跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2024/12/04 02:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張程凱
研究生(外文):Cheng-Kai Chang
論文名稱:利用固定化金屬親和性管柱純化傳染性華氏囊病毒之研究
論文名稱(外文):Purification of Infectious Bursal Disease Virus with Immobilized Metal Ion Affinity Chromatography
指導教授:王敏盈
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:40
中文關鍵詞:病毒純化固定化金屬
外文關鍵詞:virusIBDVpurificationIMAC
相關次數:
  • 被引用被引用:2
  • 點閱點閱:173
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳染性華氏囊病毒(Infectious bursal diseasse virus, IBDV)主要感染幼雞的未成熟B 淋巴細胞,導致雞隻免疫力下降以及死亡,此疾病對全世界畜牧業造成巨大的經濟損失。於先前研究發現,由傳染性華氏囊病毒殼蛋白所組成的VP2 次病毒顆粒(subviralparticles, SVPs),其暴露於顆粒外側第249 與253 之兩個histidine 胺基酸殘基(side chain)會與Ni-NTA 吸附,故可藉此固定化金屬親和性管柱進行VP2 次病毒顆粒純化。由於IBDV表面全由VP2 所組成的T=13 正二十面體,故推測固定化金屬親和性管柱可應用於傳染性華氏囊病毒的純化上。本研究利用DF-1 細胞進行病毒之增殖研究,發現以MOI=0.001 感染DF-1 細胞48 小時後,其增殖之病毒力價≧108 pfu/ml。將病毒液經超高速離心沉降後,再佐以固定化金屬親和性
管柱純化,病毒可於30 mM imidazole 緩衝液被充提出,純度約95%,回收率則為9%。經穿透式電子顯微鏡觀察,於純化的病毒顆粒中,除含有粒徑約60 nm 的病毒顆粒外,另具有粒徑約45 nm 的病毒顆粒存在其中。總結本篇研究,我們發表了一種新的傳染性華氏囊病毒純化方法,可應用於後續病毒感染細胞的機制研究上。
Infectious bursal disease virus (IBDV) can infect two weeks old chicken.It causes the necrosis of bursa of Fabricius in infected chicken and results in a severe immunosuppression. IBDV causes great econimical losses to the poultry industry worldwide. In the previous study, we found that IBDV VP2 subviral particles (SVPs) can interact with Ni-NTA due to two surface histidines at amino acids 249 and 253. Thus, the VP2 SVP could be purified with immobilized metal ion affinity chromatography. Interestingly, the IBDV virion was composed of VP2 capsid protein on the surface in a T=13 mannerstructure. Therefore, the IMAC method could be applied to purify IBDV virions. In this study, we amplified IBDV in DF-1 cell, one kind of chicken embryo fibroblast cell line. Virus can amplify over 108 pfu/ml with MOI=0.001 after 48 hours post-infection. Here we report one novel method that involves the use of concentration of virus by ultracentrifugation followed by IMAC. After eluted with 30 mM imidizale, the recovery of IBDV was 7% constrast to crude lysate, and the purity reached 95 %. With TEM analysis, the typical virion particles in 60 nm diameter could be revealed and accompanied with some other particles in 45 nm diameter. In this study, we developed a new viral purification method. Futhermore, the purified virus can be applied for further investigation on viral penetration and replication.
