跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/03 23:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李貞穎
研究生(外文):Jen-Ying Li
論文名稱:阿拉伯芥中NAC-like基因之功能性分析及鐵炮百合中LMADS1之雙聚體化分析
論文名稱(外文):Characterization and functional analysis of NAC-like genes in Arabidopsis thaliana and analysis of dimerization forLMADS1 in Lilium longiflorum
指導教授:楊長賢楊長賢引用關係
指導教授(外文):Chang-Hsien Yang
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生物科技學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:121
中文關鍵詞:頂芽分生組織花序生長變異蛋白雙聚體化
外文關鍵詞:NACSAMMADS-boxLMADS1dimerization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:108
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
NAC-like基因群是植物中所特有的轉錄因子,它們是一群在蛋白質N端帶有150個高度保留胺基酸NAC (for NAM, ATAF1, 2, and CUC2) domain的基因群,並被認為會參與調控植物發育的過程。此部分研究又分為兩個部分,第一部份在分析三個阿拉伯芥中同屬於NAC家族中ATAF子群的NAC-like基因:AtNACL5、AtNACL7及AtNACL9。構築此三個基因的啟動子藉由驅動GUS報導基因的表現來呈現它們的表現位置,結果發現AtNACL5、AtNACL7及AtNACL9在根、子葉及頂芽分生組織皆有大量表現;AtNACL5及AtNACL7在次生花序及花器上表現量亦高,AtNACL9則微量表現,且在花序莖的部分完全不表現,所以,這三個基因在早期的時候很可能有相似的功能,但到了後期也許就扮演不同的角色。進一步透過GFP螢光分析結果證實AtNACL9蛋白質能夠進入細胞核。另外,利用RNAi的策略將AtNACL9基因表現量降低後,轉基因植株中觀察到花序及花器形成有異常的現象。此結果與前人研究的結果合併後顯示AtNACL1及AtNACL9這二個基因在阿拉伯芥之花器生長的調控上可能具有重複地功能。第二部份在分析二個阿拉伯芥中屬於NAC家族中NAC2子群的NAC-like基因:AtNACL11及AtNACL15。構築此二個基因的啟動子藉由驅動GUS報導基因的表現來呈現它們的表現位置。AtNACL11、AtNACL15在根、子葉及頂芽分生組織皆有大量表現;在次生花序及花器上表現量上,AtNACL15的表現量明顯比AtNACL11高出許多,所以兩者雖然親源性相近,但扮演的功能角色可能不相同。進一步透過GFP螢光分析,證實AtNACL15蛋白質能夠進入細胞核。進一步利用異位大量表現此二個基因的正與反義股,藉由其表現之性狀來分析其基因之功能,結果並沒有發現特殊性狀。為了進一步探討此二個NAC-like基因的作用機制,將來可利用酵母雙雜合系統(yeast two-hybrid)之實驗篩選與其相互作用的蛋白質,所得結果將對NAC-like基因群在調控植物生長發育的功能上提供更深入的了解。
在整個植物的生長發育過程中,花器的形成主要是由五群基因相互作用調控形成的,稱為ABCDE model,而大部分的’’ABCDE’’功能性基因的產物都屬於MADS box蛋白,其包含了具有能結合DNA的保守區域(MADS box domain)、和雙聚體化(dimerization)有關的intervening (I) domain、與protein相互作用有關的K domain以及功能變異較大的C-terminal (C) domain。MADS box基因調控下游基因的表現方式,是由兩個相同或不同的蛋白分別形成homodimer或heterodimer後,共同調控下游基因的表現。然而百合是演化過程的中間產物,其B功能性蛋白LMADS1仍保有較原始植物Gentum之B功能性蛋白的homodimer能力和高等植物Arabidopsis B功能性蛋白AP3/PI的heterodimer能力。在實驗室前人的研究當中,利用error-prone PCR的方式製造不同鐵炮百合中LMADS1序列上的變異,並以yeast two hybrid及ONPG的分析篩選出會影響homodimer能力之重要胺基酸,結果篩選到兩個變異的分別為:(1) R136C,(2) R226Q。進一步利用ONPG分析方式測得LMADS1 R136C會明顯降低LMADS1雙聚體化的能力,LMADS1 R226Q則不會影響。欲進一步探討影響LMADS1 homodimer能力的是胺基酸的何種特性或是特殊位置,本實驗將篩選到的LMADS1的變異R136C,分別將其胺基酸改成帶電性、不帶電性、疏水性及具有極性的胺基酸,同樣利用ONPG的方式分析,結果發現將其改成Aspartic acid、Lysine、Serine都有助於LMADS1恢復homodimer的能力,而改成Methionine則是部分恢復,此結果顯示這個位置影響LMADS1 homodimer能力的原因並不是電荷。進一步分析顯示LMADS1 homodimer的能力與COILS program預測LMADS1 R136單一突變胺基酸序列對K domain上第二個coiled-coil結構之維持與否相關。更進一步利用COILS program預測位在K2 domain前後的胺基酸,得到K2 domain前二個胺基酸對於鐵炮百合中LMADS1之homodimer能力亦具有影響。
NAC-like genes, a class of plant-specific transcription factors, are characterized by having a highly conserved 150 amino acid NAC (for NAM, ATAF1, 2, and CUC2) domain at their N-terminal of proteins and have been thought to be involved in the regulation of diverse plant development processes. In this study, five Arabidopsis NAC-like genes AtNACL5, AtNACL7, AtNACL9 in ATAF subgroup and AtNACL11, AtNACL15 in NAC2 subgroup were isolated and analyzed. Further promoter assay by transforming constructs fusing the promoter of these genes with report GUS gene in Arabidopsis indicated that AtNACL5, AtNACL7 and AtNACL15 were highly expressed in roots, cotyledon, shoot apical meristem, and flowers where AtNACL9 and AtNACL11 were only weakly expressed. Further analysis indicated that GFP tagged AtNACL9 and AtNACL15 proteins were able to enter nucleus. Further functional analysis by ectopic expression of the sense and anti-sense for these genes were performed and phenotypic analyzed. Novel phenotypes were observed in transgenic plants. For example, severed alteration of shoot, inflorescence and flower formation was observed in the AtNACL9 RNAi transgenic plants. These results revealed that AtNACL1 and AtNACL9 genes might have redundant function in the regulation of both shoot and flower development in Arabidopsis.
