跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/02 00:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林於亭
研究生(外文):Yu-Ting Lin
論文名稱:添加鉑/二氧化鈦於鉑/碳黑觸媒層中改善PEMFC的效能
論文名稱(外文):Improvement of PEMFC Performance by Adding Pt/TiO2 in the Pt/C Catalyst Layer
指導教授:薛富盛薛富盛引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:76
中文關鍵詞:質子交換膜燃料電池光催化二氧化鈦
外文關鍵詞:PEMFCphotocatalystTiO2
相關次數:
  • 被引用被引用:2
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,由於國際油價持續飆升與社會環保意識抬頭,各國的學者紛紛投入新型能源的開發,其中以質子交換膜燃料電池(PEMFC)具有高能量密度、高轉換效率、操作容易和零污染等優點,因此備受各界矚目。為提升Pt觸媒的使用率及降低PEMFC的生產成本,碳材載體如具有高表面積的碳黑和奈米碳管被廣泛的應用在燃料電池中,但效果並不如預期中有效。二氧化鈦(TiO2)具有很強的氧化還原能力,經過紫外光照射後,價帶的電子會躍遷至導帶,形成一電子電洞對,可用於催化反應,藉此提升觸媒整體的催化效率。因此希望藉由添加鉑/二氧化鈦能提高燃料電池的整體反應效率。
本研究利用熱迴流方式合成鉑/碳黑(Pt/C)與鉑/二氧化鈦(Pt/TiO2)觸媒,針對不同Pt前驅物添加順序的觸媒,透過X射線繞射儀、場發射掃描式電子顯微鏡、穿透式電子顯微鏡、電化學分析儀等儀器,分析觀察觸媒成份、Pt粒子的尺寸和在載體上的分散程度以及觸媒的活性面積。並且在鉑/碳黑觸媒層中添加不同比例的鉑/二氧化鈦(0 wt. %、5 wt. %和10 wt. %),進行電池效能分析,探討添加鉑/二氧化鈦對於燃料電池效能之影響。
研究結果發現製作鉑/碳黑觸媒時,以將鉑前驅物添加於分散後之碳黑所合成之鉑粒子尺寸、分散程度與觸媒活性面積都較佳,其鉑粒子為5.4 nm且活性面積為21.05 cm2。經實驗證實,對二氧化鈦通以0.7 V的電壓,亦可使二氧化鈦具有氧化還原的特性。在單電池測試,發現鉑/二氧化鈦添加在陽極觸媒層中,可以幫助外加水氣的吸收,同時增強背擴散現象,並且證實電池在發電過程中可激發鉑/二氧化鈦光催化特性,使得水分子進行還原反應產生氫氣,改善濃度極化進而提升發電效率,其中以添加5 wt. %的性能最佳。當鉑/二氧化鈦添加於陰極觸媒層中,電池效能並未得到明顯的提升。此外,將鉑/二氧化鈦同時添加於陰陽兩極的觸媒層進行單電池測試,發現添加鉑/二氧化鈦有助於提升燃料電池效能,但須控制添加量值,添加太多反而會因為內電阻的增加而降低電池的效能。本實驗中,以添加5 wt. %Pt/TiO2於陽極觸媒層電池效能最優。
Recently, along with the considerable increasing in the price of petroleum and the more emphasis on the environmental preservation, many efforts have embarked on the discovery and development of new fuel resources. Proton exchange membrane fuel cells (PEMFC) have been regarded as a candidate for future power sources for transport, residential and portable applications, primarily due to the advantageous characteristics of high power density, high energy-conversion, simplicity of operation and near-zero pollutant emission. High surface area carbon carriers, such as carbon black and carbon nanotube, were widely used in PEMFC in order to advance the utility of the Pt catalyst and decline the prime cost, however, this method still left much to be desired. Titania particles with high redox facility by irradiating the ultraviolet, which is caused by the jumping of electrons from valence band to conduction band to produce electron-hole pairs.