中文摘要 ..................................................................................................... i
Abstract ...................................................................................................... ii
目錄 ........................................................................................................... iii
第一章 文獻回顧 ...................................................................................... 1
ㄧ、傳染性華氏囊病毒 (Infectioous Bursal Disease Virus) ........... 1
(一)甘保羅病(Gumboro disease) .................................... 1
(二)IBDV 的構造與分子生物學上的組成 ......................... 1
(三)免疫原性及致病性 ........................................................ 2
(四)病毒增殖 ........................................................................ 3
(五)病毒的純化方法 ............................................................ 3
(六)VP2 次病毒顆粒與Ni-NTA 的吸附特性 ..................... 4
(七)近期最新研究方向 ........................................................ 5
二、Vertrel XF 於病毒純化的應用 .................................................. 5
三、聚乙二醇(polyethylene glycol, PEG)於病毒純化的應用 ... 6
四、固定化金屬離子親和性管柱 .................................................... 6
(一)純化原理 ........................................................................ 6
(二)金屬離子 ........................................................................ 7
(三)金屬螯合劑 .................................................................... 7
(四)固定相樹酯 .................................................................... 7
(五)利用IMAC 純化病毒顆粒 ............................................ 7
第二章 研究動機 ...................................................................................... 9
第三章 材料方法 .................................................................................... 10
一、細胞與病毒 .............................................................................. 10
(一)IBDV P3009 病毒株 .................................................... 10
(二)DF-1 細胞 (Gallus gallus, chicken embryo fibroblast cell
line) ................................................................................................... 10
(三)DF-1 細胞培養 ............................................................. 10
二、重組蛋白的製備 ....................................................................... 11
(一)VP2-441 次病毒顆粒(subviral particle, SVP)製備 11
(二)VP3(TVP3)重組蛋白製備 ..................................... 12
iv
三、 VP2、VP3 抗體 ..................................................................... 13
四、病毒增殖條件測試 .................................................................. 13
五、病毒力價測定 .......................................................................... 13
六、病毒大量增殖 .......................................................................... 14
七、病毒沈降條件測試 .................................................................. 14
(一)10% PEG 6000 沉澱 .................................................... 14
(二)3.5% PEG 6000 沉澱 ................................................... 15
(三)超高速離心沉降 .......................................................... 15
八、以固定化金屬離子親和性管柱純化病毒 .............................. 15
(一)超高速沈降病毒組 ...................................................... 15
(二)10% PEG 6000 沉澱組 ................................................ 16
九、超高速離心純化病毒 .............................................................. 17
十、純化後病毒的沉降 .................................................................. 17
十一、SDS-聚丙烯硒胺凝膠電泳(SDS-PAGE) ....................... 17
十二、Coomassie blue 染色 ............................................................ 18
十三、硝酸銀染色 .......................................................................... 18
十四、西方墨漬法(Western blot) .............................................. 18
十五、總蛋白濃度定量 .................................................................. 19
十六、總蛋白量、病毒回收率與比感染力的計算 ...................... 19
十七、利用穿透式電子顯微鏡觀察病毒顆粒 .............................. 20
十八、高效能液相層析 .................................................................. 20
第四章 結果 ............................................................................................ 21
一、IBDV 純化流程示意圖 ........................................................... 21
二、IBDV P3009 的增殖條件測試 ................................................ 21
三、IBDV 沉降條件測試 ............................................................... 22
四、以固定化金屬親和性管柱純化病毒 ...................................... 22
(一)超高速離心沉降病毒組 .............................................. 22
(二)10% PEG 6000 沈降病毒組 ........................................ 23
五、以蔗糖梯度離心純化病毒 ...................................................... 24
