跳到主要內容

臺灣博碩士論文加值系統

(34.204.180.223) 您好!臺灣時間:2021/08/05 14:41
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪愷藝
研究生(外文):Weilli Hong
論文名稱:氫化非晶矽多層膜太陽電池
論文名稱(外文):Hydrogenated Amorphous Silicon Multilayer solar cells
指導教授:江雨龍江雨龍引用關係黃家華黃家華引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:39
中文關鍵詞:薄膜太陽電池矽奈米微粒多層膜
外文關鍵詞:nanoparticlesilicon thin film solar cellmultilayer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:186
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氫化非晶矽薄膜的結構性質可以用週期性空間分布不同鍵結的多層膜結構加以調變。本論文的工作為製作矽奈米微粒(Silicon nanoparticle)薄膜及矽奈米微粒/氫化非晶矽多層膜,並將不同多層膜做為p-i-n太陽電池的i層,以探討其對太陽電池性能的影響。
矽奈米微粒薄膜及太陽電池是以13.56 MHz電漿加強化學氣相沈積(PECVD)系統製作。氫化非晶矽多層膜的製作方法主要是以週期性調變功率分別沉積矽奈米微粒層及氫化非晶矽層薄膜,矽奈米微粒層是以高功率射頻電漿功率沉積,而氫化非晶矽層是以低功率沉積,其目的是阻斷矽奈米微粒層之生長。試片的特性以橢圓偏光儀量測薄膜的介電係數(ε1, ε2),以掃描式電子顯微鏡量測薄膜的表面結構與矽奈米微粒之大小與密度,以X光繞射儀測量多層膜週期結構及以I-V機台量測薄膜的光電導、暗電導以及太陽電池的電流電壓特性。
掃描式電子顯微鏡觀察結果顯示矽奈米微粒之大小與密度會隨著電漿功率提升而增大,而電漿開啟時間的增加及膜厚的增加亦使得微粒的大小增大。多層膜實驗結果顯示,以電漿功率週期變化的75W/20W至263W/20W多層膜之光暗電導比值隨著電漿增大(75至263W)而遞減;其中以電漿功率75W/20W多層膜試片,擁有較大的光暗電導比約2.4×105,而由XRD可以觀察到因週期結構所產生的Bragg第一及第二繞射峰,以降低電漿功率所製作的多層膜擁有較佳的界面與平整度。
P-i-n太陽電池實驗結果顯示,i層採用38W/20W有較高的開路電壓,而其效率與理想因子為次佳;i層採用75W/20W之多層膜擁有較佳效率、最佳短路電流及較低理想因子;i層採用較高的電漿功率(113W)之各項效能較差。以週期變化功率調變矽奈米微粒大小與a-Si:H薄膜交替形成的多層膜對太陽電池性能有明顯影響,適當的控制功率大小及子層厚度可以獲得較佳的太陽電池效能。
The structural properties of hydrogenated amorphous silicon (a-Si:H) thin films can be modulated by periodically spatial distribution of various Si-Si and Si-H bonds. In this thesis, silicon nanoparticle (nc-Si:H) thin film and nc-Si:H/a-Si:H multilayers are fabricated, and these multilayers are applied to the i-layer of p-i-n solar cells to investigate the influence of the performance of solar cells.
All samples are deposited by 13.56 MHz plasma enhanced chemical vapor deposition (PECVD). The nc-Si:H/a-Si:H multilayers are fabricated by periodical modulation of RF power. The formation of nanocrystal silicon in the nc-Si:H sublayers are controlled by high RF power deposition. The a-Si:H sublayers are typically deposited by low power. The role of a-Si:H sublayers is to block the further growth of nc-Si:H. The dielectric constants (ε1 and ε2), the size and density, photo and dark conductivity of nc-Si:H films and the periodical structure of nc-Si:H/a-Si:H multilayers and I-V characteristics of solar cells are measured and analyzed by spectral ellipsometer (SE), field emission scanning electron micrometer (FESEM), x-ray diffraction (XRD) and I-V measurement system.
FESEM observations reveal that the size and density of silicon nanoparticle increased with increasing RF power, and the size of silicon nanoparticle also enlarges with increasing the plasma turn-on time and with increasing the thickness of the film. The photo to dark conductivity ratios of 75W/20W to 263W/20W nc-Si:H/a-Si:H multilayers are decreased by increasing the RF power from 75 to 263 W for nc-Si:H deposition. The 75W/20W nc-Si:H/a-Si:H multilayer has the highest photo to dark conductivity ratio of about 2.4×105. The XRD θ-2θ patterns show that all multilayers have Bragg’s n = 1 and n = 2 two diffraction peaks. All multilayers deposited by low RF power have sharpness interfaces and uniformity.