ABCDE model predicts the formation of any flower organs by the interaction of five classes of homeotic genes in plants. Most ’’ABCDE’’ function genes are MADS box genes. MIKC-type MADS-box genes encode a protein consisting of the MADS (M) domain, intervening (I) domain, keratin-like (K) domain, and C-terminal (C) domain. Among these domains, I and K domains are most well known for determining the pattern of homodimerization or heterodimerization of MADS-box proteins. The K domain is involved in protein–protein interaction and is characterized by three strings of heptad repeats (abcdefg)n which are potentially forming coiled coils, with hydrophobic amino acids predominantly in positions a and d. Lily (Lilium longiflorum) B functional MADS box protein LMADS1 has been shown to be able to form homodimers. This is different from the B functional MADS box proteins such as AP3 and PI which can only form heterodimers. Amino acids that responsible for the homodimerization of LMADS1 protein in lily were identified (R136C and R226Q) through mutagenesis assay. To further confirm whether the polarity or charge of the amino acids influenced LMADS1 protein dimerization, different point mutations on R136 were generated and homodimerization analyzed. The result indicated that the ability for homodimerization was recovered in the mutants of R136D、R136K、R136S and was partially recovered in the mutants of R136M. This result revealed that neither the polarity nor the charge of the amino acid in 136 was the factor for homodimerization of LMADS1. The result was correlated with the prediction of the stable formation of the second coiled-coil structure in K domains of LMADS1 by COILS program. The more stable of the second coiled-coil structure the more ability for LMADS1 protein to form homodimers. Furthermore, COILS program also predicted the importance of the two other amino acids beside K2 domain in playing critical role for LMADS1 dimerization.
第一章 阿拉伯芥中NAC-like基因之功能性分析
中文摘要 2
英文摘要 3
壹、前言 4
貳、材料與方法 12
参、結果 20
一、阿拉伯芥中AtNACL5、AtNACL7、AtNACL9、AtNACL11及AtNACL15之鑑別 20
第一部份 ATAF (AtNACL5、AtNACL7、AtNACL9) 20
(一)、阿拉伯芥中AtNACL5、AtNACL7及AtNACL9基因之啟動子分析 20
(二)、阿拉伯芥中AtNACL5、AtNACL7及AtNACL9蛋白在次細胞層次之分布 22
(三)、AtNACL7及AtNACL9 RNA interference轉殖入野生型阿拉伯芥 24
(四)、AtNACL9 RNA interference轉殖株之性狀分析與基因檢測 26
第二部份 NAC2子群(AtNACL11、AtNACL15)
(一)、AtNACL11及AtNACL15基因於野生型阿拉伯芥的表現情形 26
(二)、阿拉伯芥中AtNACL11及AtNACL15基因之啟動子分析 27