六、以穿透式電子顯微鏡檢視病毒顆粒 ...................................... 25
(一)傳統方法與IMAC 純度上的差異性 .......................... 25
(二)DF-1 細胞增殖病毒的顆粒多樣性 ............................. 25
v
七、以高效能液相層析管柱分析病毒顆粒 .................................. 25
第五章 討論 ............................................................................................ 27
一、感染條件MOI 的高低與增殖病毒力價的關係 .................... 27
二、不同沉降病毒方法的差異 ...................................................... 27
三、IMAC 與傳統梯度離心純化的結果比較 ............................... 28
四、IMAC 純化IBDV 與VP2 SVP 的差異 ................................. 28
(一)細胞培養基中胎牛血清白蛋白的干擾 ...................... 29
(二)His 253 的暴露程度不同 ............................................ 29
五、不同沉降條件對IMAC 純化結果的影響.............................. 29
六、病毒回收率的增進方法 .......................................................... 30
七、IBDV 於DF-1 細胞增殖的多型性 ......................................... 30
八、45 nm 與60 nm 病毒顆粒的分離 ........................................... 31
(一)膠體過濾層析法(gel filtration) .............................. 31
(二)超高速梯度離心 .......................................................... 31
九、病毒純化的後續應用 .............................................................. 31
(一)病毒結構的解析 .......................................................... 31
(二)病毒感染機制的研究 .................................................. 32
第六章 參考文獻 .................................................................................... 33
表一、病毒沉降條件測試比較 ...................................................... 41
表二、固定化金屬親和性管柱純化經超高速離心沉降之IBDV 結
果分析 ...................................................................................................... 42
表三、固定化金屬親和性管柱純化經10% PEG 6000 沉降的IBDV
結果分析 .................................................................................................. 43
表四、蔗糖超高速離心經PEG 沉降之IBDV 的結果分析 ......... 44
林育江 (2003). 傳染性華氏囊病毒結構蛋白VP2之C端區域對於形成似病
毒顆粒及免疫力的影響。國立中興大學生物科技學研究所。碩士論文。
鄭逸新 (2003). 傳染性華氏囊病毒之結構蛋白VP3 的表現、純化及特性。
國立中興大學生物科技學研究所。碩士論文。
Albertsson, P. A. & Frick, G. (1960). Partition of virus particles in a liquid
two-phase system. Biochim Biophys Acta 37, 230-7.
Bayliss, C. D., Spies, U., Shaw, K., Peters, R. W., Papageorgiou, A., Muller,
H. & Boursnell, M. E. (1990). A comparison of the sequences of segment
A of four infectious bursal disease virus strains and identification of a
variable region in VP2. J Gen Virol 71 ( Pt 6), 1303-12.
Becht, H., Muller, H. & Muller, H. K. (1988). Comparative studies on
structural and antigenic properties of two serotypes of infectious bursal
disease virus. J Gen Virol 69 ( Pt 3), 631-40.
Berman, D., Berg, G. & Safferman, R. S. (1981). A method for recovering
viruses from sludges. J Virol Methods 3, 283-91.
Beug, H., Muller, H., Grieser, S., Doederlein, G. & Graf, T. (1981).
Hematopoietic cells transformed in vitro by REVT avian
reticuloendotheliosis virus express characteristics of very immature
lymphoid cells. Virology 115, 295-309.
Brown, M. D. & Skinner, M. A. (1996). Coding sequences of both genome
segments of a European ''very virulent'' infectious bursal disease virus.
Virus Res 40, 1-15.
Bygrave, A. C., and J. T. Faragher. (1970). Mortality associated with
Gumboro disease. Vet. Rec. 86, 758-759.
Casanas, A., Navarro, A., Ferrer-Orta, C., Gonzalez, D., Rodriguez, J. F. &
Verdaguer, N. (2008). Structural insights into the multifunctional protein
VP3 of birnaviruses. Structure 16, 29-37.
Caston, J. R., Martinez-Torrecuadrada, J. L., Maraver, A., Lombardo, E.,
Rodriguez, J. F., Casal, J. I. & Carrascosa, J. L. (2001). C terminus of
infectious bursal disease virus major capsid protein VP2 is involved in
definition of the T number for capsid assembly. J Virol 75, 10815-28.
Chaga, G. S. (2001). Twenty-five years of immobilized metal ion affinity
chromatography: past, present and future. J Biochem Biophys Methods 49,
313-34.
Chettle, N., Stuart, J. C. & Wyeth, P. J. (1989). Outbreak of virulent
infectious bursal disease in East Anglia. Vet Rec 125, 271-2.
Cheville, N. F. (1967). Studies on the pathogenesis of Gumboro disease in the
bursa of Fabricius, spleen, and thymus of the chicken. Am J Pathol 51,
527-51.
Cho, B. R., Raymond, R. G. & Hill, R. W. (1979). Growth of infectious
bursal disease virus with plaque formation in chick embryo fibroblast cell
culture. Avian Dis 23, 209-18.
Coulibaly, F., Chevalier, C., Gutsche, I., Pous, J., Navaza, J., Bressanelli, S.,
Delmas, B. & Rey, F. A. (2005). The birnavirus crystal structure reveals
structural relationships among icosahedral viruses. Cell 120, 761-72.