In this study, the Pt/TiO2 and Pt/C catalysts were synthesized by thermal reflux method. The composition and the area of active sites of the catalyst, the particle size of Pt and the effect caused by the different adding sequence of Pt precursor were investigate by X-ray diffraction instrument (XRD), Field emission scanning electron microscope (FESEM), Transmission electron microscopy (TEM) and chemical analyzer, individually. The cell performance with different addition of Pt/TiO2 (0 wt. %, 5 wt. % and 10 wt. %) into Pt/C catalyst were measured by the fuel cell testing system.
As the result, the Pt/C catalyst synthesized by the previous dispersion of carbon black showed the higher active area (21.05 cm2) and more uniform Pt particle size (5.4 nm). Specifically, form the results evidences, the catalyzed characteristic also can be induced by the bias of 0.7 V. In the single cell test, the results proved that the addition of Pt/TiO2 into anode catalyst layer can actually enhanced the adsorption of water and promoted the back diffusion reaction simultaneously, and the 5 wt. % Pt/TiO2-doped anode catalyst layer showed the best performance. By contrast, the addition of Pt/TiO2 catalyst in the cathode catalyst layer represents no benefits for facilitating the cell performance. The Pt/TiO2 catalyst was added to anode and cathode catalyst layer, the addition of 5 wt. % Pt/TiO2 showed the best current density.
中文摘要 I
英文摘要 II
圖目錄 VI
表目錄 IX
第一章 緒論 1
1-1 前言 1
1-2 研究動機 4
第二章 文獻回顧 5
2-1 質子交換膜燃料電池(PEMFC) 5
2-1-1 質子交換膜燃料電池(PEMFC)的構造 6
2-1-2 雙極板(Bipolar plate) 7
2-1-3 膜電極組(Membrane electrode assembly) 7
2-1-4 膜電極組的水管理 12
2-2 載體的應用及發展 13
2-2-1 載體應用 13
2-2-2 擔體效應 13
2-2-3 載體之分散 13
2-3 二氧化鈦光觸媒簡介 16
2-3-1 光催化興起的歷史背景 16
2-3-2 二氧化鈦 16
2-3-3 光催化原理 19
2-3-4 二氧化鈦在燃料電池中之應用 20
第三章 實驗方法及步驟 23
3-1藥品與材料 23
3-2 儀器設備 24
3-3 實驗步驟 26
3-3-1 二氧化鈦光能及電能催化性質測試 26
3-3-2 鉑/碳黑觸媒的製備 27
3-3-3 鉑/二氧化鈦觸媒的製備 28
3-3-4 Nafion的前處理 28
3-3-5 膜電極的製備 29
3-4 實驗分析儀器 30
第四章 結果與討論 32
4-1 載體之特性分析 32
4-1-1 二氧化鈦(TiO2)催化性質測試 32
4-1-2 X光繞射分析 34
4-1-3 掃描式電子顯微鏡分析 36
4-1-4 BET比表面積及孔徑分佈分析 40
4-2 鉑(PT)前驅物添加順序對於觸媒之影響 44
4-2-1 X光繞射分析 44
4-2-2掃描式電子顯微鏡與穿透式電子顯微鏡分析 46
4-2-3 循環伏安法觸媒催化性能測試 52
4-3 鉑/二氧化鈦觸媒分析 54
4-4 觸媒漿料特性分析 58
4-5 單電池測試 62
第五章 結論 69
參考文獻 70
附錄 74
[1]Ostwald W., Z. Elektrotech. Electrochem., 4, 122 (1894).
[2]黃鎮江,〝燃料電池〞,全華科技圖書公司,2005。
[3]J. H. Hirschenhofer, D. E. Stauffer, R. R. Engleman and M. G. Klett, 〝Fuel cell handbook 4th edition〞, U. S. Department of Commerce, Springfield, VA, (1998).
[4] 熊居政,〝奈米化白金觸媒在燃料電池之電極材料上佈置方法及電化學測試之研究〞碩士論文,中國文化大學材料科學與製造研究所,2004。
[5]衣寶廉,燃料電池-原理與應用,五南圖書出版社,2005。
[6]C. Rayment and S. Sherwin, Introduction of Fuel Cell Technology, Department of Aerospace and Mechaical Engineering, University of Notre Dame, (2003).