(三)、阿拉伯芥中AtNACL11及AtNACL15蛋白在次細胞層次之分布 28
(四)、阿拉伯芥中AtNACL15之選殖 29
(五)、AtNACL15轉殖入野生型阿拉伯芥 30
(六)、35S::AtNACL15 cDNA sense 轉殖株之性狀分析 30
(七)、AtNACL15 RNA interference轉殖入野生型阿拉伯芥 31
(八)、AtNACL15 RNA interference轉殖株之性狀分析 32
(九)、AtNACL11/15 RNA interference轉殖入野生型阿拉伯芥 32
肆、討論 35
伍、參考文獻 38
陸、圖表
表1-1、本研究所使用之核酸引子(primer)序列 44
圖1-1、阿拉伯芥AtNACL5的cDNA及胺基酸序列 47
圖1-2、阿拉伯芥AtNACL7的cDNA及胺基酸序列 48
圖1-3、阿拉伯芥AtNACL9的cDNA及胺基酸序列 49
圖1-4、阿拉伯芥AtNACL11的cDNA及胺基酸序列 50
圖1-5、阿拉伯芥AtNACL15的cDNA及胺基酸序列 51
圖1-6、NAC-like基因蛋白質之演化樹圖譜 52
圖1-7、NACL1、AtNACL5、AtNACL7和AtNACL9序列比對 53
圖1-8、NAC2、AtNACL11和AtNACL15序列比對 54
圖1-9、以PCR方法選殖AtNACL5(P)基因啟動子(1.7 kb),並構築到pEpyon-01K載體中 55
圖1-10、以PCR方法選殖AtNACL7(P)基因啟動子(1.6 kb),並構築到pEpyon-01K載體中 56
圖1-11、以PCR方法選殖AtNACL9(P)基因啟動子(1.5 kb),並構築到pEpyon-01K載體中 57
圖1-12、以GUS組織化學染色進行AtNACL5基因啟動子之分析 58
圖1-13、以GUS組織化學染色進行AtNACL7基因啟動子之分析 59
圖1-14、以GUS組織化學染色進行AtNACL9基因啟動子之分析 60
圖1-15、以PCR方法選殖AtNACL5(G)基因片段,並構築到pBI-mGFP3載體中 61
圖1-16、以PCR方法選殖AtNACL7(G)基因片段,並構築到pBI-mGFP3載體中 62
圖1-17、以PCR方法選殖AtNACL9(G)基因片段,並構築到pBI-mGFP3載體中 63
圖1-18、以螢光顯微鏡觀察AtNACL9蛋白在次細胞層次之分布 64
圖1-19、以PCR方法選殖AtNACL7、9 RNAi之sense與anti-sense片段 65
圖1-20、利用double digestion的方法確認AtNACL7、9 RNAi之sense及anti-sense片段分別轉接入pBlueACTi載體 66
圖1-21、利用double digestion的方法確認AtNACL7、9 RNAi片段轉接入pBI-mGFP1載體 67
圖1-22、利用PCR的方法確認35S::AtNACL7、9 RNAi 轉殖株 68
圖1-23、AtNACL9 RNA interference轉殖株之性狀分析 69
圖1-24、AtNACL9 RNA interference轉基因植物的基因表現情形 70
圖1-25、利用RT-PCR偵測AtNACL11和AtNACL15基因於野生型阿拉伯芥中的表現情況 71
圖1-26、以PCR方法選殖AtNACL15(P)基因啟動子(1.7 kb),並構築到pEpyon-01K載體中 72
圖1-27、以GUS組織化學染色進行AtNACL11基因啟動子之分析 73
圖1-28、以GUS組織化學染色進行AtNACL15基因啟動子之分析 74
圖1-29、以PCR方法選殖AtNACL11(G)基因片段,並構築到pBI-mGFP3載體中 75
圖1-30、以PCR方法選殖AtNACL15(G)基因片段,並構築到pBI-mGFP3載體中 76
圖1-31、以螢光顯微鏡觀察AtNACL15蛋白在次細胞層次之分布 77
圖1-32、以PCR方法選殖AtNACL15基因 78
圖1-33、利用colony PCR的方法確認AtNACL15基因在pBI-mGFP1載體中 79
圖1-34、利用PCR的方法確認35S::AtNACL15 sense轉殖株 80
圖1-35、以PCR方法選殖AtNACL15 RNAi之sense與anti-sense片段 81
圖1-36、利用double digestion的方法確認AtNACL15 RNAi之sense及anti-sense片段分別轉接入pBlueACTi載體 82
圖1-37、利用double digestion的方法確認AtNACL15 RNAi片段轉接入pBI-mGFP1載體 83
圖1-38、利用PCR的方法確認35S::AtNACL15 RNAi 轉殖株 84
圖1-39、以PCR方法選殖AtNACL11/15 RNAi之sense與anti-sense片段 85
圖1-40、利用double digestion的方法確認AtNACL11/15 RNAi之sense及anti-sense片段分別轉接入pBlueACTi載體 86
圖1-41、利用double digestion的方法確認AtNACL11/15 RNAi片段轉接入pBI-mGFP1載體 87
圖1-42、AtNACL5 啟動子序列與轉錄因子結合位置分析 88
圖1-43、AtNACL7 啟動子序列與轉錄因子結合位置分析 89
圖1-44、AtNACL9 啟動子序列與轉錄因子結合位置分析 90
圖1-45、AtNACL11 啟動序列與轉錄因子結合位置子分析 91