Da Costa, B., Chevalier, C., Henry, C., Huet, J. C., Petit, S., Lepault, J.,
Boot, H. & Delmas, B. (2002). The capsid of infectious bursal disease
virus contains several small peptides arising from the maturation process
of pVP2. J Virol 76, 2393-402.
Dobos, P., Hill, B. J., Hallett, R., Kells, D. T., Becht, H. & Teninges, D.
(1979). Biophysical and biochemical characterization of five animal
viruses with bisegmented double-stranded RNA genomes. J Virol 32,
593-605.
Doong, S. R., Chen, Y. H., Lai, S. Y., Lee, C. C., Lin, Y. C. & Wang, M. Y.
(2007). Strong and heterogeneous adsorption of infectious bursal disease
VP2 subviral particle with immobilized metal ions dependent on two
surface histidine residues. Anal Chem 79, 7654-61.
Fernandez-Arias, A., Martinez, S. & Rodriguez, J. F. (1997). The major
antigenic protein of infectious bursal disease virus, VP2, is an apoptotic
inducer. J Virol 71, 8014-8.
Fernandez-Arias, A., Risco, C., Martinez, S., Albar, J. P. & Rodriguez, J. F.
(1998). Expression of ORF A1 of infectious bursal disease virus results in
the formation of virus-like particles. J Gen Virol 79 ( Pt 5), 1047-54.
Fontes, L. V., Campos, G. S., Beck, P. A., Brandao, C. F. & Sardi, S. I.
(2005). Precipitation of bovine rotavirus by polyethylene [corrected]
glycol (PEG) and its application to produce polyclonal and monoclonal
antibodies. J Virol Methods 123, 147-53.
Garriga, D., Querol-Audi, J., Abaitua, F., Saugar, I., Pous, J., Verdaguer,
N., Caston, J. R. & Rodriguez, J. F. (2006). The 2.6-Angstrom structure
of infectious bursal disease virus-derived T=1 particles reveals new
stabilizing elements of the virus capsid. J Virol 80, 6895-905.
Gomatos, P. J. & Tamm, I. (1963). The Secondary Structure of Reovirus Rna.
Proc Natl Acad Sci U S A 49, 707-14.
Grande, A. & Benavente, J. (2000). Optimal conditions for the growth,
purification and storage of the avian reovirus S1133. J Virol Methods 85,
43-54.
Gschwender, H. H. & Traub, P. (1978). Purification of mengovirus by freon
extraction and chromatography on protein-coated controlled pore glass.
Arch Virol 56, 327-36.
Himly, M., Foster, D. N., Bottoli, I., Iacovoni, J. S. & Vogt, P. K. (1998).
The DF-1 chicken fibroblast cell line: transformation induced by diverse
oncogenes and cell death resulting from infection by avian leukosis
viruses. Virology 248, 295-304.
Hochuli E, B. W., Do¨beli H, Gentz R, Stueber D. (1988). Genetic approach
to facilitate purification of recombinant proteins with a novel metal
chelate adsorbent. Bio-Technology 6, 1321-5.
Hochuli, E., Dobeli, H. & Schacher, A. (1987). New metal chelate adsorbent
selective for proteins and peptides containing neighbouring histidine
residues. J Chromatogr 411, 177-84.
Hu Hui-Ling, Wang Ming-Ying, Chung Chiung-Hsuah, Suen Shing-Yi.
(2006). Purification of VP3 protein of infectious bursal disease virus using
nickel ion-immobilized regenerated cellulose-based membranes. Journal
of Chromatography B 840, 76-84.
Ismail, N. M. & Saif, Y. M. (1991). Immunogenicity of infectious bursal
disease viruses in chickens. Avian Dis 35, 460-9.
Jackwood, D. H., Saif, Y. M. & Hughes, J. H. (1987). Replication of
infectious bursal disease virus in continuous cell lines. Avian Dis 31,
370-5.
