(3.237.20.246) 您好!臺灣時間:2021/04/15 13:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:江仁豪
研究生(外文):Ren-Hao Jiang
論文名稱:利用濕式平台蝕刻技術製作氮化銦鎵發光二極體
論文名稱(外文):Fabrication of the InGaN-based Light-Emitting Diodes Through the Wet Mesa Etching Technique
指導教授:林佳鋒林佳鋒引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
畢業學年度:96
語文別:中文
論文頁數:72
中文關鍵詞:光輔助電化學氮化鎵
外文關鍵詞:PhotoelectrochemicalGaN
相關次數:
  • 被引用被引用:0
  • 點閱點閱:105
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文中利用濕式平台蝕刻製程取代傳統電漿乾式蝕刻製程用以製作氮化銦鎵材料發光二極體,此濕式平台蝕刻製程主要為利用光輔助電化濕式氧化法於p型氮化鎵、氮化銦鎵活性層及n型氮化鎵上進行氧化蝕刻反應,進而定義出平台區範圍。經由濕式平台蝕刻製程之發光二極體會形成倒角結構以及在n型氮化鎵上形成微粗糙表面,增加光取出效率,發光強度較乾式蝕刻製程提高42.7%。量測-5V時,濕式平台蝕刻製程及乾式平台蝕刻製程之反向漏電流分別為4.91×10-8A及7.58×10-8A,其原因為藉由濕式平台蝕刻能夠避免經由乾式平台蝕刻製程所產生之電漿損傷,因此可以降低反向漏電流。
  此外,濕式平台蝕刻製程會於平台區側壁p型氮化鎵下發生側向蝕刻,此過程能夠降低氮化銦鎵量子井所受之應力。因此,我們將分為三個區塊來探討乾式平台蝕刻製程及濕式平台蝕刻製程發光二極體由平台中心至透明導電膜邊緣之壓電場情況。可以發現到於濕式平台蝕刻製程顯微光譜波長最大藍移量發生於透明導電膜邊緣為9.1nm (55meV)。藉由量測變偏壓之顯微光激螢光光譜系統去定義其壓電場之大小,發現到在濕式平台蝕刻製程之發光二極體透明導電膜邊緣的最大藍移點為在外加偏壓-13V時,但乾式平台蝕刻製程之發光二極體卻未看到平坦電壓。經由計算,濕式平台蝕刻製程之發光二極體其壓電場為-1.17MV/cm,而乾式平台蝕刻製程之發光二極體的壓電場預估大於-1.9MV/cm,所以壓電場在藉由濕式平台蝕刻製程後小於乾式平台蝕刻製程。
In this thesis, InGaN-based Light Emitting Diodes (LEDs) were fabricated through wet mesa etching (WME) process to substitute for the conventional plasma dry etching process. The etching process were consisted of photoelectrochemical wet oxidation and etching processes occurred on p-type GaN:Mg layer, InGaN active layer, and n-type GaN:Si layer to define mesa region. The light output power of WME-LED had 42.7% enhancement by forming the undercut structure and micro-roughened n-type GaN:Si surface to increase the light extraction efficiency. The reverse leakage currents measured at -5V of WME-LED (4.91×10-8A) had been suppressed lower than standard LED (7.58×10-8A) by avoiding plasma damage during dry mesa etching process.
  Furthermore, the wet mesa etching process produced lateral etching under p-GaN at mesa sidewall region and this process reduced strain in InGaN quantum well layers. We divided the three regions to discuss the dry mesa etching (DME) LED and WME-LED from mesa center to TCL edge region. The maximum PL spectrum shift of the InGaN/GaN MQW was 9.1nm (55meV) at TCL-edge region in WME-LED. The piezoelectric fields in WME-LED were identified by using bias dependent micro-PL system. The applied reverse bias voltage was used to compensate the piezoelectric fields in InGaN well layer. We observe that the maximal blue shift of the PL peak at reverse bias -13V at TCL edge region, but the DME-LED did not observe the flat-band voltage (~-18V). The piezoelectric field (-1.17MV/cm) in WME-LED through the PEC etching process is lower than DME-LED (high than -1.9MV/cm) at TCL edge region.