[7]Carrette L., Friedrich K. A., and Stimming U., 〝Fuel cell fundamemtal and pplication〞, Fuel Cell, 1, 1 (2001).
[8]趙文愷,〝添加親水性γ-氧化鋁於陽極觸媒層中改善PEMFC的效能〞碩士論文,國立中興大學材料工程研究所,2007。
[9]Y. Takasu, T. Kawaguchi, W. Sugimoto, and Y. Murakami, Electrochimica Acta, 48 (2003) 3861.
[10]G. Chena, A. Delafuente, S. Sarangapani, and E. Thomas, Catalysis Today, 67 (2001) 341.
[11]R. Venkataraman, H. R. Kunz, and J. M. Fenton, J. Electrochem. Soc., 150 (2003) A278.
[12]K. T. Kim, Y. G. Kim, and J. S. Chung, J. Electrochem. Soc., 142 (1995) 1531.
[13]Y. Yoshikawa, T. Matsuura, M. Kato, and M. Hori, J. Power Sources, 158 (2006) 143.
[14]M. M. Waje, X. Wang, W. Li, and Y. Yan, Nanotechnology, 16 (2005) S395.
[15]N. M. Markovic and P. N. Ross Js., Surface Science Reports, 45 (2002) 117.
[16]J. H. Choi, K. W. Park, B. K. Kwon and, Y. E. Sung, J. Electrochem. Soc., 150 (2003) A973.
[17]X. L. Wang, H. M. Zhang, J. L. Zhang, and H. F. Xu, Electrochimica Acta, 51 (2006) 4909.
[18]X. Cheng, B. Yi, M. Han, J. Zhang, Y. Qiao, and J. Yu, J. Power Sources, 79 (1999) 75.
[19]S. Escribano, J. F. Blachot, J. Eth’eve, A. Morin, and R. Mosdale, J. Power Sourse, 156 (2006) 8.
[20]Y. H. Pai, J. H. Ke, H. F. Huang, C. M. Lee, J. M. Zen, and F. S. Shieu, J. Power Sourse, 161 (2006) 275.
[21]X. Zang and Z. Shen, Fuel, 81 (2002) 2199.
[22]C. Lim and C. Y. Wang, J. Power Sourse, 113 (2003) 145.
[23]G. Karimi and X. Li, J. Power Sourse, 140 (2005) 1.
[24]X. Ren and S. Gottesfeld, J. Electrochem. Soc., 148 (2001) A87.
[25]U. Pasaogullari and C. Y. Wang, J. Electrochem. Soc., 151 (2004) A399.
[26]N. Djilali and D. Lu, Int. J. Therm. Sci., 41 (2002) 29.
[27]J. Chen, T. Matsuura and, M. Hori, J. Power Sourse, 131 (2004) 155.
[28]S. Lister and G. McLean, J. Power Sourse, 130 (2004) 61.
[29]D. Bevers, R. Rogers and, M. V. Bradke, J. Power Sourse, 63 (1996) 193.
[30]V. A. Pagnian, E. A. Ticianell and, E. R. Gonzalez, J. Appl. Electrochem., 26 (1996) 297.
[31]L. Giorgi, E. Antolini, A. Pozio and, E. Passalacqua, Electrochim. Acta, 43 (1998) 3675.
[32]C. Lim and C. Y. Wang, Electrochem. Acta, 49 (2004) 4149.
[33]D. S. Chan and C. C. Wang, J. Power Sourse, 50 (1994) 163.
[34]J. Benziger, J. Nehlsen, D. Blackwell, T. Brenan and, J. Itescu, J. Membrane Sci., 261 (2005) 98.
[35]B. Gurau, R. Viswanathan, R. Liu, T. J. Lafrenz, K. L. Ley, E. S. Smotkin, E. Reddington, A. Sapienza, B. C. Chan and, T. E. Mallouk, J. Phys. Chem. B., 102 (1998) 9997.