Jiang, C., Wechuck, J. B., Goins, W. F., Krisky, D. M., Wolfe, D., Ataai, M.
M. & Glorioso, J. C. (2004). Immobilized cobalt affinity chromatography
provides a novel, efficient method for herpes simplex virus type 1 gene
vector purification. J Virol 78, 8994-9006.
Jungmann A, N. H., Müller H. (2001). Apoptosis is induced by infectious
bursal disease virus replication in productively infected cells as well as in
antigen-negative cells in their vicinity. J Gen Virol. 82, 1107-15.
Kibenge, F. S., Dhillon, A. S. & Russell, R. G. (1988). Growth of serotypes I
and II and variant strains of infectious bursal disease virus in Vero cells.
Avian Dis 32, 298-303.
Kochan, G., Gonzalez, D. & Rodriguez, J. F. (2003). Characterization of the
RNA-binding activity of VP3, a major structural protein of Infectious
bursal disease virus. Arch Virol 148, 723-44.
Koerber, J. T., Jang, J. H., Yu, J. H., Kane, R. S. & Schaffer, D. V. (2007).
Engineering adeno-associated virus for one-step purification via
immobilized metal affinity chromatography. Hum Gene Ther 18, 367-78.
Lee L. H., L. Y. S., Li N. J. (1988). Characterization of Infectious Bursal
Disease Virus Isolated in Taiwan. J Chinese Soc. Vet. Sci. 14, 89-100.
Lam, K. M. (1997). Morphological evidence of apoptosis in chickens infected
with infectious bursal disease virus. J Comp Pathol 116, 367-77.
Landgraf, H., Vielitz, E. & Kirsch, R. (1967). [Studies on the occurrence of
an infectious disease involving the bursa of Fabricius (Gumboro disease)].
Dtsch Tierarztl Wochenschr 74, 6-10.
Lee, C. C., Ko, T. P., Chou, C. C., Yoshimura, M., Doong, S. R., Wang, M.
Y. & Wang, A. H. (2006). Crystal structure of infectious bursal disease
virus VP2 subviral particle at 2.6A resolution: implications in virion
assembly and immunogenicity. J Struct Biol 155, 74-86.
Lejal, N., Da Costa, B., Huet, J. C. & Delmas, B. (2000). Role of Ser-652
and Lys-692 in the protease activity of infectious bursal disease virus VP4
and identification of its substrate cleavage sites. J Gen Virol 81, 983-92.
Lewis, G. D. & Metcalf, T. G. (1988). Polyethylene glycol precipitation for
recovery of pathogenic viruses, including hepatitis A virus and human
rotavirus, from oyster, water, and sediment samples. Appl Environ
Microbiol 54, 1983-8.
Liebermann, H. & Mentel, R. (1994). Quantification of adenovirus particles.
J Virol Methods 50, 281-91.
Lim, B. L., Cao, Y., Yu, T. & Mo, C. W. (1999). Adaptation of very virulent
infectious bursal disease virus to chicken embryonic fibroblasts by
site-directed mutagenesis of residues 279 and 284 of viral coat protein
VP2. J Virol 73, 2854-62.
Lin, T. W., Lo, C. W., Lai, S. Y., Fan, R. J., Lo, C. J., Chou, Y. M.,
Thiruvengadam, R., Wang, A. H. & Wang, M. Y. (2007). Chicken heat
shock protein 90 is a component of the putative cellular receptor complex
of infectious bursal disease virus. J Virol 81, 8730-41.
Liu, J., Wei, L., Jiang, T., Shi, L. & Wang, J. (2007). Reduction of infectious
bursal disease virus replication in cultured cells by proteasome inhibitors.
Virus Genes 35, 719-27.
Loa, C. C., Lin, T. L., Wu, C. C., Bryan, T. A., Thacker, H. L., Hooper, T.
& Schrader, D. (2002). Purification of turkey coronavirus by Sephacryl
size-exclusion chromatography. J Virol Methods 104, 187-94.