摘要 i
Abstract ii
章節目錄 iii
圖表目錄 v
第一章 序論 1
1-1 發光二極體應用 1
1-2 Ⅲ-Ⅴ族半導體簡介 1
1-3 Ⅲ-Ⅴ族氮化鎵材料探討 1
1-4氧化與蝕刻製程技術 2
1-5 研究動機 2
第二章 原理及文獻回顧 4
2-1 半導體發光原理 4
2-2 發光二極體工作原理 4
2-3 蝕刻技術 5
2-3-1 乾式蝕刻技術 5
2-3-2 濕式蝕刻技術 6
2-4 光輔助電化學氧化法 6
2-5 壓電場(Piezoelectric Field)的形成 7
2-5-1 應變(Strain)的產生 8
2-5-2 壓電效應(Piezoelectric Effect) 8
2-5-3 史托克位移(Stockes Shift) 10
2-5-4 外加偏壓對量子侷限史達克效應(QCSE)的影響 10
第三章 實驗流程與儀器架構 25
3-1 氮化鎵試片製備 25
3-1-1 氮化鎵試片磊晶結構 25
3-1-2 氮化鎵試片平台區蝕刻方式 25
3-2 實驗設備圖 26
3-3 分析儀器 26
3-3-1 光學顯微鏡(Optical Microscope, OM) 26
3-3-2 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) 27
3-3-3 電激發螢光光譜(Electroluminescence, EL) 27
3-3-4 發散角量測(Radiation Pattern Measurement) 27
3-3-5 測厚儀(Alpha step, α-step) 28
3-3-6 顯微光激螢光系統(μ-PL) 28
3-4 實驗流程 28
第四章 濕式平台蝕刻之發光二極體特性探討 34
4-1 濕式平台蝕刻製程 34
4-1-1 濕式平台蝕刻過程 34
4-1-2 顯微光激螢光光譜分析光輔助電化學氧化製程 35
4-1-3 光輔助電化學氧化深度變化 35
4-2 濕式平台蝕刻之發光二極體表面形貌分析 36
4-3濕式平台蝕刻之發光二極體電性分析 37
4-3-1 濕式平台蝕刻之電激螢光光譜分析 37
4-3-2 操作電壓與注入直流電流之特性曲線分析 37
4-3-3 濕式平台蝕刻之發光二極體小電流量測 38
4-3-4 操作電流對出光強度曲線分析 39
4-3-5 濕式平台蝕刻之發光二極體發散角分析 40
4-4 濕式平台蝕刻之發光二極體光性分析 40
4-4-1 濕式平台蝕刻之發光二極體光激螢光光譜 40
4-4-2 改變光激發功率強度探討壓電場的影響 41
4-4-3 改變外加偏壓探討壓電場對能帶變化影響 42
第五章 結論與未來展望 66
5-1 結論 66
5-2 未來展望 66
參考文獻 69
[1] G. Fasol, Science, “Room-Temperature Blue Gallium Nitride Laser Diode,” Vol. 272, pp. 1751 (1996)
[2] F. A. Ponce and D. P. Bour, Nature, “Nitride-based semiconductors for blue and green light-emitting devices,” Vol. 386, pp. 351-359 (1997)
[3] J. W. Seo, C. S. Oh, H. S. Jeong, J. W. Yang, K. Y. Lim, C. J. Yoon, and H. J. Lee, Appl. Phys. Lett., “Bias-assisted photoelectrochemical oxidation of n-GaN in H2O,” Vol. 81, pp. 1029 (2002)
[4] T. Rotter, D. Mistele, J. Stemmer, F. Fedler, J. Aderhold, and J. Graul, Appl. Phys. Lett., “Photoinduced oxide film formation on n-type GaN surfaces using alkaline solutions,” Vol. 76, pp. 3923 (2000)
[5] Dejum Fu, Shavakat U. Yuldashev, Nam Hwa Kim, Jpn. J. Appl. Phys., “A Study of Photoelectrochemical Oxidation of GaN Epilayers by Extrinsic Photoconductivity,” Vol. 40, pp. L10-L12 (2001)
[6] L. H. Peng, C.-H. Liao, and Y.-C. Hsu, Appl. Phys. Lett., “Photoenhanced wet oxidation of gallium nitride,” Vol. 76, pp. 511 (2000)
[7] Yoshitaka Nakanoa and Tetsu Kachi, Appl. Phys. Lett., “Electrical properties of thermally oxidized p-GaN metal–oxide–semiconductor diodes,” Vol. 82, pp. 2443 (2003)
[8] D. J. Fu, T. W. Kang, Sh. U. Yuldashev, N. H. Kim, S. H. Park, and J. S. Yun, Appl. Phys. Lett., “Effect of photoelectrochemical oxidation on properties of GaN epilayers grown by molecular beam epitaxy,” Vol. 78, pp. 1309 (2001)
[9] C. B. Vartuli, S. J. Pearton, C. R. Abernathy, J. D. MacKenzie, E. S. Lambers, and J. C. Zolper, J. Vac. Sci. Technol. B, “High temperature surface degradation of III–V nitrides,” Vol. 14, pp. 3523 (1996)
[10] S. J. Pearton, J. Appl. Phys., “GaN: Processing, defects, and devices,” Vol. 86, pp. 1 (1999)
[11] M. Ferhat, and F. Bechstedt, Phys. Rev. B, “First-principles calculations of gap bowing in InxGa1-xN and InxAl1-xN alloys: Relation to structural and thermodynamic properties,” Vol. 65, pp. 075213 (2002)
