跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2024/12/11 01:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林詩雅
研究生(外文):Shih-Ya Lin
論文名稱:聚醯胺66/奈米碳管複合材料之結晶行為與性質研究
論文名稱(外文):Crystallization behavior and properties Polyamide66/multi-walled carbon nanotubes nanocomposites
指導教授:吳宗明吳宗明引用關係
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2008
畢業學年度:96
語文別:中文
論文頁數:89
中文關鍵詞:聚醯胺66奈米碳管結晶行為
外文關鍵詞:polyamide66f-MWCNTscrystallization behavior
相關次數:
  • 被引用被引用:1
  • 點閱點閱:218
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究以溶液混合法將不同硝酸迴流改質處理之奈米碳管加入聚醯胺66 (Polyamide 66)高分子中,製備成聚醯胺66/奈米碳管(PA66/f-MWNTs)奈米複合材料。研究中以不同改質處理時間來分析碳管所含羧酸官能基含量,並探討添加不同改質處理時間之奈米碳管及其含量對聚醯胺66基材的分散性質、結晶行為與物理性質之影響。
本研究首先利用硝酸迴流法將碳管表面作羧化改質處理,使碳管表面接枝上羧酸官能基(carboxyl acid group,-COOH)以降低碳管因凡得瓦力作用容易聚集之效應,提升碳管在聚醯胺66中之分散性,並由TGA量測在不同改質時間下碳管表面羧酸官能基含量,由結果得知奈米碳管表面之羧酸官能基含量隨著硝酸迴流改質時間增加而增加。接著將改質3、6、12小時之奈米碳管以不同添加量加入聚醯胺66基材中,並以TEM觀察PA66/f-MWNTs奈米複合材料之分散情形,由TEM的結果可發現碳管在聚醯胺66均有良好的分散性。在XRD觀察結果發現,PA66及其複合材料均為典型的三斜晶α相結構,並經由計算結果發現在加入相同改質時間之奈米碳管後,PA66晶粒尺寸隨著碳管含量增加而下降;此外隨著碳管表面羧酸官能基含量增加,晶粒亦有下降之趨勢。
同時以DSC觀察PA66與PA66/f-MWNTs複合材料之等溫結晶與非等溫結晶行為。在等溫結晶結果中,由於奈米碳管加入誘發PA66高分子產生異質成核結晶,因此加入奈米碳管後加速聚醯胺66結晶,且結晶速率常數隨著碳管含量增加而增加,顯示越多的奈米碳管加入可產生更多異質成核,因而加速聚醯胺66高分子結晶並縮短半結晶時間。然而在加入1wt%改質12小時奈米碳管後,由於過多奈米碳管降低聚醯胺66分子鏈的移動性,因而導致聚醯胺66高分子結晶速率下降。觀察加入0.5wt%不同改質時間之奈米碳管複合材料,可以看到結晶速率常數隨著碳管改質時間增加而上升,這是由於碳管上羧酸官能基與PA66分子鏈產生氫鍵作用力,使聚醯胺66高分子更容易在奈米碳管表面產生規則排列,因而加速聚醯胺66高分子結晶。在非等溫結晶行為分析中發現,少量奈米碳管的加入造成立體空間障礙而阻礙聚醯胺66分子鏈移動,因此使得聚醯胺66高分子結晶速度變慢;而在加入3wt%奈米碳管後,由於碳管提供大量異質成核位置而降低其阻礙分子鏈移動之效應,因而使結晶速率常數比加入1wt%奈米碳管來的大,加速聚醯胺66的結晶。觀察非等溫結晶活化能,當碳管含量低於0.5wt%時,活化能會隨著碳管含量增加而上升;而在碳管含量大於1wt%時發現活化能隨著碳管含量增加而下降,且隨著羧酸官能基含量增加異質成核效應越顯著,推測是由於碳管/羧酸官能基比例增加,與聚醯胺66具有更多氫鍵結合力,因此促使PA66分子鏈更容易沿著碳管管壁進行結晶排列,而使結晶活化能下降。
Polyamide66/multi-walled carbon nanotube (PA66/f-MWCNT) composites have been prepared by adding various contents of carbon nanotube with carboxylic group into PA66 using solution mixing process. Effect of the ratios of carboxylic group and f-MWCNT contents on the crystallization behavior and physical properties will be discussed.