圖1-46、AtNACL15 啟動序列與轉錄因子結合位置子分析 92
柒、附錄
附圖1-1、頂芽分生組織 93
附圖1-2、分生組織中WUS調控示意圖 94
附圖1-3、阿拉伯芥花朵發育之基因調控路徑示意圖 95
附圖1-4、pGEM®-T Easy vector之載體圖譜(3015 bp) 96
附圖1-5、pEpyon-01K之載體圖譜(109 kb) 97
附圖1-6、pBI-mGFP3之載體圖譜(137 kb) 98
附圖1-7、pBlueACTi之載體圖譜(3400 bp) 99
附圖1-8、pBI-mGFP1之載體圖譜(137 kb) 100

第二章 鐵炮百合中LMADS1之雙聚體化分析
中文摘要 102
英文摘要 103
壹、前言 104
貳、材料與方法 109
参、結果 113
一、利用二次PCR產生單一突變之方法探討影響LMADS1形成Homodimer
能力之胺基酸極性與帶電性 113
二、LMADS1單一突變胺基酸序列coiled-coil結構之預測 114
三、LMADS1 K-domain胺基酸序列coiled-coil結構之預測 114
四、預測影響LMADS雙聚體化重要位置胺基酸單一變異序列之選殖 115
肆、討論 116
伍、參考文獻 118
陸、圖表
表2-1、本研究所使用之核酸引子(primer)序列 122
圖2-1、利用二次PCR方式進行R136D, R136K, R136M , R136S之單一突變點
之序列選殖 124
圖2-2、利用二次PCR方式進行R226D, R226K, R226L , R226S全長之單一突變點
之序列選殖 125
圖2-3、利用ONPG assay分析不同變異之LMADS1相互結合能力 126
圖2-4、LMADS1單一突變胺基酸序列coiled-coil結構之預測 127
圖2-5、LMADS1 K-domain胺基酸序列coiled-coil結構之預測 128
圖2-6、LMADS1 K-domain胺基酸序列coiled-coil結構之預測 129
圖2-7、LMADS1 K-domain胺基酸序列coiled-coil結構之預測 130
圖2-8、LMADS1 K-domain胺基酸序列coiled-coil結構之預測 131
圖2-9、LMADS1 K-domain胺基酸序列coiled-coil結構之預測 132
圖2-10、LMADS1 K-domain胺基酸序列coiled-coil結構之預測 133
圖2-11、LMADS1 K-domain胺基酸序列coiled-coil結構之預測 134
圖2-12、LMADS1 K-domain胺基酸序列coiled-coil結構之預測 135
圖2-13、利用二次PCR方式進行R136A, R136F, R136L, R136P, R136W,
K119F, K119L, K119P, K119W, D120C, D120E, D120F, D120K,D120P,
D120W之單一突變點之序列選殖 136
圖2-14、利用二次PCR方式進行利用二次PCR方式進行R136A, R136F, R136L,
R136P, R136W, K119F, K119L, K119P, K119W, D120C, D120E,
D120F, D120K,D120P, D120W全長之單一突變點之序列選殖之單一突變點之序列選殖 137
圖2-15、經COILS program預測後影響coiled-coil結構較為嚴重之突變點 138
柒、附錄
附圖2-1、阿拉伯芥中花器形成之“ABCDE”model 139
附圖2-2、modified ABC模式 140
附圖2-3、花器形成之四聚體模式(Quartet model) 141
附圖2-4、植物MADS box基因MIKC-type蛋白質結構圖 142
附圖2-5、實驗室前人經Error prone PCR產生變異之序列 143
附圖2-6、利用二次PCR的方式,選殖單點突變之LMADS1全長序列片段 144
附圖2-7、pGADT7之載體圖譜(8.0 kb) 145
附圖2-8、pGBKT7之載體圖譜(7.3 kb) 146
附圖2-9、Yeast two-hybrid系統原理示意圖 147
附圖2-10、植物MADS-box基因MIKC-type序列,及其K-domain胺基酸序列之比對及預測(Yang et al., 2003a ) 148
林建鑫 (2007) 阿拉伯芥中NAC-like基因之分子選殖與功能性分析,國立中興大學生物科技學研究所碩士論文。
邱祿棠 (2002) 由植物中分子選殖及功能分析NAC-like基因,國立中興大學生物科技學研究所碩士論文。
施靜芳 (2004) 植物中調節分生組織活性之NAC-like基因及與開花、老化相關之GIGANTEA (GI)同源基因之功能分析及應用,國立中興大學生物科技學研究所碩士論文。
劉祥欽 (2003) 擬南芥中E3 RING Finger基因之分子選殖及特性分析,國立中興大學生物科技學研究所碩士論文。
欒乃勳 (2006) 鐵線蕨GIGANTEA (GI)同源基因與阿拉伯芥NAC-like基因之分子選殖與功能性分析,國立中興大學生物科技學研究所碩士論文。
Aida, M., Ishida, T., Fukaki, H., Fujisawa, H. and Tasaka, M. (1997). Genes involved in organ separation in Arabidopsis: an analysis of cup-shaped cotyledon mutant. Plant Cell 9: 841-857.