[12] Kittel, Introduction to Solid State Physical
[13] L. Macht, P. R. Hagenan, S. Haffouz, and P. K. Larsen, Appl. Phys. Lett., “Microphotoluminescence mapping of laterally overgrown GaN layers on patterned Si (111) substrates,” Vol. 87, pp. 131904 (2005)
[14] Su-Huai Wei, NCPV and Dolar Program Review Meeting, pp. 713 (2003)
[15] T. Takeuchi, C. Kisielowski, V. Iota, B. A. Weinstein, L. Mattos, N. A. Shapiro, J. Kruger, E. R. Weber, and J. Yang, Appl. Phys. Lett., “Near-field scanning optical microscopy studies of V-grooved quantum wire lasers,” Vol. 73, pp. 1691 (1998)
[16] P. Perlin, C. Kisielowski, V. Iota, B. A. Weinstein, L. Mattos, N. A. Shapiro, J. Kruger, E. R. Weber, and J. Yang, Appl. Phys. Lett., “InGaN/GaN quantum wells studied by high pressure, variable temperature, and excitation power spectroscopy,” Vol. 73, pp. 2778 (1998)
[17] H. Gotoh, T. Tawara, Y. Kobayashi, N. Kobayashi, and T. Saitoh, Appl. Phys. Lett., “InGaN/GaN quantum wells studied by high pressure, variable temperature, and excitation power spectroscopy,” Vol. 83, pp. 4791 (2003)
[18] Lun Daia, and Bei Zhang, J. Appl. Phys., “Comparison of optical transitions in InGaN quantum well structures and microdisks,” Vol. 89, pp. 4951 (2001)
[19] Fabio Bernardini, and Vincenzo Fiorentini, Phys. Rev. B, “Macroscopic polarization and band offsets at nitride heterojunctions,” Vol. 57, pp. R9427 (1998)
[20] Hadis Morkoc, Nitride Semiconductors and Devices
[21] P. Riblet, H. Hirayama, A. Kinoshita, A. Hirata, T. Sugano, and Y. Aoyagi, Appl. Phys. Lett., “Determination of photoluminescence mechanism in InGaN quantum wells,” Vol. 75, pp. 2241 (1999)
[22] S. F. Chichibu, A. C. Abare, M. S. Minsky, S. Keller, S. B. Fleischerm, J. E. Bowers, E. Hu, U. K. Mishra, L. A. Coldern, and S. P. DenBaars, Appl. Phys. Lett., “Determination of photoluminescence mechanism in InGaN quantum wells,” Vol. 73, pp. 2006 (1998)
[23] E. Berkowicz, D. Gershoni, G. Bahir, A. C. Abare, S. P. DenBaars, and L. A. Coldren, Phys. Stat. Sol. (b), Vol. 216, pp. 291 (1999)
[24] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, and I. Akasaki, Jpn. J. Appl. Phys., “Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells,” Vol. 36, pp. L382 (1997)
[25] Y. H. Kwon, G. H. Gainer, S. Bidnyk, Y. H. Cho, J. J. Song, M. Hansen, and S. P. DenBaars, MRS Internet Journal Nitride Semiconductor Research, Vol. 5S1, pp. W12.7 (2000)
[26] T. M. Hsu, C. Y. Lai, W. H. Chang, C. C. Pan, C. C. Chuo, and J. I. Chyi, Appl. Phys. Lett., “Electroreflectance study on the polarization field in InGaN/AlInGaN multiple quantum wells,” Vol. 84, pp. 1114 (2003)
[27] C. Y. Lai, T. M. Hsu, W. H. Chang, K. U. Tseng, C. M. Lee, C. C. Chuo, and J. I. Chyi, Appl. Phys. Lett., Vol. 91, pp. 531 (2001)
[28] M. Feneberg, F. Lipski, R. Saugr, K. Thonke, T. Wunderer, B. Neubert, P. Brukner, and F. Scholz, Appl. Phys. Lett., “Piezoelectric fields in GaInN/GaN quantum wells on different crystal facets,” Vol. 89, pp. 242112 (2006)