In order to improve the dispersion of MWCNTs into PA66 matrix, the MWCNTs were modified using reflux process of HNO3 solution to contain the carboxylic group on the surface of MWCNTs. The ratio of carboxylic group significantly increases with increasing the treatment time. From TEM images of nanocomposites, the f-MWCNT is randomly distributed in PA66 matrix. X-Ray data indicates the crystalline form of PA66 and PA66/f-MWCNT composites was typical triclinic α form. The crystalline sizes of nanocomposites decrease as carboxylic group and MWCNTs contents increase.
The isothermal results revealed that the crystallization rate increased with increasing the contents of f-MWCNTs, which suggested that the addition of f-MWCNTs probably induced the heterogeneous nucleation accelerated the crystallization rate of PA66. For 0.5wt% PA66/f-MWCNTs nanocomposites, the crystallization rate increased as the treated time increases. These results demonstrate that the possible presence of hydrogen bonding between PA66 and f-MWCNT would improve the arrangement of PA66 polymer chain and thus enhance the crystallization rate of PA66.
For the non-isothermal crystallization data, the addition of small amount of f-MWCNTs probably reduced the transportation ability of polymer chains ,and thus resulted in the decrease of crystallization rate. But the loading of 3 wt % f-MWCNTs into PA66 was caused more heterogeneous nucleation, the crystallization rate increased. The activation energy increased with the loading of o.5wt% f-MWNTs and then decreased as the contents of f-MWCNT increased. There results indicate that more hydrogen bonding between PA66 and f-MWNTs would decrease the crystallization energy of PA66.
摘要 I
Abstract II
總目次 III
圖目次 V
表目次 VIII
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 3
1-3 研究方向 4
第二章 文獻回顧 5
2-1 聚醯胺66 (polyamide 66) 5
2-1.1 聚醯胺66之特性 6
2-1.2 聚醯胺66之結構與結晶 6
2-1.3 添加物對聚醯胺66之性質改善 8
2-2 奈米碳管 9
2-2.1 奈米碳管之結構 11
2-2.2 奈米碳管之特性 13
2-2.3 奈米碳管之製備 15
2-2.5 奈米碳管之表面改質 17
2-3 高分子結晶動力學 22
2-3.1 Avrami 方程式 23
2-3.2 Hoffman-Weeks 平衡熔點(T0m) 24
2-3.3 Hoffman-Lauritzen 理論 24
2-3.4 Ozawa 方程式 27
2-4 聚醯胺66/奈米碳管複合材料 29
2-4.1 聚醯胺66奈米複合材料之結晶行為 31
2-4.2 聚醯胺66奈米複合材料之機械性質與動態機械性質 37
第三章 實驗方法及步驟 39
3-1 實驗藥品 39
3-2實驗流程 40
3-3實驗步驟 41
3-3.1 奈米碳管官能基化 41
3-3.2 聚醯胺66薄膜之製備 42
3-3.3 聚醯胺66/奈米碳管複合材料之製備 43
3-4 實驗儀器與分析 45
第四章 結果與討論 47
4-1 改質奈米碳管特性分析與官能基化程度鑑定 47
4-2 聚醯胺66/奈米碳管複合材料之分散性 55
4-3 聚醯胺66/奈米碳管複合材料之結構分析 57
4-4 聚醯胺66/奈米碳管複合材料之等溫結晶行為研究 62
4-5 聚醯胺66/奈米碳管複合材料之非等溫結晶動力學研究 73
4-5.1 非等溫結晶動力學行為分析 73
4-5.2 非等溫結晶之熔融行為 84
4-5.3 非等溫結晶活化能計算 88
第五章 結論 93
參考文獻 92
1.S. Iijima, “Helical microtubules of graphitic carbon”, J. Nature, 1991, 354, p56.
2.M. F. Yu, O. Lourie, M. Dyer, K. Moloni, T. Kelly, “Strength and Breaking Mechanism of Multiwalled Carbon Nanotubes Under Tensile Load”, J. Science, 2000, 287, p637.
3.E. W. Wong, P. E. Sheehan, C. M. Lieber, “Nanobeam Mechanics:Elasticity, Strength, and Tounghness of Nanorods and Nanotubes”, J. Science, 1997, 277, p1971.