[36]H. Wendt, Electrochim. Acta, 31 (2001) 3637.
[37]K. W. Park, J. H. Choi, B. K. Kwon, S. A. Lee and, Y. E. Sung, J. Phys. Chem. B., 106 (2002) 1869.
[38]M. S. Wilson, J. A. Valerio, and S. Gottesfeld, Electrochim. Acta, 40 (1995) 355.
[39]G. S. Kimar, M. Raja, and S. Parthasarathy, Electrochim. Acta, 40 (1995) 285.
[40]M. S. Willon, U. S. Pat. No.5, 234, (1993) 777.
[41]R. O’Hayre, S. J. Lee, S. W. Cha, and F. B. Prinz, J. Power Sourse, 109 (2002) 483.
[42]D. Gruber, N. Ponath, and J. M’uller, Electrochim. Acta, 51 (2005) 701.
[43]S. Litster and G. McLean, J. Power Sourse, 130 (2004) 61.
[44]F. N. Buchi, D. Tran, and S. Srinivassan, Proceeding of the First International Symposium on Proton Conducting Membrane Fuel Cell I, the Electrochemical Society, Inc., Pennington, NJ, (1995) 226.
[45]W. H. Buck, Proceeding of the Power Sourse Conference(37th), Army Research Lab., Fort Monmouth, (1996) p104.
[46]I. Yurii, Y. I. Matator-Meytal, and M. Sheintuch, Ind. Eng. Chem. Res., 37 (1998) 309.
[47]A. Gil, A. Piaz, L. M. Gandia, and M. Montes, 145 Applied Catalysis A, 109 (1994) 167.
[48]A. A. Ogwu, E. BouQuerel, O. Ademosu, S. Moh, E. Crossan, and F. Placido, METALLURGICAL AND MATERIALS TRANSACTIONS A, vol. 36A, (2005) 2435.
[49]J. J. Lin, C. C. Chu, C. C. Chou, and F. S. Shieu, Adv. Mater, 17 (2005) 301.
[50]A. S. Arico, S. Srinivasan and, V. Antonucci, Fuel Cell, 1(2) (2001) 133.
[51]K. E. Swider and D. R. Rolison, Langmuir, 15(9) (1999) 3302.
[52]M. Chen and Y. Xing, Langmuir, 21(20) (2005) 9334.
[53]H. Y. Li, H. Z. Chen, J. Z. Sun, J. Cao, Z. L. Yang, and M. Wang, Maxroml Rapid Commun, 24(12) (2003) 715.
[54]F. Tiarks, K. Landfester, and M. Antonietti, Macromol. Chem. Phys., 202(1) (2001) 51.
[55]S. J. Park, K. S. Cho, and S. K. Ryu, Carbon, 41(7) (2003) 1437.
[56]H. J. Spinelli, Adv. Mater, 10(15) (1998) 1215.
[57]P. Yu, M. Pemberton, and P. Plasse, J. Power Sources, 144 (2005) 1.
[58]Y. H. Pai, J. H. Ke, C. C. Chou, J. J. Lin, J. M. Zen, and F. S. Shieu, J. Power Sources, 163 (2006) 398.
[59]A. Fujishima and K. Honda, Bull. Chem. Soc. Japan, 44 (1971) 1148; Nature 238 (1972) 37.
[60]C. H. Yang and C. C. Yang, Journal of CHEN-MIN college, 6 (June 2002) 1.
[61]洪茂徳,〝鉑觸媒之催化性質:嫁接TiO2之角色〞碩士論文,國立中正大學化學工程研究所,2005。
[62]鄧文森,〝添加SiO2對TiO2特性影響之研究〞碩士論文,大同大學材料工程研究所,2003。
[63]G. Blondell, A. Harriman, and D. Williams, Solar Energy Materials, 9 (1983) 225.
[64]A. Sacca, A. Carbone, E. Passalacqua, A. D’Epifanio, S. Licoccia, E. Traversa, E. Sala, F. Traini, and R. Ornelas, Journal of Power Sourse, 152 (2005) 16.