Aida, M., Ishida, T. and Tasaka, M. (1999). Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 126: 1563-1570.
Avivi, Y., Morad V., Ben-Meir H., Zhao, J., Kashkush, K., Tzfira, T., Citovsky, V. and Grafi, G. (2004). Reorganization of specific chromosomal domains and activation of silent genes in plant cells acquiring pluripotentiality. Dev Dyn. 230: 12-22.
Barton, M.K. and Poethig, R.S. (1993). Formation of the shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development 119: 823-31.
Blazquez, M.A., Soowal, L.N., Lee, I. and Weigel, D. (1997). LEAFY expression and flower initiation in Arabidopsis. Development 124: 3835-3844.
Brand, U., Fletcher, J., Hobe, M., Meyerowitz, E. and Simon, R. (2000). Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289: 617-619.
Brand, U., Grünewald, M., Hobe, M. and Simon, R.(2002). Regulation of CLV3 expression by two homeobox genes in Arabidopsis. Plant Physiol. 129: 565-575.
Clark, S.E., Running, M.P. and Meyerowitz, E.M.( 1993). CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 119: 397-418.
Clark, S.E., Running, M.P. and Meyerowitz, E.M.( 1995). CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1.Development 121: 2057-67.
Collinge, M. and Boller, T. (2001). Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Mol. Biol. 46: 521-529.
Cutter E.G. (1957). Studies of morphogenesis in the Nymphaeaceae.I. Introduction: some aspects of the morphology of Nuphar lutea(L.) SM. and Nymphaea alba L. Phytomorphology 7: 45-56.
Delessert, C., Kazan, K., Wilson, I.W., Van Der Straeten, D., Manners, J., Dennis, E.S. and Dolferus, R. (2005). The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J. 43: 745-757.
Duval, M., Hsieh, T., Kim, S.Y. and Thomas, T.L. (2002). Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol. Biol. 50: 237-248.
Ernst, H.A., Olsen, A.N., Larsen, S. and Lo, L.L. (2004). Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep. 5: 297-303.
Fletcher, J.C., Brand, U., Running, M.P., Simon, R. and Meyerowitz, E.M. (1999). Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283: 1911-1914.
Fujita, M., Fujita, Y., Maruyama, K., Seki, M., Hiratsu, K., Ohme, T.M., Tran, L.S., Yamaguchi, S.K. and Shinozaki, K. (2004). A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J. 39: 863-876.
Grafi, G. (2004). How cells dedifferentiate: a lesson from plants. Dev. Biol. 268: 1-6.
Greve, K., La Cour, T., Jensen, M.K., Poulsen, F.M. and Skriver, K. (2003).
Interactions between plant RING-H2 and plant-specific NAC (NAM/ATAF1/2/CUC2) proteins: RING-H2 molecular specificity and cellular localization. Biochem. J. 371: 97-108.
Guo, M., Rupe, M.A., Danilevskaya, O.N., Yang, X. and Hu, Z. (2003). Genome-wide mRNA profiling reveals heterochronic allelic variation and a new imprinted gene in hybrid maize endosperm. Plant J. 36: 30-44.
Hegedus, D., Yu, M., Baldwin, D., Gruber, M., Sharpe, A., Parkin, I.,Whitwill, S. and Lydiate, D. (2003). Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol. Biol. 53: 383-397.
Hennig, L., Gruissem, W., Grossniklaus, U. and Köhler, C. (2004). Transcriptional programs of early reproductive stages in Arabidopsis. Plant Physiol. 135: 1765-1775.
Hu, W., Wang, Y., Bowers, C. and Ma, H. (2003). Isolation, sequence analysis, and expression studies of florally expressed cDNAs in Arabidopsis. Plant Mol. Biol. 53: 545-563.
Ishida, T., Aida, M., Takada, S. and Tasaka, M. (2000). Involvement of CUP-SHAPED COTYLEDON genes in gynoecium and ovule development in Arabidopsis thaliana. Plant Cell Physiol. 41: 60-67.
Kayes, J.M. and Clark, S.E.( 1998). CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development 125: 3843-51.
Kikuchi, K., Ueguchi-Tanaka, M., Yoshida, T.K., Nagato, Y., Matsusoka, M. and Hirano, H.Y. (1999). Molecular analysis of the NAC gene family in rice. Mol. Gen. Genet. 262: 1047-1051.
Kim, S.Y., Kim, S.G., Kim, Y.S., Seo, P.J., Bae, M., Yoon, H.K. and Park, C.M. (2007). Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation. Nucl.Acids Res. 35: 203-213.
Kim, Y.S., Kim, S.G., Park, J.E., Park, H.Y., Lim, M.H., Chua, N.H. and Park, C.M. (2006). A Membrane-Bound NAC Transcription Factor Regulates Cell Division in Arabidopsis. Plant Cell 18: 3132-44.