4.M. A. Osman, D. Srivastava, “Temperature dependence of the thermal conductivity of single-wall carbon nanotubes”, J. Nanotechnology, 2001, 12, p21.
5.J. Hone, M. Whitney, C. Piskoti, A. Zettl, “Thermal conductivity of single-walled carbon nanotubes”, J. Phys. Rev. B, 1999, 59, p2514.
6.J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, “Nanotubes as nanoprobesin scanning probe microscopy”, J. Nature, 1998, 391, p59.
7.Y. Li , G.H. Lai , R.X Zhou, “Carbon nanotubes supported Pt–Ni catalysts and their properties for the liquid phase hydrogenation of cinnamaldehyde to hydrocinnamaldehyde”, J. Appl. Surface Science, 2007, 253, p4978.
8.J. Kong, Nathan R. Franklin, C. Zhou, Michael G. Chapline, S. Peng, K. Cho, H. Dai, “Nanotube Molecular Wires as Chemical Sensors”, J. Science, 2000, 287, p622.
9.P. M. Ajayan, O. Stephan, C. Colliex, D. Trauth, “Aligned carbon nanotube arrays formed by cutting a polymer resin-nanotube composite”, J. Science, 1994, 265, p1212.
10.維基百科,http://zh.wikipedia.org/w/index.php?title=%E5%B0%BC%E9%BE%99&var iant=zh-tw。
11.H. W. Starkweather,R. E. Brooks, “Effect of Spherulites on the Mechanical Properties of Nylon 66”, J. Polymer Science, 1959, 2, p236.
12.Richard L. Clark, “Influence of the Interphase on the Mechanical Properties of Nylon 66 Composites”, 1996.
13.A. Y. Feldmana, M. F. Gonzalez, E. Wachtel, M. P. Moret, G. Maroma, “Transcrystallinity in aramid and carbon fiber reinforced nylon 66:determining the lamellar orientation by synchrotron X-ray micro diffraction”, J. Polymer, 2004, 45, p7239.
14.H. LU, X. XU, X. LI and Z. ZHANG, “Morphology, crystallization and dynamic mechanical properties of PA66/nano-SiO2 composites”, J. Bull. Mater. Sci., 2006, 5, p29.
15.K. Noda, A. Takahara, and T. Kajiyama, “Fatigue failure mechanisms of short glass fiber reinforced Nylon 66 based on nonlinear dynamic viscoelastic measurement”, J. Polymer, 2001, 42, p5803.
16.S. N. Kukureka, C. J. Hooke, M. Rao, P. Liao, Y. K. Chen, “The effect of fibre reinforcement on the friction and wear of polyamide 66 under dry rolling–sliding contact”, J. Tribology International, 1999, 32, p107.
17.R. Haggenmueller, F. Du, J. E. Fischer, K. I. Winey, “Interfacial in situ polymerization of single wall carbon nanotube/nylon 6,6 nanocomposites”, J. Polymer, 2006, 47 p2381.
18.Z. Z. Yu, C. Yan, M. Yang, Y. W. Mai, “Mechanical and dynamic mechanical properties of nylon66/montmorillonite nanocomposites fabricated by melt compounding”, J. Polymer International,2004, 53, p1093.
19.A. Oberlin, M. Endo, T. Koyama, “High-Resolution Electron-Microscope Observations of Graphitized C Fibres Carbon”, J. Carbon, 1976, 14, p133.
20.S. Iijima, T. Ichihashi, Y. Ando, “Pentagons, heptagon and negative curvature in graphite microtube grouth”, J. Nature, 1992, 356, p776.
21.T. Ichihashi, S. Iijima, “Single-shell carbon nanotubes of 1-nm diameter”, J. Nature, 1993, 363, p603.
22.D. S. Bethune, C. H. Kiang, M. S. Vries, G. Gorman, R. Savoy, J. Vasquez, R. Beyers, “Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls”, J. Nature, 1993, 363, p605.
23.T. W. Ebbesen, P. M. Ajayan, “Large-scale synthesis of carbon nanotubes”, J. Nature, 1992, 358, p220.
24.T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, “Catalytic growth of single-walled manotubes by laser vaporization”, J. Chem. Phys. Lett., 1995, 243, p49.
25.M. Ouyang, J. Huang, C. M. Leiber, “Fundamental Electronic Properties and Applications of Single-Walled Carbon Nanotubes”, J. Acc. Chem. Res., 2002, 35, p1018.