The solar cell with i-layer of 38W/20W nc-Si:H/a-Si:H multilayer has higher open-circuit voltage. That with i-layer of 75W/20W nc-Si:H/a-Si:H multilayer has the highest efficiency, short-circuit current, and lower ideal factor. The properties of the solar cell with i-layer of 113W/20W nc-Si:H/a-Si:H multilayer is the lowest. The structural properties of nc-Si:H/ a-Si:H multilayers can be modulated by various RF power. Controlling the deposition RF power and the thickness of sublayers in the multilayers can adjust and improve the performance of solar cells.
第一章 簡介
1.1 前言,研究背景與動機 1
1.2 文獻探討 3
1.3 研究目的 7
1.4 論文架構 7
第二章 研究方法
2.1 製程設備 8
2.2 矽奈米微粒薄膜之製作 9
2.2.1 試片清洗 9
2.2.2 實驗流程 11
2.2.3 薄膜設計概念 12
2.2.4 單層膜薄膜參數設計 13
2.2.5 多層膜薄膜參數設計 16
2.3 薄膜設計 18
2.4 氫化非晶矽多層膜太陽電池製作 21
2.4.1氫化非晶矽多層膜太陽能電池的參數設計 22
2.4.2太陽電池之光電特性分析 23

第三章 實驗結果與討論
3.1 單層膜量測分析與探討 27
3.1.1 薄膜SE量測與分析 27
3.1.2 單層膜結果與討論 33
3.2 多層膜分析與探討 34
3.2.1 多層膜SE量測與分析 34
3.2.2 多層膜XRD量測與分析 36
3.2.3 多層膜光學性質量測 40
3.3 太陽電池分析與探討 41
3.3.1 太陽電池光學性質量測 41
3.3.2 太陽電池結果與討論 44
第四章 結論 45
第五章 未來工作 46
參考文獻 47
[1] C. Longeaud a,*, J.P. Kleider a, P. Roca i Cabarrocas b, S. Hamma b, R. Meaudre c,M. Meaudre c , Journal of Non-Crystalline Solids 227–230_1998.96–99
[2] Pere Roca i Cabarrocas‡, Anna Fontcuberta i Morral, Sarra Lebib,and
Yves Poissant, Pure Appl. Chem., Vol. 74, No. 3, pp. 359–367, 2002
[3]A. Fontcuberta i Morral_, P. Roca i Cabarrocas,Thin Solid Films 383(2001)161-164
[4] A. Fontcuberta i Morral a, H. Hofmeister b, P. Roca i Cabarrocas a,*
Journal of Non-Crystalline Solids 299–302 (2002) 284–289
[5]S. Tchakarov a,*, Debajyoti Das a, O. Saadane b, A.V. Kharchenko a, V. Suendo a,F. Kail a, P. Roca i Cabarrocas a,. Journal of Non-Crystalline Solids 338–340 (2004) 668–672
[6]P. Chatterjee b, P. Roca i Cabarrocas a,* Journal of Non-Crystalline Solids 299–302 (2002) 1173–1178
[7] Christian Godet , Phil Morin, Pere Rota i Cabarrocas, Journal of Non-Crystalline Solids 198-200 (1996) 449-452
[8] S Vignoli†§, R Butt´e†, R Meaudre†, M Meaudre† and P Roca I Cabarrocas, J. Phys.: Condens. Matter 11 (1999) 8749–8757.