[65]M. Watanabe, H. Vchida, Y. Seki, M. Emori, and P. Stonehart, J. Electrochem. Soc., 143 (1996) 3847.
[66]M. Watanabe, H. Vchida, and M. Emori, J. Electrochem. Soc., 145 (1998) 1137.
[67]P. L. Antonucci, A. S. Arico, P. Creti, E. Ramunni, and V. Anaonucci, Solid State Ionics, 125 (1999) 431.
[68]M. C. Carotta, A. Butteri, G. Martinelli, M. L. Di Vona, S. Licoccia, and E. Traversa, Electron Tecnol., 33 (2000) 113.
[69]V. Baglio, A. D. Blasi, A. S. Arico, V. Antouncci, P. L. Antouncci, F. Serraino Fiory, S. Licoccia, and E. Traversa, J. New Mater. Electrochem. Syst., 7 (2004) 275.
[70]D. C. Hague and M. J. Mayo, J. Am Ceram. Soc., 77 (1994) 1957.
[71]S. P. Nunes, B. Ruffmann, E. Rikowski, S. Vetter, and K. Richau, Journal of Membrane Science, 203 (2002) 215.
[72]Z. Liu, B. Guo, J. Huang, L. Hong, M. Han, and M. Gan, Journal of Power Sourse, 157 (2006) 207.
[73]T. Schultz, S. Zhou, and K. Sundmacher, Chem. Eng. Technol., 24(12) (2001) 1223.
[74]M. P. Hogarth and T. R. Ralph, Platinum Metals Rev., 46(4) (2002) 146.
[75]M. Haruta, A. Ueda, S. Tsubota, and R. M. Torres Sanchez, Catalysis Today, 29 (1996) 443.
[76]Y. X. Bai, J. J. Wu, X. P. Qiu, J. Y. Xi, J. F. Li, W. T. Zhu, and L. Q. Chen, Appl. Catal. B:Environ., 73 (2007) 144.
[77]K. W. Park, S. B. Hand, and J. M. Lee, Electrochem. Commun., 9 (2007) 1578.
[78]L. H. Jiang, G. Q. Sun, Z. H. Zhou, S. G. Sun, Q. Wang, S. Y. Yan, H. Q. Li, J. Tian, J. S. Guo, B. Zhou, and Q. Xin, J. Phys. Chem. B, 109 (2005) 8774.
[79]M. Mori, Y. Hiei, H. Itoh, G. A. Tompsett, and N. M. Sammes, Solid State Ionics, 160 (2003) 1.
[80]D. Skarmoutsos, A. Tsoga, A. Naoumidis, and P. Nikolopoulos, Solid State Ionics, 135 (2000) 439.
[81]A. W. Adamson, Physical chemistry of surfaces, Interscience Publishers (1967).
[82]Encyclopedia of Chemical Technology, 4thedited vol. 4, 631-665.
[83]Y. Ying, C. D. Mehnert, and M. S. Wong, Angew. Chem. Int. Ed., 38 (1999) 56.
[84]林彥伯,〝立方型孔洞中孔洞材料MCM-48及中孔碳材的合成〞碩士論文,國立成功大學化學研究所,2004。
[85]G. Ertl, H. Knozinger, and J. Weitkamp, Handbook of Heterogeneous Catalysis, 3 (1997) 1508.
[86]賴耿陽,〝碳材料化學與工學〞,復漢出版社,89-91。
[87]Z. Q. Tian, F. D. Xie, and P. K. Shen, J. Mater. Sic., 39 (2004) 1507.
[88]Y. Xing, J. Phys. Chem. B, 108 (2004) 19255.
[89]M. Umeda, M. Kokubo, M. Mohamedi, and I. Uchida, Electrochimica Acta, 48 (2003) 1367.
[90]A. Houas, H. Lachheb, M. Ksibi, E. Elaloui, C. Guillar, and J. M. Herrmann, Applied Catalysis B: Environmental, 31 (2001) 145.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