Laufs, P., Peaucelle, A., Morin, H. and Traas, J. (2004). MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131: 4311-4322.
Laux, T., Mayer, K.F., Berger, J. and Jurgens, G. (1996). The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122: 87-96.
Lenhard, M., Bohnert, A., Jurgens, G. and Laux, T. (2001). Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 105: 805-814.
Lenhard, M., Jurgens, G. and Laux, T. (2002). The WUSCHEL and SHOOTMERISTEMLESS genes fulfill complementary roles in Arabidopsis shoot meristem regulation. Development 129: 3195-3206.
Leyser, H.M.O. and Furner, I.J. (1992). Characterisation of three shoot apical meristem mutants of Arabidopsis thaliana. Development 116: 397-403.
Lohmann, J., Hong, R., Hobe, M., Busch, M., Parcy, F., Simon, R. and Weigel, D. (2001). A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105: 793-803.
Lu, P.L., Chen, N.Z., An, R., Su, Z., Qi, B.S., Ren, F., Chen, J. and Wang, X.C. (2007). A novel drought-inducible gene, ATAF1, encodes a NAC family protein that negatively regulates the expression of stress-responsive genes in Arabidopsis. Plant Mol. Biol. 63: 289-305.
Mitsuda, N., Seki, M., Shinozaki, K. and Ohme-Takagi, M. (2005). The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 17: 2993-3006
Neuteboom, L.W., Veth-Tello, L.M., Clijdesdale, O.R., Hooykaas, P.J. and van der Zaal, B.J. (1999). A novel subtilisin-like protease gene from Arabidopsis thaliana is expressed at sites of lateral root emergence. DNA Res. 6: 13-19.
Olsen, A.N., Ernst, H.A., Lo Leggio, L., Johansson, E., Larsen, S. and Skriver, K. (2004). Preliminary crystallographic analysis of the NAC domain of ANAC, a member of the plant-specific NAC transcription factor family. Acta Crystallogr D Biol Crystallogr. 60: 112-115.
Ooka, H., Satoh, K., Doi, K., Nagata, T., Otomo, Y., Murakami, K.,Matsubara, K., Osato, N., Kawai, J., Carninci, P., Hayashizaki, Y., Suzuki,K., Kojima, K., Takahara, Y., Yamamoto, K. and Kikuchi, S. (2003). Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res. 10: 239-247.
Reddy G.V. (2008). Live-imaging stem-cell homeostasis in the Arabidopsis shoot apex. Curr Opin Plant Biol. 11: 88-93.
Ren, T., Qu, F. and Morris, T.J. (2000). HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell 12: 1917-1925.
Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B. and Bartel, D.P. (2002). Prediction of plant microRNA targets. Cell 110: 513-520.
Riechmann, J.L., Heard, J., Martin, G., Reuber, L., Jiang, C., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O.J., Samaha, R.R., Creelman, R., Pilgrim, M., Broun, P., Zhang, J.Z., Ghandehari, D., Sherman, B.K. and Yu, G. (2000). Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290: 2105-2110.
Robertson, M. (2004). Two transcription factors are negative regulators of gibberellin response in the HvSPY-signaling pathway in barley aleurone. Plant Physiol. 136: 1-15.
Rojo, E., Sharma, V.K., Kovaleva, V., Raikhel, N.V. and Fletcher, J.C. (2002). CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway. Plant Cell 14: 969-977.
Ruiz-Medrano, R., Xoconostle-Cázares, B. and Lucas, W.J. (1999). Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development 126: 4405-4419.
Sablowski, R.W.M. and Meyerowitz, E.M. (1998). A homolog of NO APICAL MERISTEM is immediate target of the floral homeotic genes APETALA3/ PISTILLATA. Cell 92: 93-103.
Schoof, H., Lenhard, M., Haecker, A., Mayer, K.F.,Jurgens, G. and Laux, T. (2000). The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100: 635-644.
Sieburth, L.E. and Meyerowitz, E.M.(1997). Molecular dissection of the AGAMOUS control region shows that cis elements for spatial regulation are located lntragenically. Plant Cell 9: 355-365.
Sieburth, L. E., Running, M. P. and Meyerowitz, E. M. (1995). Genetic separation of third and fourth whorl functions of AGAMOUS. Plant Cell 7: 1249-1258.
Soltis, D.E., Soltis, P.S., Albert, V.A., Oppenheimer, D.G., dePamphilis, C.W., Ma, H., Frohlich, M.W. and Theissen, G. (2002). Missing links: the genetic architecture of flowers and floral diversification. Trends Plant Sci. 7: 22-31.
Souer, E., von Houwelingen, A., Kloos, D., Mol, J. and Koes, R. (1996). The No Apical Meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell 85: 159-170.
Szymkowiak, E.J. and Sussex, I.M. (1996). What chimeras can tell us about plant development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47: 351-376.
Takada, S., Hibara, K., Ishida, T. and Tasaka, M. (2001). The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128: 1127-1135.
