, N. R., and Dennison, W. C. (1996). Light intensity and the interactions between physiology morphology and stable isotope ratios in five species of seagrass. J. Exp. Mar. Biol. Ecol. 195: 91-110.
48.Harrison, P. G. (1982). Comparative growth ofZostera japonica Aschers. & Graebn. and Z. marina L. under simulated intertidal and subtidal conditions. Aquat. Bot. 14: 373-379.
49.Hemminga, M. A. and Duarte, C. M. (2000). Seagrass ecology. The University Press, Cambridge, United Kingdom. pp 298.
50.Hillman, K., Walker, D. I., Larkum, A. W. D., and McComb, A. J. (1989). Productivity and nutrient limitation. In: Larkum, A. W. D., McComb, A. J., and Shepherd, S. A. (ed.), Biology of seagrass: a treatise on the biology of seagrasses with special reference to the Austrealian region. Aquatic Plant Studies 2, Elsevier, Amesterdam, pp 635-685.
51.Hindell, J. S., Jenkins, G. P., and Keough, M. J. (2000). Evaluating the impact of predation by fish on the assemblage structure of fishes associated to seagrass (HeteroZostera tasmanica) (Martens ex Acherson) den Hartog, and unvegetated sand habitats. Estuar. Coast. Shelf Sci. 255: 153-174.
52.Holmer, M., Frederiksen, M. S., and Mollegaard, H. (2005). Sulfur accumulation in eelgrass (Zostera marina) and effects of sulfur on eelgrass growth. Aquat. Bot. 81: 367-379.
53.Huong, T. T. L., Vermaat, J. E., Terrados, J., Tien, N. V., Duarte, C. M., Borum, J., and T, N. H. (2003). Seasonality and depth zonation of intertidal Halophila ovalis and Zostera japonica in Ha Long Bay (northern Vietnam). Aquat. Bot. 75: 147-157.
54.Kendrick, G. A. and Lavery, P. S. (2001). Assessing biomass, assemblage structure and productivity of algal epiphytes on seagrasses. In: Short, F. T.and Coles, R. G. (ed.), Global seagrass research methods. Elsevier Science B. V., Amsterdam, pp 199-222.
55.Kenworthy, W. J. and Fonseca, M. S. (1996). Light requirements of seagrasses Halodule wrightii and Syringodium filiforme derived from the relationship between diffuse light attenuation and maximum depth distribution. Estuaries 19: 740-750.
56.Koch, E. W. (1996). Hydrodynamics of a shallow Thalassia testudinum bed in Florida, USA. In: Kuo, J., Phillips, R. C., Walker, D. I., and Kirkman, H. (ed.), Seagrass biology international workshop, Rottnest Island, Western Australia, pp 105-110.
57.Kuo, J. and den Hartog, C. (2001). Seagrass taxonomy and identication key. In: Short, F. T. and Coles, R. G. (ed.), Global seagrass research methods. Elsevier Science B. V., Amsterdam, pp. 31-58.
58.Lan, C. Y., Kao, W. Y., Lin, H. J., and Shao, K. T. (2005). Measurement of chlorophyll fluorescence reveals mechanisms for habitat niche separation of the intertidal seagrasses Thalassia hemprichii and Halodule uninervis. Mar. Biol. 148: 25-34.
59.Lanyon, J. M., Limpus, C. J., and Marsh, H. (1989). Dugongs and turtles: grazers in the seagrass system. In: Larkum, A. W. D., McComb, A. J., and Shepherd, S. A. (ed.), Biology of seagrass: a treatise on the biology of seagrasses with special reference to the Austrealian region. Aquatic Plant Studies 2, Elsevier, Amesterdam, pp 610-634.
60.Lanyon, J. M. and Marsh, H. (1995). Temporal changes in the abundance of some tropical intertidal seagrasses in North Queensland. Aquat. Bot. 49: 217-237.
61.Lars, B. N. and Morten, F. P. (2008). Effects of salinity and water temperature on the ecological performance of Zostera marina. Aquat. Bot. 88: 239-246.