26.洪昭南、徐逸明、王宏達 ,「奈米碳管結構及特性簡介」,化工,第49卷第1 期,第23-30 頁,2002。
27.N. Hamada, S Swada, and A. Oshiyama, “New One-Dimensional Conductor: Graphitic Microtubules”, J. Phys. Rev. Lett, 1992, 68, p1579
28.R. Saito. M. Fujita, G. Dresselhaus, M. S. Dresselhaus, “Electronic structure of chiral graphene tubules”, J. Appl. Rev. Lett., 1992, 60, p2204.
29.S. Iijima, C. Brabec, A. Maiti, J. Bernholc, “Structural flexibility of carbon nanotubes”, J. Chem. Phys., 1996, 104, p2089.
30.T. R. Anthony, W. F. Banholzer, J. F. Fleischer, L. Wei, P.K. Kuo, R. L. Thomas, R. W. Pryor, “Thermal diffusivity of isotopically enriched 12C diamond”, J. Physical Review B, 1990, 42, p1104.
31.E. T. Thostenson, Z. Ren, and T. W. Chou, “Advances in the science and technology of carbon nanotubes and their composites: a review”, J. Composites Science and Technology, 2001, 61, p1899.
32.楊育峰,“奈米碳管接枝幾丁聚醣之物性研究”, 國立雲林科技大學工業化學與災害防治研究所碩士論文 (2003).
33.R. M. Lago, S. C. Tsang, M. L. H. Green, “Filling carbon nanotubes with small palladium metal crystallites: the effect of surface acid groups”, J. Chem. Soc., Chem. Commu., 1995, p1355.
34.J. Liu, A. G. Rinzler, H. Dai, J. H. Hafner, R. Kelley Bradley, P. J. Boul, A. Lu, T. Iverson, K. Shelimov, C. B. Huffman, F. R. Macias, Y. S. Shon, T. R. Lee, D. T. Colbert, R. E. Smalley, “Fullerene Pipes”, J. Science, 1998, 280, p1253.
35.A. Kuznetsova, D. B. Mawhinney, V. Naumenko, J. T. Yates Jr., J. Liu, R. E. Smalley, “Enhancement of adsorption inside of single-walled nanotubes: opening the entry ports”, J. Chem. Phys. Lett., 2000, 321, p292
36.J. Zhang, H. Zou, Q. Qing, Y. Yang, Q. Li, Z. Liu, X. Guo, and Z. Du., “Effect of Chemical Oxidation on Structure of Single-Walled Carbon Nanotubes”, J. Phys. Chem. B, 2003, 107, p3712
37.D. Q. Yang, J. F. Rochette, E. Sacher, “Functionalization of Multiwalled Carbon Nanotubes by Mild Aqueous Sonication”, J. Phys. Chem. B, 2005, 109, p7788.
38.T. Wang, X. Hu, X. Qu, S. Dong, “ Surfactantless Synthesis of Multiple Shapes of Gold Nanostructures and Their Shape-Dependent SERS Spectroscopy”, J. Phys. Chem. B, 2006, 110, p6631.
39.L. Li, C. Y. Li, C. Ni, L. Rong, B. Hsiao, “Structure and crystallization behavior of Nylon 66/multi-walled carbon nanotube nanocomposites at low carbon nanotube contents”, J. Polymer, 2007, 48, p3452.
40.吳宗明,徐崧富,聚羥基丁酸酯/層狀雙氫氧化合物複合材料之結晶行為與熱裂解特性,國立中興大學材料所(2007)。
41.M. Avrami, “Kinetics of phase change”, J. Chem. Phys., 1940, 8, p212.
42.W. D. Lee, E. S. Yoo, S. S.Im, “Crystallization behavior and morphology of poly(ethylene 2,6-naphthalate)”, J. Polymer, 2003, 44, p6617-6625.
43.吳宗明,徐崧富,對位聚苯乙烯/蒙脫土奈米複合材料之非等溫結晶行為研究,國立中興大學材料所(2002)。
44.金日光,梁幼卿,高分子物理,第二版,117-118 (2000)。
45.L. H.Sperlin, Introduction To Physical Polymer Science(3rd), A John Wiley & Sons, Inc., Publication, New York.