[29] D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, and C. A. Burrus, Phys. Rev. Lett., Vol. 53, pp. 2173 (1984)
[30] C. Youtsey, I. Adesida, and G. Bulman, Appl. Phys. Lett., “Highly anisotropic photoenhanced wet etching of n-type GaN,” Vol. 71, pp. 2151 (1997)
[31] J. E. Borton, C. Cai, M. I. Nathan, P. Chow, J. M. Van Hove, A. Wowchak, and H. Morkoc, Appl. Phys. Lett., “Bias-assisted photoelectrochemical etching of p-GaN at 300K,” Vol. 77, pp. 1227 (2000)
[32] C. F. Lin, J. H. Zheng, Z. J. Yang, and J. J. Dai, Appl. Phys. Lett., “High-efficiency InGaN-based light-emitting diodes with nanoporous GaN:Mg structure,” Vol. 88, pp. 083121 (2006)
[33] E. D. Haberer, R. Sharma, A. R. Stonas, S. Nakamura, S. P. DenBaars, and E. L. Hu, Appl. Phys. Lett., “Removal of thick (>100 nm) InGaN layers for optical devices using bandgap-selective photoelectrochemical etching,” Vol. 85, pp. 762 (2004)
[34] R. Sharma, P. M. Pattison, H. Masui, R. M. Farrell, T. J. Baker, B. A. Haskall, F. Wu, S. P. DenBaars, J. S. Speck, and S. Nakamura, Appl. Phys. Lett., “Demonstration of a semipolar (10-1-3) InGaN/GaN green light emitting diode,” Vol. 87, pp. 231110 (2005)
[35] E. Kuokstis, C. Q. Chen, M. E. Gaevski, W. H. Sun, J. W. Yang, G. Simin ,and M. Asif Khan, “Polarization effects in photoluminescence of C- and M-plane GaN/AlGaN multiple quantum wells,” Appl. Phys. Lett., Vol. 81, pp. 4130 (2002)
[36] T. Onuma, H. Amaika, M. Kubota, K. Okamoto, H. Ohta, J. Ichihara, H. Takasu, and S. F. Chichibu, Appl. Phys. Lett., “Quantum-confined Stark effects in the m-plane In0.15Ga0.85N/GaN multiple quantum well blue light-emitting diode fabricated on low defect density freestanding GaN substrate,” Vol. 91, pp. 181903-1 (2007)
[37] T. Koyama, T. Onuma, H. Masui, A. Chakraborty, B. A. Haskell, S. Keller, U. K. Mishra, J. S. Speck, S. Nakamura, S. P. DenBaars, T. Sota, and S. F. Chichibu, Appl. Phys. Lett., “Prospective emission efficiency and in-plane light polarization of nonpolar m-plane InxGa1–xN/GaN blue light emitting diodes fabricated on freestanding GaN substrates,” Vol. 89, pp. 091906-1 (2006)
[38] Y. D. Jho, J. S. Yahung, E. Oh, and D. S. Kim, Phys. Rev. B, “Field-dependent carrier decay dynamics in strained InxGa1-xN/GaN quantum wells,” Vol. 66, pp. 035334 (2002).
[39] T. M. Hsu, C. Y. Lai, W.-H. Chang, C.-C. Pan, C.-C. Chuo, and J.-I. Chyi, Appl. Phys. Lett., “Electroreflectance study on the polarization field in InGaN/AlInGaN multiple quantum wells,” Vol. 84, pp. 1114 (2004)
[40] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H.Amano, and I. Akasaki, Jpn. J. Appl. Phys., Part 2, “Quantum-Confined Stark Effect due to Piezoelectric Fields in GaInN Strained Quantum Wells,” Vol. 36, pp. L382 (1997)
[41] I. Vurgaftman and J. R. Meyer, J. Appl. Phys., “Band parameters for nitrogen-containing semiconductors,” Vol. 94, pp. 3675 (2003)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