62.Lee, S. Y. (1997). Annual cycle of biomass of a threatened population of intertidal seagrass Zostera japonica in Hong Kong. Mar. Biol. 129: 183-193.
63.Lee, S. Y. (2001). A study on the ecological and taxonomical characteristics of Zostera (Zosteraceae) in Korea. Ph.D. dissertation, Hanyang University, Seoul.
64.Lee, S. Y., Choi, C. I., Suh, Y., and Mukai, H. (2005a). Seasonal variation in morphology, growth and reproduction of Zostera caespitosa on the southern coast of Korea. Aquat. Bot. 83: 250-262.
65.Lee, S. Y., Oh, J. H., Choi, C. I., Suh, Y., and Mukai, H. (2005b). Leaf growth and population dynamics of intertidal Zostera japonica on the western coast of Korea. Aquat. Bot. 83: 263-280.
66.Lee, S. Y., Fong, C. W., and Wu, R. S. S. (2001). The effects of seagrass (Zostera japonica) canopy structure on associated fauna: a study using artificial seagrass units and sampling of natural beds. J. Exp. Mar. Biol. Ecol. 259: 23-50.
67.Les, D. H., Cleland, M. A., and Waycott, M. (1997). Phylogenetic Studies in Alismatidae, II: Evolution of Marine Angiosperms (Seagrasses) and Hydrophily. Syst. Bot. 22(3) : 443-463.
68.Leuschner, C., Landwehr, S., and Mehlig, U. (1998). Limitation of carbon assimilation of intertidal Zostera noltii and Z. marina by desiccation at low tide. Aquat. Bot. 62: 171-176.
69.Lin, H. J., Hsieh, L. Y., and Liu, P. J. (2005). Seagrasses of Tongsha Island, with descriptions of four new records to Taiwan. Bot. Bul. Acad. Sin. 46: 163-168.
70.Lin, H. J. and Shao, K. T. (1998). Temporal changes in the abundance and growth of intertidal Thalassia hemprichii seagrass beds in southern Taiwan. Bot. Bul. Acad. Sin. 39: 191-198.
71.Longstaff, B. J. and Dennison, W. C. (1999). Seagrass survival during pulsed turbidity events: the effects of light deprivation on the seagrasses Halodule pinifolia and Halophila ovalis. Aquat. Bot. 65: 105-121.
72.Lovvorn, J. R. and Baldwin, J. R. (1996). Intertidal and farmland habitats of ducks in the Puget Sound region: A landscape perspective. Biol. Conserv. 77: 97-114.
73.Mazzella, L. and Alberte, R. S. (1986). Light adaptation and the role of autotrophic epiphytes in primary production of the temperate seagrass Zostera marina L. J. Exp. Mar. Biol. Ecol. 100: 165-180.
74.Murphy, J. and Riley, J. P. (1962). A modified single solution method for determination of phosphate in nature water. Anal. Chem. Acta. 27: 31-36.
75.Onuf, C. P. (1994). Seagrasses, dredging and light in Laguna Madre, Texas, U.S.A. Estuar. Coast. Shelf Sci. 39: 75-91.
76.Parsons, T. R., Maita, Y., and Lalli, C. M. (1984). A Manual of Chemical and Biological Methods for Seawater Analysis. Pergamon Press, New York, U.S.A.
77.Pedersen, O., Binzer, T., and Borum, J. (2004). Sulphide invasion in eelgrass (Zostera marina L.). Plant Cell Environ. 27: 595-602.
78.Penhale, P. A. amd Smith Jr., W. O. (1977). Excretion of dissolved organic carbon by eelgrass (Zostera marina) and its epiphytes. Limnol. Oceanogr. 22: 400-407.
79.Phillips, R. C. and Menez, E. G. (1988). Seagrasses. Smithsonian Institution, No. 34. Washington, DC.