Tran, L.S., Nakashimaa, K., Sakumaa, Y., Simpsonb, S., Fujitaa, Y.,Maruyamaa, K., Fujitac, M., Sekic, M., Shinozakic, K. and Yamaguchi-Shinozaki D.K. (2004). Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought responsive cis-element in the EARLY RESPONSIVE TO DEHYDRATION STRESS 1 promoter. Plant Cell 16: 2481-2498.
Vierstra, R.D. (2003). The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci. 8: 135-142.
Vroemen, C.W., Mordhorst, A.P., Albrecht, C., Kwaaitaal, M.A. and de Vries, S.C. (2003). The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell 15: 1563-1577.
Weigel, D. and Jürgens, G. (2002). Stem cells that make stems. Nature 415: 751-754.
Weir, I., Lu, J., Cook, H., Causier, B., Schwarz-Sommer, Z. and Davies, B. (2004). CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum.Development 131: 915-922.
Wellmer, F., Riechmann, J.L., Alves-Ferreira, M. and Meyerowitz, E.M. (2004). Genome-wide analysis of spatial gene expression in Arabidopsis flowers. Plant Cell 16: 1314-1326.
Xie, Q., Frugis, G., Colgan, D. and Chua, N.H. (2000). Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 14: 3024-3036.
Xie, Q., Guo, H.S., Dallman, G., Fang, S., Weissman, A.M. and Chua, N.H. (2002). SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 419: 167-170.
Xie, Q., Sanz-Burgos, A.P., Guo, H., Garcia, J.A. and Gutierrez, C. (1999). GRAB proteins novel members of the NAC domain family isolated by their interaction with a geminivirus protein. Plant Mol. Biol. 39: 647-656.
Xu, Y.Y. and Chong, K. (2005). Progress in research on plant stem cell organizer gene WUSCHEL. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao. 31: 461-468.
Zhong, R., Demura, T. and Ye, Z.H. (2006). SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell 18: 3158-3170.
謝文蘋 (2006) 百合MADS Box基因之功能性分析及其相互作用以調控花器形成機制之探討,國立中興大學生物科技學研究所碩士論文。
Alvarez-Buylla, E.R., Liljegren, S.J., Pelaz, S., Gold, S.E., Burgeff, C., Ditta, G.S., Vergara-Silva, F. and Yanofsky, M.F. (2000). MADS box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J. 24: 457-466.
Asada, Y., Kasai, N., AdachiI, Y., Kanno, A., Ito, N., Yun, P.-Y. and Masuda, K. (2006). A vegetative line of asparagus (Asparagus officinalis) with a homeotic change in flower development is correlated with a functional deficiency in class-B MADS-box genes. J. Hortic. Sci. Biotech. 81: 874-882.
Burgeff, C., Liljegren, S.J., Tapia-Lopez, R., Yanofsky, M.F. and Alvarez-Buylla, E.R. (2002). MADS box gene expression in lateral primordia, meristems and differentiated tissues of Arabidopsis thaliana roots. Planta 214: 365-372.
Ditta, G., Pinyopich, A., Robles, P., Pelaz, S. and Yanofsky, M.F. (2004). The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol. 14: 1935-1940.
Egea-Cortines, M. and Davies, B. (2000). Beyond the ABCs: Ternary complex formation in the control of floral organ identity. Trends Plant Sci. 5: 471-476.
Egea-Cortines, M., Saedler, H. and Sommer, H. (1999). Ternary complex formation between the MADS-box proteins SQUAMOSA, DEFICIENS and GLOBOSA is involved in the control of floral architecture in Antirrhinum majus. EMBO J. 18: 5370-5379.
Fan, H.Y., Hu, Y., Tudor, M. and Ma, H. (1997). Specific interactions between the K domains of AG and AGLs, members of the MADS domain family of DNA binding proteins. Plant J. 12: 999-1010.
Favaro, R., Pinyopich, A., Battaglia, R., Kooiker, M., Borghi, L., Ditta, G.,
Yanofsky, M.F., Kater, M.M. and Colombo, L. (2003). MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant cell 15: 2603-2611.
Henschel, K., Kofuji, R., Hasebe, M., Saedler, H., Münster, T. and Theißen, G. (2002). Two ancient classes of MIKC-type MADS box genes are present in the moss physcomitrella patens. Mol. Biol. Evol. 19: 801-814.
Honma, T. and Goto, K. (2001). Complexes of MADS box proteins are sufficient to convert leaves into floral organs. Nature 409: 525-529.
Huang, K., Louis, J. M., Donaldson, L., Lim, F.L., Sharrocks, A.D. and Clore, G.M. (2000). Solution structure of the MEF2A-DNA complex: structural basis for the modulation of DNA bending and specificity by MADS box transcription factors. EMBO J. 19: 2615-2628.
Immink, R.G.H., Ferrario, S., Busscher-Lange, J., Kooiker, M., Busscher, M. and Angenent, G.C. (2003). Analysis of the petunia MADS box transcription factor family. Mol. Genet. Genomics 268: 598-606.