Lombardo, E., Maraver, A., Cast n, J. R., Rivera, J., Fernandez-Arias, A.,
Serrano, A., Carrascosa, J. L. & Rodriguez, J. F. (1999). VP1, the
putative RNA-dependent RNA polymerase of infectious bursal disease
virus, forms complexes with the capsid protein VP3, leading to efficient
encapsidation into virus-like particles. J Virol 73, 6973-83.
Luque, D., Saugar, I., Rodriguez, J. F., Verdaguer, N., Garriga, D., Martin,
C. S., Velazquez-Muriel, J. A., Trus, B. L., Carrascosa, J. L. & Caston,
J. R. (2007). Infectious bursal disease virus capsid assembly and
maturation by structural rearrangements of a transient molecular switch. J
Virol 81, 6869-78.
Maraver, A., Ona, A., Abaitua, F., Gonzalez, D., Clemente, R., Ruiz-Diaz, J.
A., Caston, J. R., Pazos, F. & Rodriguez, J. F. (2003). The
oligomerization domain of VP3, the scaffolding protein of infectious
bursal disease virus, plays a critical role in capsid assembly. J Virol 77,
6438-49.
Mazariegos, L. A., Lukert, P. D. & Brown, J. (1990). Pathogenicity and
immunosuppressive properties of infectious bursal disease "intermediate"
strains. Avian Dis 34, 203-8.
McFerran, J. B., McNulty, M.S., McKillop, E.R., Conner, T.J., McCracken,
R.M., Collins, D.S., Allan, G.M. (1980). Isolation and serological studies
with infectious bursal disease viruses from fowl, turkey and
duck:demonstration of a second serotype. Avian Pathol. 9, 395-404.
Mendez, II, Hermann, L. L., Hazelton, P. R. & Coombs, K. M. (2000). A
comparative analysis of freon substitutes in the purification of reovirus
and calicivirus. J Virol Methods 90, 59-67.
Muller, H. (1986). Replication of infectious bursal disease virus in lymphoid
cells. Arch Virol 87, 191-203.
Muller, H. & Becht, H. (1982). Biosynthesis of virus-specific proteins in cells
infected with infectious bursal disease virus and their significance as
structural elements for infectious virus and incomplete particles. J Virol 44,
384-92.
Muller, H., Scholtissek, C. & Becht, H. (1979). The genome of infectious
bursal disease virus consists of two segments of double-stranded RNA. J
Virol 31, 584-9.
Mundt, E., Beyer, J. & Muller, H. (1995). Identification of a novel viral
protein in infectious bursal disease virus-infected cells. J Gen Virol 76 ( Pt
2), 437-43.
Mundt, E. & Muller, H. (1995). Complete nucleotide sequences of 5''- and
3''-noncoding regions of both genome segments of different strains of
infectious bursal disease virus. Virology 209, 10-8.
Nagano, H., Yagyu, K. & Ohta, S. (1989). Purification of infectious
bronchitis coronavirus by Sephacryl S-1000 gel chromatography. Vet
Microbiol 21, 115-23.
Nichols, J. E., Mock, D. J. & Roberts, N. J., Jr. (1993). Use of FITC-labeled
influenza virus and flow cytometry to assess binding and internalization of
virus by monocytes-macrophages and lymphocytes. Arch Virol 130,
441-55.
Nick, H., Cursiefen, D. & Becht, H. (1976). Structural and growth
characteristics of infectious bursal disease virus. J Virol 18, 227-34.
Oren, D. A., Zhang, A., Nesvadba, H., Rosenwirth, B. & Arnold, E. (1996).
Synthesis and activity of piperazine-containing antirhinoviral agents and
crystal structure of SDZ 880-061 bound to human rhinovirus 14. J Mol
Biol 259, 120-34.
Pan, J., Vakharia, V. N. & Tao, Y. J. (2007). The structure of a birnavirus
polymerase reveals a distinct active site topology. Proc Natl Acad Sci U S
A 104, 7385-90.
Pearson, R. G. I. R., R.G., editor. (1973). Hard and soft acids and bases.
Stroudsburg, PA: Hutchington &Ross., 53-9, 67–85.