80.Ruiz, J. M. and Romero, J. (2003). Effects of disturbances caused by coastal constructions on spatial structure, growth dynamics and photosynthesis of the seagrass Posidonia oceanica. Mar. Pollut. Bull. 46: 1523-1533.
81.Salita, J. T., Ekau, W., and Saint-Paul, U. (2003). Field evidence on the influence of seagrass landscapes on fish abundance in Bolinao, northern Philippines. Mar. Ecol. Prog. Ser. 247: 183-195.
82.Sand-Jensen, K. (1977). Effect of epiphytes on eelgrass photosynthesis. Aquat. Bot. 3: 55-63.
83.Sand-Jensen, K., Revsbach, N. P., and Jorgensen, B. B. (1985). Microproles of oxygen in epiphyte communities on submerged macrophytes. Mar. Biol. 89: 55-62.
84.Short, F. T., Coles, R. G., and Pergent-Martini, C. (2001). Global seagrass distribution. In: Short, F. T. and Coles, R. G. (ed.), Global seagrass research methods. Elsevier Science B. V., Amsterdam, pp 5-10.
85.Short, F. T. and Wyllie-Echeverria, S. (1996). Natural and human-induced disturbance of seagrasses. Environ. Conserv. 23: 17-27.
86.Silberstein, K., Chifngs, A. W., and McComb, A. J. (1986). The effect of epiphytes on productivity of Posidonia australis Hook. Aquat. Bot. 24: 355-371.
87.Soros-Pottruff, C. L. (1995). Developmental morpholgy of reproductive structures of Zostera and a reconsideration of Heterozostera (Zosteraceae). Int. J. Pl. Sci. 156: 143-158.
88.Soros-Pottruff, C. L. and Posluzny, U. (1994). Developmental morphology of reproductive structures of Phylospadix (Zosteraceae). Int. J. Pl. Sci. 155: 405-420.
89.Terrados, T., Duarte, C. M., Kamp-Nielsen, L., Agawin, N. S. R., Gacia, E., Lacap, D., Fortes, M. D., Borum, J., Lubanski, M., and Greve, T. (1999). Are seagrass growth and survival constrained by the reducing conditions of the sediment? Aquat. Bot. 65: 175-197.
90.Thom, B., Miller, B., and Kennedy, M. (1995). Temporal patterns of grazers and vegetation in a temperate seagrass system. Aquat. Bot. 50: 201-205.
91.Tomlinson, P. B. (1982). Helobiae (Alismatidae). In: Metoalfe, C.R. (ed.), Anatomy of the Monocotyledons. VII, Clarendon Press, Oxford. pp 559.
92.Tomlinson, P. B. and Posluzny, U. (2001). Generic limits in the seagrass family Zosteraceae. Taxon 50: 429-437.
93.Vermaat, J. E., Beijer, J. A. J., Gijlstra, R., Hootsmans, M. J. M., Philippart, C. J. M., van den Brink, N. W., and van Vierssen, W. (1993). Leaf dynamics and standing stocks of intertidal Zostera noltii Hornem. and Cymodocea nodosa (Ucria) Ascherson on the Bancd’Arguin (Mauritania). Hydrobiology 258: 59-72.
94.Ward, L. G., Kemp, W. M., and Boynton, W. R. (1984). The influence of waves and seagrass on suspended particultes in an estuarine embayment. Mar. Geol. 59: 85-103.
95.Yang, Y. P. (1978). Hydrocharitaceae, Ruppiaceae, Zannichelliaceae and Zosteraceae. In: Li, H. L., Liu, T. S., Huang, T. C., Koyama, T., and Devol, C. E.(ed.), Flora of Taiwan, Vol. V, Monocotyledon. Epoch, Taipei, pp 14-35.
96.Zieman, J. C. and Wetzel, R. G. (1980). Productivity in seagrasses: methods and rates. In: Phillips, R. G. and McRoy, C. P. (ed.), Handbook of seagrass biology, an ecosystem prospective. Garland STPM, New York. pp 87-116.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top