Kanno, A., Nakada, M., Akita, Y. and Hirai, M. (2007). Class B gene expression and the modified ABC model in nongrass monocots. ScientificWorldJournal. 7: 268-279.
Kaufmann, K., Melzer, R. and Theißen, G. (2005). MIKC-type MADS domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347: 183-198.
Liljegren, S.J., Ditta, G.S., Eshed, Y., Savidge, B., Bowman, J.L. and Yanofsky, M.F. (2000). SHATTERPROOF MADS box genes control seed dispersal in Arabidopsis. Nature 404: 766-770.
Ng, M. and Yanofsky, M.F. (2001). Function and evolution of the plant MADS box gene family. Nature Reviews 2: 186-195.
Norman, C., Runswick, M., Pollock, R. and Treisman, R. (1988). Isolation and properties of cDNA clones encoding SRF, a transcription factor that binds to the c-Fos serum response element. Cell 55: 989-1003.
Pařenicová, L., de Folter, S., Kieffer, M., Horner, D.S., Favalli, C.,Busscher, J., Cook, H. E., Ingram, R.M., Kater, M.M., Davies, B., Angenent, G.C. and Colombo, L. (2003). Molecular and phylogenetic analyses of the complete MADS box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15: 1538-1551.
Passmore, S., Maine, G.T., Elble, R., Christ, C. and Tye, B.K. (1988) .Saccharomyces cerevisiae protein involved in plasmid maintenance is necessary for mating of MATα cells. J. Mol. Biol. 204: 593-606.
Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E. and Yanofsky, M.F. (2000). B and C floral organ identity functions require SEPALLATA MADS box genes. Nature 405: 200-203.
Pelaz, S., Gustafson-Brown, C., Kohalmi, S.E., Crosby, W.L. and Yanofsky, M.F. (2001). APETALA1 and SEPALLATA3 interact to promote flower development. Plant J. 26: 385-394.
Pinyopich, A., Ditta, G.S., Savidge, B., Liljegren, S.J., Baumann, E., Wisman, E. and Yanofsky, M.F. (2003). Assessing the redundancy of MADS box genes during carpel and ovule development. Nature 424: 85-88
Riechmann, J.L., Krizek, B.A. and Meyerowitz, E.M. (1996). Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. USA 93: 4793-4798.
Sieburth, L.E., Running, M.P. and Meyerowita, E.M. (1995). Genetic separation of third and fourth whorl functions of AGAMOUS. Plant Cell 7: 1249-1258.
Sommer, H., Beltran, J.P., Huijser, P., Pape, H., Lonnig, W.E., Saedler, H. and Schwarz-Sommer, Z. (1990). DEFICIENS, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9: 605-613.
Theißen, G. (2001). Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4: 75-85.
Theißen, G., Kim, J.T. and Saedler, H. (1996). Classification and phylogeny of the MADS-box multigene family suggest defined roles of MADS-box gene subfamilies in the morphological evolution of eukaryotes. J. Mol. Evol. 43: 484-516.
Theißen, G. and Saedler, H. (2001) Plant biology: Floral quartets. Nature 409: 469-471.
Theißen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J. T., Munster, T., Winter, K. U. and Saedler, H. (2000). A short history of MADS box genes in plants. Plant Mol. Biol. 42: 115-149.
Tzeng, T. Y., Liu, H. C. and Yang, C. H. (2004). The C-terminal sequence of LMADS1 is essential for the formation of homodimers for B function proteins. J. Biol. Chem. 279, 10747-10755.
Yang, Y. and Jack, T. (2004). Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins. Plant Mol. biol. 55: 45-59.
Yang, Y., Fanning, L. and Jack, T. (2003a). The K domain mediates heterodimerization of the Arabidopsis floral organ identity proteins, APETALA3 and PISTILLATA. Plant J. 33: 47-59.
Yang, Y., Xiang, H. and Jack, T. (2003-b). Pistillata-5, an Arabidopsis B class mutant with strong defects in petal but not in stamen development. Plant J. 33: 177-188.
Yanofsky, M.F., Ma, H., Bowman, J.L., Drews, G.N., Feldmann, K.A. and Meyerowitz, E.M. (1990). The protein encoded by the Arabidopsis homeotic gene agamous resembles transcription factors. Nature 346: 35-39.
Zachgo, S., Silva, E.D., Motte, P., Trobner, W., Sacdler, H. and Schwarzsommer, Z. (1995). Functional analysis of the Antirrhinum floral homeotic DEFICIENS gene in vivo and in vitro by using a temperature-sensitive mutant. Development 121: 2861-2876.
Zahn L.M., Leebens-Mack J, DePamphilis C.W., Ma H. and Theissen G. (2005). To B or Not to B a flower: the role of DEFICIENS and GLOBOSA orthologs in the evolution of the angiosperms.J Hered. 96: 225-40.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