[9]P. Roca i Cabarrocas *, Journal of Non-Crystalline Solids 266-269 (2000) 31-37
[10]R. Butt_e a,*, S. Vignoli a, M. Meaudre a, R. Meaudre a, O. Marty a,
L. Saviot b,P. Roca i Cabarrocas c , Journal of Non-Crystalline Solids
266-269 (2000) 263-268
[11]A. Fontcuberta i Morral and P. Roca i Cabarrocas*, PHYSICAL REVIEW B 69, 125307 (2004)
[12]P. Roca i Cabarrocas*, A. Fontcuberta i Morral, Y. Poissant,Thin Solid Films 403 –404 (2002) 39–46
[13] Pere Roca i Cabarrocas, N Chaˆabane, A V Kharchenko and S Tchakarov, Plasma Phys. Control. Fusion 46 (2004) B235–B243
[14]P. Roca i Cabarrocas *,Journal of Non-Crystalline Solids 266-269 (2000) 31-37
[15]R. Butt_e a,*, S. Vignoli a, M. Meaudre a, R. Meaudre a, O. Marty a,
L. Saviot b,P. Roca i Cabarrocas c, Journal of Non-Crystalline Solids
266-269 (2000) 263-268
[16] Roca i Cabarrocas, P.; Hamma, S.; Sharma, S.N.; Viera, G.; Bertran, E.; Costa, J., Journal of Non-Crystalline Solids, v 227-230, n pt 2, May 2, 1998, p 871-875
[17] A.V.Khar chenko, V.Suendo, P.Roca i Cabarrocas, Thin Solid Films 427 (2003) 236–240
[18] Pere Roca i Cabarrocas, Patrick Gay, and Aomar Hadjadj, J. Vac. Sci. Technol. A 14(2), Mar/Apr 1996
[19] V.Suendo, A.V.Khar chenko, P.Roca i Cabarrocas, Thin Solid Films 451 –452 (2004) 259–263
[20] Bronner, W.; Kleider, J.P.; Bruggemann, R.; Roca i Cabarrocas, P.; Mencaraglia, D.; Mehring, M., Journal of Non-Crystalline Solids, v 299-302, April, 2002, Suppl. 1, p 551-555
[21] Nihed Cha^abane , Pere Roca i Cabarrocas, Holger Vach, Journal of Non-Crystalline Solids 338–340 (2004) 51–55
[22] O. Saadane,S. Lebib and A. V. Kharchenko, C. Longeaud, R. Roca i Cabarrocas, JOURNAL OF APPLIED PHYSICS VOLUME 93, NUMBER 11 1 JUNE 2003
[23] P. Roca i Cabarrocas*, A. Fontcuberta i Morral, Y. Poissant, Thin Solid Films 403 –404 (2002) 39–46
[24] A Hadjadj, A Beorchia, P Roca i Cabarrocas, L Boufendi, S Huet and J L Bubendorff, J. Phys. D: Appl. Phys. 34 (2001) 690–699
[25] A.Hadjadj, A.Beorchia, P.Roca i Cabarrocas, L.Boufendi, Thin Solid Films 403 –404 (2002) 139–143
[26] La¨ıfa Boufendi and Andr´e Bouchoule, Plasma Sources Sci. Technol. 11 (2002) A211–A218
[27] L. Boufendi, A. Bouchoule,a) R. K. Porteous, b, J. Ph. Blondeau, A. Plain, and C. Laure, J. Appl. Phys. 73 (5), 1 March 1993
[28] Hollenstein, Plasma Physics and Controlled Fusion, v 42, n 10, Oct, 2000, p R93-R104
[29] M. Brinza, G.J. Adriaenssens, A. Abramov, P. Roca i Cabarrocas, Thin Solid Films 515 (2007) 7504 –7507
[30] A A Howling, L Sansonnens, J-L Dorier and Ch Hollenstein, J. Phys. D: Appl. Phys. 26 (1993) 1003-1006.
[31] J. Dutta, H. Hofmann, R. Houriet, H. Hofmeister, C. Hollenstein, Colloids and Surfaces A: Physicochemical and Engineering Aspects 127 (1997) 263-272
[32] Masaharu Shiratani, Kazunori Koga, Soichiro Ando, Toshihisa Inoue, Yukio Watanabe, Shota Nunomura, Michio Kondo, Surface & Coatings Technology 201 (2007) 5468–5471
[33] Y Watanabe, J. Phys. D: Appl. Phys. 39 (2006) R329–R361
[34] Tomohide Kakeya, Kazunori Koga, Masaharu Shiratani, Yukio Watanabe, Michio Kondo, Thin Solid Films 506– 507 (2006) 288 – 291
[35] Y. Arai, M. Ishii, H. Shinohara, and Shumpei Yamazaki, IEEE ELECTRON DEVICE LETTERS, VOL. 12, NO. 8, AUGUST 1991
[36] Yukio Watanabe, Masaharu Shiratani, Kazunori Koga, Physica Scripta, Vol. T89, 29-32, 2001
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top