Philipson, L., Albertsson, P. A. & Frick, G. (1960). The purification and
concentration of viruses by aqueous polymerphase systems. Virology 11,
553-71.
Pho, M. T., Ashok, A. & Atwood, W. J. (2000). JC virus enters human glial
cells by clathrin-dependent receptor-mediated endocytosis. J Virol 74,
2288-92.
Porath, J., Carlsson, J., Olsson, I. & Belfrage, G. (1975). Metal chelate
affinity chromatography, a new approach to protein fractionation. Nature
258, 598-9.
Pous, J., Chevalier, C., Ouldali, M., Navaza, J., Delmas, B. & Lepault, J.
(2005). Structure of birnavirus-like particles determined by combined
electron cryomicroscopy and X-ray crystallography. J Gen Virol 86,
2339-46.
Rodriguez-Lecompte, J. C., Nino-Fong, R., Lopez, A., Frederick Markham,
R. J. & Kibenge, F. S. (2005). Infectious bursal disease virus (IBDV)
induces apoptosis in chicken B cells. Comp Immunol Microbiol Infect Dis
28, 321-37.
Saugar, I., Luque, D., Ona, A., Rodriguez, J. F., Carrascosa, J. L., Trus, B.
L. & Caston, J. R. (2005). Structural polymorphism of the major capsid
protein of a double-stranded RNA virus: an amphipathic alpha helix as a
molecular switch. Structure 13, 1007-17.
Schelhaas, M., Malmstrom, J., Pelkmans, L., Haugstetter, J., Ellgaard, L.,
Grunewald, K. & Helenius, A. (2007). Simian Virus 40 depends on ER
protein folding and quality control factors for entry into host cells. Cell
131, 516-29.
Schneider, J. & Haass, K. (1969). [Serologic demonstration of infectious
bursitis (Gumboro disease) in young chickens]. Berl Munch Tierarztl
Wochenschr 82, 270-2.
Sharma, J. M. (1984). Effect of infectious bursal disease virus on protection
against Marek''s disease by turkey herpesvirus vaccine. Avian Dis 28,
629-40.
Shwed, P. S., Dobos, P., Cameron, L. A., Vakharia, V. N. & Duncan, R.
(2002). Birnavirus VP1 proteins form a distinct subgroup of
RNA-dependent RNA polymerases lacking a GDD motif. Virology 296,
241-50.
Tacken, M. G., Peeters, B. P., Thomas, A. A., Rottier, P. J. & Boot, H. J.
(2002). Infectious bursal disease virus capsid protein VP3 interacts both
with VP1, the RNA-dependent RNA polymerase, and with viral
double-stranded RNA. J Virol 76, 11301-11.
Tsodikov, O. V., Record, M. T., Jr. & Sergeev, Y. V. (2002). Novel computer
program for fast exact calculation of accessible and molecular surface
areas and average surface curvature. J Comput Chem 23, 600-9.
Winterfield, R. W. (1969). Immunity response to the infectious bursal agent.
Avian Dis 13, 548-57.
Yamaguchi, T., Setiyono, A., Kobayashi, M., Takigami, S., Fukushi, H. &
Hirai, K. (2000). Infectious bursal disease live vaccines: changes in the
virus population during serial passage in chickens and chicken embryo
fibroblast cells. Avian Dis 44, 284-90.
Yamamoto, K. R., Alberts, B. M., Benzinger, R., Lawhorne, L. & Treiber,
G. (1970). Rapid bacteriophage sedimentation in the presence ofpolyethylene glycol and its application to large-scale virus purification.
Virology 40, 734-44.
Ye, K., Jin, S., Ataai, M. M., Schultz, J. S. & Ibeh, J. (2004). Tagging
retrovirus vectors with a metal binding peptide and one-step purification
by immobilized metal affinity chromatography. J Virol 78, 9820-7.
Zhang, L., Zhang, Y., Yan, C. & Yu, J. (1997). The culture of chicken embryo
fibroblast cells on microcarriers to produce infectious bursal disease virus.
Appl Biochem Biotechnol 62, 291-302.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