46.J. D. Hoffman, G. T. Davis, J. I. Lauritzen, In Treatise on Solid State Chemistry, Hannay, N. B., Ed., Plenum Press: New York, 1976.
47.J. I. Lauritzen, J. D. Hoffman, “Extension of theory of growth of chain-folded polymer crystals to large undercoolings”, J. Appl. Phys.1973, 44, p4340.
48.L. Mandelkern, F. A. Quinn, P. J. Flory, “Crystallization Kinetics in High Polymers. I. Bulk Polymers”, J. Appl. Phys. 1954, 25, p830.
49.歐陽浩,黃柏豪,聚乙二醇/聚己內酯團連式共聚物之結晶動力學與相行為研究,國立中興大學材料所(2004)。
50.吳宗明,劉淳亦,聚對萘二甲酸乙二酯奈米複合材料塗佈二氧化鈦之可撓性機材製備與物性研究,國立中興大學材料所(2004)。
51.J. I. Lauritzen, “ Effect of a finite substrate length upon polymer crystal lamellar growth rate”, J. Appl. Phys., 1973, 44, p4353.
52.P. Cebe, S. D. Hong, “Crystallization Behaviour of Polyetheretherketone Polymer”, J. Polymer, 1986, 27, p1183.
53.T.Liu, Z. Mo, S. Wang, H. Zhang, “ Nonisothermal Melt and Cold Crystallization Kinetics of Poly(Ary1 Ether Ether Ketone Ketone)”, J. Polym. Eng. Sci., 1997, 37, p568.
54.H. E. Kissinger, “Reaction Kinetics in Differential Thermal Analysis”, J. Anal Chem , 1957, 11, p1702.
55.H. LU, X. XU, X. LI, Z. ZHANG, “ Morphology, crystallization and dynamic mechanical properties of PA66/nano-SiO2 composites”, J. Bull. Mater. Sci.,2006, 29, p485.
56.K. Tohgo, D. Fukuhara, and A. Hadano, “The influence of debonding damage on fracture toughness and crack-tip field in glass particle-reinforced Nylon 66 composites “, J. Composites Science and Technology, 2001, 61, p1005.
57.A. Y. Feldman, M. F. Gonzaleza, E. Wachtel, M. P. Moret, G. Marom, “Transcrystallinity in aramid and carbon fiber reinforced nylon 66:determining the lamellar orientation by synchrotron X-ray micro diffraction”, J. Polymer, 2004, 45, p7239.
58.X. Kang, S. He, C. Zhu, L. W. L. Lu, J. Guo, “Studies on Crystallization Behaviors and Crystal Morphology of Polyamide 66/Clay Nanocomposites”, J. Appl. Polymer Science, 2005, 95, p756.
59.S. A. Hitchen, S. L. Ogin, “Damage Accumulation During the Fatigue of an Injection Moulded Glass/Nylon Composite Fibre Science and Technology”, J. Composites Science and Technology, 1993, 47, p83.
60.J. C. Won,L R. Fulchiron, Douillard, Chabert, J. Varlfct, D. Chomier, “The Crystallization Kinetics of Polyamide 66 in Non-isothermal and Isothermal Conditions: Effect of Nucleating Agent and Pressure”, J. Polymer Engineering And Science, 2000, 9, p40.
61.Xiaohui Liu, Qiuju Wu, L. A. Berglund, “Polymorphism in polyamide 66/clay nanocomposites”, J. Polymer, 2002, 43, p4967.
62.E. C. Chen, T. M. WU, “Isothermal and Nonisothermal Crystallization Kinetics of Nylon 6/Functionalized Multi-Walled Carbon Nanotube Composites”, J. Polymer Science: Part B: Polymer Physics, 2008, 46, p158.
63.R. Sengupta, A. Ganguly, S. Sabharwal, T. K. Chaki, A. K. Bhowmick, “MWCNT reinforced Polyamide-6,6 films: preparation,characterization and properties”, J. Mater Sci., 2007, 42, p923.
64.C. Ramesh, A. Kellert, “Studies on the crystallization and melting of nylon-6,6: 1. The dependence of the Brill transition on the crystallization temperature”, J. Polymer, 1994, 12, 35.
65.B. D. Cullity, S. R. Stock, “Elements of X-Ray Diffraction”, third edition.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top